Solution-processed negative gauge factor PtSe2 strain sensors
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
40693334
PubMed Central
PMC12281280
DOI
10.1039/d5nr01217a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We undertake electrochemical exfoliation of a 2D semiconductor platinum diselenide, PtSe2 and investigate the piezoresistance response of a solution-processed network. Due to the large PtSe2 aspect ratios, exceeding 300, we achieve conformal flake-to-flake junctions and good inter-flake electrical coupling. Our measured piezoresistive gauge factor is negative (-5.45), consistent with the intrinsic negative gauge factor of PtSe2. This negative network gauge factor implies that strain is transferred from the substrate to the nanosheets. However, detailed modelling shows that the strain transferred to the nanosheets is much smaller than the applied strain, showing that conformal junctions do not necessarily lead to good mechanical coupling between nanosheets. Our model implies that this gauge factor is consistent with a strain transfer efficiency of 8.5%. Our strain sensor also demonstrated a cyclic response for over 1000 cycles, enabling the sensor to be used in future flexible optoelectronics applications.
School of Chemistry CRANN and AMBER Research Centres Trinity College Dublin Dublin 2 Ireland
School of Physics CRANN and AMBER Research Centres Trinity College Dublin Dublin 2 Ireland
Zobrazit více v PubMed
Fiorillo A. S. Critello C. D. Pullano S. A. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators, A. 2018;281:156–175. doi: 10.1016/j.sna.2018.07.006. https://dx.doi.org/10.1016/j.sna.2018.07.006 DOI
Lugstein A. Steinmair M. Steiger A. Kosina H. Bertagnolli E. Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett. 2010;10(8):3204–3208. doi: 10.1021/nl102179c. https://dx.doi.org/10.1021/nl102179c PubMed DOI
Little E. and Finlay J., Perspectives of strain measurement techniques, in Strain measurement in biomechanics, Springer, 1992, pp. 1–13
Lu Y.-C. Chiang C.-Y. Chen Y.-C. Lin Y.-C. Ono T. Tsai Y.-C. Study and fabrication of a flexible Zr-based metallic glass thin film strain gauge. Jpn. J. Appl. Phys. 2020;59:SIIG10. doi: 10.35848/1347-4065/ab7f1b. https://dx.doi.org/10.35848/1347-4065/ab7f1b DOI
Yan W. Fuh H. R. Lv Y. Chen K. Q. Tsai T. Y. Wu Y. R. Shieh T. H. Hung K. M. Li J. Zhang D. et al., Giant gauge factor of Van der Waals material based strain sensors. Nat. Commun. 2021;12(1):2018. doi: 10.1038/s41467-021-22316-8. https://dx.doi.org/10.1038/s41467-021-22316-8 PubMed DOI PMC
Torrisi F. Carey T. Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today. 2018;23:73–96. doi: 10.1016/j.nantod.2018.10.009. https://dx.doi.org/10.1016/j.nantod.2018.10.009 DOI
Uddin M. M. Kabir M. H. Ali M. A. Hossain M. M. Khandaker M. U. Mandal S. Arifutzzaman A. Jana D. Graphene-like emerging 2D materials: recent progress, challenges and future outlook. RSC Adv. 2023;13(47):33336–33375. doi: 10.1039/D3RA04456D. https://dx.doi.org/10.1039/D3RA04456D PubMed DOI PMC
Huang M. Pascal T. A. Kim H. Goddard W. A. Greer J. R. Electronic–mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Lett. 2011;11(3):1241–1246. doi: 10.1021/nl104227t. https://dx.doi.org/10.1021/nl104227t PubMed DOI
Smith A. D. Niklaus F. Paussa A. Schroder S. Fischer A. C. Sterner M. Wagner S. Vaziri S. Forsberg F. Esseni D. et al., Piezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors. ACS Nano. 2016;10(11):9879–9886. doi: 10.1021/acsnano.6b02533. https://dx.doi.org/10.1021/acsnano.6b02533 PubMed DOI PMC
Wu W. Wang L. Li Y. Zhang F. Lin L. Niu S. Chenet D. Zhang X. Hao Y. Heinz T. F. et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature. 2014;514(7523):470–474. doi: 10.1038/nature13792. https://dx.doi.org/10.1038/nature13792 PubMed DOI
Manzeli S. Allain A. Ghadimi A. Kis A. Piezoresistivity and Strain-induced Band Gap Tuning in Atomically Thin MoS2. Nano Lett. 2015;15(8):5330–5335. doi: 10.1021/acs.nanolett.5b01689. https://dx.doi.org/10.1021/acs.nanolett.5b01689 PubMed DOI
Tsai M. Y. Tarasov A. Hesabi Z. R. Taghinejad H. Campbell P. M. Joiner C. A. Adibi A. Vogel E. M. Flexible MoS2 Field-Effect Transistors for Gate-Tunable Piezoresistive Strain Sensors. ACS Appl. Mater. Interfaces. 2015;7(23):12850–12855. doi: 10.1021/acsami.5b02336. https://dx.doi.org/10.1021/acsami.5b02336 PubMed DOI
Datye I. M. Daus A. Grady R. W. Brenner K. Vaziri S. Pop E. Strain-Enhanced Mobility of Monolayer MoS(2) Nano Lett. 2022;22(20):8052–8059. doi: 10.1021/acs.nanolett.2c01707. https://dx.doi.org/10.1021/acs.nanolett.2c01707 PubMed DOI
Zhu M. Li J. Inomata N. Toda M. Ono T. Vanadium-doped molybdenum disulfide film-based strain sensors with high gauge factor. Appl. Phys. Express. 2019;12(1):015003. doi: 10.7567/1882-0786/aaf5c4. https://dx.doi.org/10.7567/1882-0786/aaf5c4 DOI
Mohammad Haniff M. A. S. Muhammad Hafiz S. Wahid K. A. A. Endut Z. Lee H. W. Bien D. C. Azid I. A. Abdullah M. Z. Huang N. M. Rahman S. A. Piezoresistive effects in controllable defective HFTCVD graphene-based flexible pressure sensor. Sci. Rep. 2015;5:14751. doi: 10.1038/srep14751. https://dx.doi.org/10.1038/srep14751 PubMed DOI PMC
Nicolosi V. Chhowalla M. Kanatzidis M. G. Strano M. S. Coleman J. N. Liquid Exfoliation of Layered Materials. Science. 2013;340(6139) doi: 10.1126/science.1226419. https://dx.doi.org/10.1126/science.1226419 DOI
Pinilla S. Coelho J. Li K. Liu J. Nicolosi V. Two-dimensional material inks. Nat. Rev. Mater. 2022;7(9):717–735. doi: 10.1038/s41578-022-00448-7. https://dx.doi.org/10.1038/s41578-022-00448-7 DOI
Carey T. Maughan J. Doolan L. Caffrey E. Garcia J. Liu S. Kaur H. Ilhan C. Seyedin S. Coleman J. N. Knot Architecture for Biocompatible and Semiconducting 2D Electronic Fiber Transistors. Small Methods. 2024;8(10):e2301654. doi: 10.1002/smtd.202301654. https://dx.doi.org/10.1002/smtd.202301654 PubMed DOI
Carey T. Alhourani A. Tian R. Seyedin S. Arbab A. Maughan J. Šiller L. Horvath D. Kelly A. Kaur H. et al., Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage. npj 2D Mater. Appl. 2022;6(1):3. doi: 10.1038/s41699-021-00279-0. https://dx.doi.org/10.1038/s41699-021-00279-0 DOI
Caffrey E. Garcia J. R. O'Suilleabhain D. Gabbett C. Carey T. Coleman J. N. Quantifying the Piezoresistive Mechanism in High-Performance Printed Graphene Strain Sensors. ACS Appl. Mater. Interfaces. 2022;14(5):7141–7151. doi: 10.1021/acsami.1c21623. https://dx.doi.org/10.1021/acsami.1c21623 PubMed DOI PMC
Garcia J. R. McCrystal M. Horváth D. Kaur H. Carey T. Coleman J. N. Tuneable Piezoresistance of Graphene–Based 2D:2D Nanocomposite Networks. Adv. Funct. Mater. 2023;33(20):2214855. doi: 10.1002/adfm.202214855. https://dx.doi.org/10.1002/adfm.202214855 DOI
Caffrey E. Carey T. Doolan L. Dawson A. Coleman E. Sofer Z. Cassidy O. Gabbett C. Coleman J. N. Using Electrical Impedance Spectroscopy to Separately Quantify the Effect of Strain on Nanosheet and Junction Resistance in Printed Nanosheet Networks. Small. 2025;21(5):e2406864. doi: 10.1002/smll.202406864. https://dx.doi.org/10.1002/smll.202406864 PubMed DOI PMC
Wagner S. Yim C. McEvoy N. Kataria S. Yokaribas V. Kuc A. Pindl S. Fritzen C. P. Heine T. Duesberg G. S. Lemme M. C. Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe(2) Films. Nano Lett. 2018;18(6):3738–3745. doi: 10.1021/acs.nanolett.8b00928. https://dx.doi.org/10.1021/acs.nanolett.8b00928 PubMed DOI PMC
Szydłowska B. M. Hartwig O. Tywoniuk B. Hartman T. Stimpel-Lindner T. Sofer Z. McEvoy N. Duesberg G. S. Backes C. Spectroscopic thickness and quality metrics for PtSe2 layers produced by top-down and bottom-up techniques. 2D Mater. 2020;7(4) doi: 10.1088/2053-1583/aba9a0. DOI
Cho Y. S. Rhee D. Lee J. Jung S. Y. Eom J. Mazanek V. Wu B. Kang T. Baek S. Choi H. et al., Electronic and electrocatalytic applications based on solution–processed two–dimensional platinum diselenide with thickness–dependent electronic properties. EcoMat. 2023;5(8) doi: 10.1002/eom2.12358. https://dx.doi.org/10.1002/eom2.12358 DOI
Lee K. Szydlowska B. M. Hartwig O. Synnatschke K. Tywoniuk B. Hartman T. Tomasevic-Ilic T. Gabbett C. P. Coleman J. N. Sofer Z. et al., Highly conductive and long-term stable films from liquid-phase exfoliated platinum diselenide. J. Mater. Chem. C. 2023;11(2):593–599. doi: 10.1039/D2TC03889G. https://dx.doi.org/10.1039/d2tc03889g DOI
Biccai S. Boland C. S. O'Driscoll D. P. Harvey A. Gabbett C. O'Suilleabhain D. R. Griffin A. J. Li Z. Young R. J. Coleman J. N. Negative Gauge Factor Piezoresistive Composites Based on Polymers Filled with MoS(2) Nanosheets. ACS Nano. 2019;13(6):6845–6855. doi: 10.1021/acsnano.9b01613. https://dx.doi.org/10.1021/acsnano.9b01613 PubMed DOI
Johnson O. K. Kaschner G. C. Mason T. A. Fullwood D. T. Hansen G. Optimization of nickel nanocomposite for large strain sensing applications. Sens. Actuators, A. 2011;166(1):40–47. doi: 10.1016/j.sna.2010.12.022. https://dx.doi.org/10.1016/j.sna.2010.12.022 DOI
Zhao M. Casiraghi C. Parvez K. Electrochemical exfoliation of 2D materials beyond graphene. Chem. Soc. Rev. 2024;53(6):3036–3064. doi: 10.1039/D3CS00815K. https://dx.doi.org/10.1039/d3cs00815k PubMed DOI
Carey T. Cassidy O. Synnatschke K. Caffrey E. Garcia J. Liu S. Kaur H. Kelly A. G. Munuera J. Gabbett C. et al., High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides. ACS Nano. 2023;17(3):2912–2922. doi: 10.1021/acsnano.2c11319. https://dx.doi.org/10.1021/acsnano.2c11319 PubMed DOI PMC
Kelly A. G. O'Suilleabhain D. Gabbett C. Coleman J. N. The electrical conductivity of solution-processed nanosheet networks. Nat. Rev. Mater. 2021;7(3):217–234. doi: 10.1038/s41578-021-00386-w. https://dx.doi.org/10.1038/s41578-021-00386-w DOI
Gabbett C. Kelly A. G. Coleman E. Doolan L. Carey T. Synnatschke K. Liu S. Dawson A. O'Suilleabhain D. Munuera J. et al., Understanding how junction resistances impact the conduction mechanism in nano-networks. Nat. Commun. 2024;15(1):4517. doi: 10.1038/s41467-024-48614-5. https://dx.doi.org/10.1038/s41467-024-48614-5 PubMed DOI PMC
Neilson J. Avery M. P. Derby B. Tiled Monolayer Films of 2D Molybdenum Disulfide Nanoflakes Assembled at Liquid/Liquid Interfaces. ACS Appl. Mater. Interfaces. 2020;12(22):25125–25134. doi: 10.1021/acsami.0c03794. https://dx.doi.org/10.1021/acsami.0c03794 PubMed DOI PMC
Gong Y. Lin Z. Chen Y. X. Khan Q. Wang C. Zhang B. Nie G. Xie N. Li D. Two-Dimensional Platinum Diselenide: Synthesis, Emerging Applications, and Future Challenges. Nano-Micro Lett. 2020;12(1):174. doi: 10.1007/s40820-020-00515-0. https://dx.doi.org/10.1007/s40820-020-00515-0 PubMed DOI PMC
Tharrault M. Desgué E. Carisetti D. Plaçais B. Voisin C. Legagneux P. Baudin E. Raman spectroscopy of monolayer to bulk PtSe2 exfoliated crystals. 2D Mater. 2024;11(2):025011. doi: 10.1088/2053-1583/ad1e79. DOI
Yan M. Wang E. Zhou X. Zhang G. Zhang H. Zhang K. Yao W. Lu N. Yang S. Wu S. High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2D Mater. 2017;4(4):045015. doi: 10.1088/2053-1583/aa8919. DOI
Zhang K. Wang M. Zhou X. Wang Y. Shen S. Deng K. Peng H. Li J. Lai X. Zhang L. Growth of large scale PtTe, PtTe 2 and PtSe 2 films on a wide range of substrates. Nano Res. 2021;14:1663–1667. doi: 10.1007/s12274-020-2942-2. DOI
Villaos R. A. B. Crisostomo C. P. Huang Z.-Q. Huang S.-M. Padama A. A. B. Albao M. A. Lin H. Chuang F.-C. Thickness dependent electronic properties of Pt dichalcogenides. npj 2D Mater. Appl. 2019;3(1):2. doi: 10.1038/s41699-018-0085-z. DOI
An C. Chen X. Zhou Y. Zhou Y. Zhang B. Chen C. Yuan Y. Zhang R. Zhang L. Zhu X. Yang Z. Structural, vibrational and electrical properties of type-II Dirac semimetal PtSe(2) under high pressure. J. Phys.:Condens. Matter. 2019;31(41):415402. doi: 10.1088/1361-648X/ab315e. https://dx.doi.org/10.1088/1361-648X/ab315e PubMed DOI
Zeng S. Zhao M. Li F. Yang Z. Wu H. Tan C. Sun Q. Yang L. Lei L. Wang Z. Crystalline Orientation–Tunable Growth of Hexagonal and Tetragonal 2H– PtSe2 Single–Crystal Flakes. Adv. Funct. Mater. 2024;34(6):2308681. doi: 10.1002/adfm.202308681. DOI
Carey T., Synnatschke K., Ghosh G., Anzi L., Caffrey E., Coleman E., Lin C., Dawson A., Liu S., Wells R., DOI
Window A. L. and Holister G. S., Strain gauge technology; 1982
Lukas S., Rademacher N., Cruces S., Gross M., Desgué E., Heiserer S., Dominik N., Prechtl M., Hartwig O. and Coileáin C.Ó PubMed PMC
Boland C. S. Coileáin C. Ó. Wagner S. McManus J. B. Cullen C. P. Lemme M. C. Duesberg G. S. McEvoy N. PtSe2 grown directly on polymer foil for use as a robust piezoresistive sensor. 2D Mater. 2019;6(4):045029. doi: 10.1088/2053-1583/ab33a1. DOI
Gabbett C. Kelly A. G. Coleman E. Doolan L. Carey T. Synnatschke K. Liu S. Dawson A. O'Suilleabhain D. Munuera J. et al., Understanding how junction resistances impact the conduction mechanism in nano-networks. Nat. Commun. 2024;15(1):4517. doi: 10.1038/s41467-024-48614-5. https://dx.doi.org/10.1038/s41467-024-48614-5 PubMed DOI PMC
Gong L. Young R. J. Kinloch I. A. Riaz I. Jalil R. Novoselov K. S. Optimizing the Reinforcement of Polymer-Based Nanocomposites by Graphene. ACS Nano. 2012;6(3):2086–2095. doi: 10.1021/nn203917d. https://dx.doi.org/10.1021/nn203917d PubMed DOI