Using Electrical Impedance Spectroscopy to Separately Quantify the Effect of Strain on Nanosheet and Junction Resistance in Printed Nanosheet Networks

. 2025 Feb ; 21 (5) : e2406864. [epub] 20241218

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39696978

Grantová podpora
101129613 European Union's Horizon Europe research and innovation programme (HYPERSONIC)
GOIPG/2020/1051 Irish Research Council
101030735 Marie Skłodowska-Curie Individual Fellowship "MOVE"
CZ.02.1.01/0.0/0.0/15_003/0000444 Ministry of Education Youth and Sports ERDF
Advanced Microscopy Laboratory
Additive Research Laboratory
SFI/12/RC/2278 AMBER (Trinity College Dublin)
Science Foundation Ireland - Ireland

Many printed electronic applications require strain-independent electrical properties to ensure deformation-independent performance. Thus, developing printed, flexible devices using 2D and other nanomaterials will require an understanding of the effect of strain on the electrical properties of nano-networks. Here, novel AC electrical techniques are introduced to fully characterize the effect of strain on the resistance of high-mobility printed networks, fabricated from of electrochemically exfoliated MoS2 nanosheets. These devices are initially characterized using DC piezoresistance measurements and show good cyclability and a linear strain response, consistent with a low gauge factor of G ≈ 3. However, AC impedance spectroscopy measurements, performed as a function of strain, allow the measurement of the effects of strain on both the nanosheets and the inter-nanosheet junctions separately. The junction resistance is found to increase linearly with strain, while the nanosheet resistance remains constant. This response is consistent with strain-induced sliding of the highly-aligned nanosheets past one another, without any strain being transferred to the sheets themselves. The approach allows for the individual estimation of the contributions of dimensional factors (G ≈ 1.4) and material factors (G ≈ 1.9) to the total gauge factor. This novel technique may provide insights into other piezoresistive systems.

Zobrazit více v PubMed

Ye S. R., Rathmell A. R., Chen Z. F., Stewart I. E., Wiley B. J., Adv. Mater. 2014, 26, 6670. PubMed

De S., Higgins T. M., Lyons P. E., Doherty E. M., Nirmalraj P. N., Blau W. J., Boland J. J., Coleman J. N., ACS Nano 2009, 3, 1767. PubMed

Carey T., Cassidy O., Synnatschke K., Caffrey E., Garcia J., Liu S., Kaur H., Kelly A. G., Munuera J., Gabbett C., O'Suilleabhain D., Coleman J. N., ACS Nano 2023, 17, 2912. PubMed PMC

Sui X. Y., Rangnekar S. V., Lee J., Liu S. E., Downing J. R., Chaney L. E., Yan X. D., Jang H. J., Pu H. H., Shi X. A., Zhou S. Y., Hersam M. C., Chen J. H., Adv. Mater. Technol. 2023, 8, 2301288.

Lin Z., Liu Y., Halim U., Ding M., Liu Y., Wang Y., Jia C., Chen P., Duan X., Wang C., Song F., Li M., Wan C., Huang Y., Duan X., Nature 2018, 562, 254. PubMed

Kim J., Rhee D., Song O., Kim M., Kwon Y. H., Lim D. U., Kim I. S., Mazánek V., Valdman L., Sofer Z., Cho J. H., Kang J., Adv. Mater. 2022, 34, 2106110. PubMed

Zaumseil J., Semiconductor Sci. Technol. 2015, 30, 074001.

Bellani S., Bartolotta A., Agresti A., Calogero G., Grancini G., Di Carlo A., Kymakis E., Bonaccorso F., Chem. Soc. Rev. 2021, 50, 11870. PubMed PMC

Liu S., Ding E.‐X., Kelly A. G., Doolan L., Gabbett C., Kaur H., Munuera J., Carey T., Garcia J., Coleman J. N., Nanoscale 2022, 14, 15679. PubMed

Kuo L. D., Sangwan V. K., Rangnekar S. V., Chu T. C., Lam D., Zhu Z. H., Richter L. J., Li R. P., Szydlowska B. M., Downing J. R., Luijten B. J., Lauhon L. J., Hersam M. C., Adv. Mater. 2022, 34, 2203772. PubMed

Huang S., Liu Y., Zhao Y., Ren Z., Guo C. F., Adv. Funct. Mater. 2019, 29, 1805924.

Wang B., Huang W., Chi L., Al‐Hashimi M., Marks T. J., Facchetti A., Chem. Rev. 2018, 118, 5690. PubMed

Yang J. C., Mun J., Kwon S. Y., Park S., Bao Z., Park S., Adv. Mater. 2019, 31, 1904765. PubMed

Zhao M., Casiraghi C., Parvez K., Chem. Soc. Rev. 2024, 53, 3036. PubMed

Carey T., Maughan J., Doolan L., Caffrey E., Garcia J., Liu S., Kaur H., Ilhan C., Seyedin S., Coleman J. N., Small Methods 2024, 8, 2301654. PubMed

Neilson J., Caffrey E., Cassidy O., Gabbett C., Synnatschke K., Schneider E., Munuera J. M., Carey T., Rimmer M., Sofer Z., Maultzsch J., Haigh S. J., Coleman J. N., ACS Nano 2024, 18, 32589. PubMed PMC

Window A. L., Strain Gauge Technology, Springer, New York, 1992.

Smith C. S., Phys. Rev. 1954, 94, 42.

Boland C. S., Khan U., Ryan G., Barwich S., Charifou R., Harvey A., Backes C., Li Z., Ferreira M. S., Möbius M. E., Young R. J., Coleman J. N., Science 2016, 354, 1257. PubMed

Fiorillo A. S., Critello C. D., Pullano S. A., Sens. Actuators, A 2018, 281, 156.

Lee W. S., Kim D., Park B., Joh H., Woo H. K., Hong Y.‐K., Kim T.‐i., Ha D.‐H., Oh S. J., Adv. Funct. Mater. 2019, 29, 1806714.

Han L., Lu X., Wang M., Gan D., Deng W., Wang K., Fang L., Liu K., Chan C. W., Tang Y., Weng L.‐T., Yuan H., Small 2017, 13, 1601916. PubMed

Amjadi M., Pichitpajongkit A., Lee S., Ryu S., Park I., ACS Nano 2014, 8, 5154. PubMed

Amjadi M., Kyung K.‐U., Park I., Sitti M., Adv. Funct. Mater. 2016, 26, 1678.

Song J., Tan Y., Chu Z., Xiao M., Li G., Jiang Z., Wang J., Hu T., ACS Appl. Mater. Interfaces 2019, 11, 1283. PubMed

Souri H., Banerjee H., Jusufi A., Radacsi N., Stokes A. A., Park I., Sitti M., Amjadi M., Adv. Intell. Syst. 2020, 2, 2000039.

Boland C. S., Nanotechnology 2024, 35, 202001.

Park M., Kim H., Youngblood J. P., Nanotechnology 2008, 19, 055705. PubMed

Yang H., Yuan L., Yao X., Fang D., J. Mech. Phys. Solids 2020, 139, 103943.

Biccai S., Boland C. S., O'Driscoll D. P., Harvey A., Gabbett C., O'Suilleabhain D. R., Griffin A. J., Li Z., Young R. J., Coleman J. N., ACS Nano 2019, 13, 6845. PubMed

Wagner S., Yim C., McEvoy N., Kataria S., Yokaribas V., Kuc A., Pindl S., Fritzen C.‐P., Heine T., Duesberg G. S., Lemme M. C., Nano Lett. 2018, 18, 3738. PubMed PMC

Caffrey E., Garcia J. R., O'Suilleabhain D., Gabbett C., Carey T., Coleman J. N., ACS Appl. Mater. Interfaces 2022, 14, 7141. PubMed PMC

Garcia J. R., O'Suilleabhain D., Kaur H., Coleman J. N., ACS Appl. Nano Mater. 2021, 4, 2876. PubMed PMC

Yao H., Hempel M., Hsieh Y. P., Kong J., Hofmann M., Nanoscale 2019, 11, 1074. PubMed

Gabbett C., Kelly A. G., Coleman E., Doolan L., Carey T., Synnatschke K., Liu S., Dawson A., O'Suilleabhain D., Munuera J., Caffrey E., Boland J. B., Sofer Z., Ghosh G., Kinge S., Siebbeles L. D. A., Yadav N., Vij J. K., Aslam M. A., Matkovic A., Coleman J. N., Nat. Commun. 2024, 15, 4517. PubMed PMC

Kim J., Rhee D., Song O., Kim M., Kwon Y. H., Lim D. U., Kim I. S., Mazánek V., Valdman L., Sofer Z., Cho J. H., Kang J., Adv. Mater. 2022, 34, 2106110. PubMed

Akinwande D., Petrone N., Hone J., Nat. Commun. 2014, 5, 5678. PubMed

Zou T., Kim H.‐J., Kim S., Liu A., Choi M.‐Y., Jung H., Zhu H., You I., Reo Y., Lee W.‐J., Kim Y.‐S., Kim C.‐J., Noh Y.‐Y., Adv. Mater. 2023, 35, 2208934. PubMed

Kelly A. C., O'Suilleabhain D., Gabbett C., Coleman J. N., Nat. Rev. Mater. 2022, 7, 217.

Yan Z. C., Xu D., Lin Z. Y., Wang P. Q., Cao B. C., Ren H. Y., Song F., Wan C. Z., Wang L. Y., Zhou J. X., Zhao X., Chen J., Huang Y., Duan X. F., Science 2022, 375, 852. PubMed

Wilcoxon J. P., Newcomer P. P., Samara G. A., J. Appl. Phys. 1997, 81, 7934.

Zhou K.‐G., Withers F., Cao Y., Hu S., Yu G., Casiraghi C., ACS Nano 2014, 8, 9914. PubMed

Lee C., Yan H., Brus L. E., Heinz T. F., Hone J., Ryu S., ACS Nano 2010, 4, 2695. PubMed

Neilson J., Avery M. P., Derby B., ACS Appl. Mater. Interfaces 2020, 12, 25125. PubMed PMC

Boland C. S., ACS Nano 2019, 13, 13627. PubMed

Huang M., Pascal T. A., Kim H., W. A. Goddard, III , Greer J. R., Nano Lett. 2011, 11, 1241. PubMed

Smith A. D., Niklaus F., Paussa A., Vaziri S., Fischer A. C., Sterner M., Forsberg F., Delin A., Esseni D., Palestri P., Östling M., Lemme M. C., Nano Lett. 2013, 13, 3237. PubMed

Chen Z., Ming T., Goulamaly M. M., Yao H., Nezich D., Hempel M., Hofmann M., Kong J., Adv. Funct. Mater. 2016, 26, 5061.

Chu J., Bissett M. A., Young R. J., ACS Appl. Nano Mater. 2021, 4, 9181.

Fiorillo A. S., Critello C. D., Pullano S. A., Sens. Actuators, A 2018, 281, 156.

Mehmood A., Mubarak N. M., Khalid M., Walvekar R., Abdullah E. C., Siddiqui M. T. H., Baloch H. A., Nizamuddin S., Mazari S., J. Environ. Chem. Eng. 2020, 8, 103743.

O'Mara M. A., Ogilvie S. P., Large M. J., Graf A. A., Sehnal A. C., Lynch P. J., Salvage J. P., Jurewicz I., King A. A. K., Dalton A. B., Adv. Funct. Mater. 2020, 30, 2002433. PubMed PMC

Lynch P. J., Ogilvie S. P., Large M. J., Graf A. A., O'Mara M. A., Taylor J., Salvage J. P., Dalton A. B., Carbon 2020, 169, 25.

Casiraghi C., Macucci M., Parvez K., Worsley R., Shin Y., Bronte F., Borri C., Paggi M., Fiori G., Carbon 2018, 129, 462.

Boukamp B. A., J. Phys.‐Energy 2020, 2, 042001.

Chen M. J., Pressure‐volume‐temperature and wave propagation studies of polyimide films, University of Massachussetts Amherst, MA: 1998.

Kim K. H., Oh Y., Islam M. F., Adv. Funct. Mater. 2013, 23, 377.

Mecklenburg M., Schuchardt A., Mishra Y. K., Kaps S., Adelung R., Lotnyk A., Kienle L., Schulte K., Adv. Mater. 2012, 24, 3486. PubMed

Wu Y., Yi N., Huang L., Zhang T., Fang S., Chang H., Li N., Oh J., Lee J. A., Kozlov M., Chipara A. C., Terrones H., Xiao P., Long G., Huang Y., Zhang F., Zhang L., Lepró X., Haines C., Lima M. D., Lopez N. P., Rajukumar L. P., Elias A. L., Feng S., Kim S. J., Narayanan N. T., Ajayan P. M., Terrones M., Aliev A., Chu P., et al., Nat. Commun. 2015, 6, 6141. PubMed

Woo S., Park H. C., Son Y.‐W., Phys. Rev. B 2016, 93, 075420.

Zhan H., Guo D., Xie G., Nanoscale 2019, 11, 13181. PubMed

Fan Y., Xiang Y., Shen H.‐S., Research 2020, 2020, 5618021. PubMed PMC

Rawson S. D., Bayram V., McDonald S. A., Yang P., Courtois L., Guo Y., Xu J., Burnett T. L., Barg S., Withers P. J., ACS Nano 2022, 16, 1896. PubMed PMC

Lee K., Szydłowska B. M., Hartwig O., Synnatschke K., Tywoniuk B., Hartman T., Tomašević‐Ilić T., Gabbett C. P., Coleman J. N., Sofer Z., Spasenović M., Backes C., Duesberg G. S., J. Mater. Chem. C 2023, 11, 593.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Solution-processed negative gauge factor PtSe2 strain sensors

. 2025 Aug 07 ; 17 (31) : 18083-18091. [epub] 20250807

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...