Production of Ultrathin and High-Quality Nanosheet Networks via Layer-by-Layer Assembly at Liquid-Liquid Interfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39533657
PubMed Central
PMC11603785
DOI
10.1021/acsnano.4c09745
Knihovny.cz E-zdroje
- Klíčová slova
- charge transport, device, nanoplatelets, printed electronics, self-assembly, transistor,
- Publikační typ
- časopisecké články MeSH
Solution-processable 2D materials are promising candidates for a range of printed electronics applications. Yet maximizing their potential requires solution-phase processing of nanosheets into high-quality networks with carrier mobility (μNet) as close as possible to that of individual nanosheets (μNS). In practice, the presence of internanosheet junctions generally limits electronic conduction, such that the ratio of junction resistance (RJ) to nanosheet resistance (RNS), determines the network mobility via μNS/μNet ≈ RJ/RNS + 1. Hence, achieving RJ/RNS < 1 is a crucial step for implementation of 2D materials in printed electronics applications. In this work, we utilize an advanced liquid-interface deposition process to maximize nanosheet alignment and network uniformity, thus reducing RJ. We demonstrate the approach using graphene and MoS2 as model materials, achieving low RJ/RNS values of 0.5 and 0.2, respectively. The resultant graphene networks show a high conductivity of σNet = 5 × 104 S/m while our semiconducting MoS2 networks demonstrate record mobility of μNet = 30 cm2/(V s), both at extremely low network thickness (tNet < 10 nm). Finally, we show that the deposition process is compatible with nonlayered quasi-2D materials such as silver nanosheets (AgNS), achieving network conductivity close to bulk silver for networks <100 nm-thick.
Faculty of Chemistry and Food Chemistry Dresden University of Technology Dresden 01062 Germany
School of Physics CRANN and AMBER Research Centres Trinity College Dublin Dublin 2 Ireland
Zobrazit více v PubMed
Chandrasekaran S.; Jayakumar A.; Velu R. A Comprehensive Review on Printed Electronics: A Technology Drift towards a Sustainable Future. Nanomaterials 2022, 12, 4251.10.3390/nano12234251. PubMed DOI PMC
Wiklund J.; Karakoç A.; Palko T.; Yiǧitler H.; Ruttik K.; Jäntti R.; Paltakari J. A Review on Printed Electronics: Fabrication Methods, Inks, Substrates, Applications and Environmental Impacts. J. Manuf. Mater. Process. 2021, 5, 89.10.3390/jmmp5030089. DOI
Paterson A. F.; Singh S.; Fallon K. J.; Hodsden T.; Han Y.; Schroeder B. C.; Bronstein H.; Heeney M.; McCulloch I.; Anthopoulos T. D. Recent Progress in High-Mobility Organic Transistors: A Reality Check. Adv. Mater. 2018, 30, e180107910.1002/adma.201801079. PubMed DOI
Wu W. Inorganic nanomaterials for printed electronics: a review. Nanoscale 2017, 9, 7342–7372. 10.1039/C7NR01604B. PubMed DOI
Kelly A. G.; O’Suilleabhain D.; Gabbett C.; Coleman J. N. The electrical conductivity of solution-processed nanosheet networks. Nat. Rev. Mater. 2022, 7, 217–234. 10.1038/s41578-021-00386-w. DOI
Shanmugam V.; Mensah R. A.; Babu K.; Gawusu S.; Chanda A.; Tu Y. M.; Neisiany R. E.; Försth M.; Sas G.; Das O. A Review of the Synthesis, Properties, and Applications of 2D Materials. Part. Part. Syst. Charact. 2022, 39, 220003110.1002/ppsc.202200031. DOI
Mounet N.; Gibertini M.; Schwaller P.; Campi D.; Merkys A.; Marrazzo A.; Sohier T.; Castelli I. E.; Cepellotti A.; Pizzi G.; Marzari N. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252. 10.1038/s41565-017-0035-5. PubMed DOI
Worsley R.; Pimpolari L.; McManus D.; Ge N.; Ionescu R.; Wittkopf J. A.; Alieva A.; Basso G.; Macucci M.; Iannaccone G.; et al. All-2D Material Inkjet-Printed Capacitors: Toward Fully Printed Integrated Circuits. ACS Nano 2019, 13, 54–60. 10.1021/acsnano.8b06464. PubMed DOI
Nalawade Y.; Pepper J.; Harvey A.; Griffin A.; Caffrey D.; Kelly A. G.; Coleman J. N. All-Printed Dielectric Capacitors from High-Permittivity, Liquid-Exfoliated BiOCl Nanosheets. ACS Appl. Electron. Mater. 2020, 2, 3233–3241. 10.1021/acsaelm.0c00561. DOI
Zhao M.; Casiraghi C.; Parvez K. Electrochemical exfoliation of 2D materials beyond graphene. Chem. Soc. Rev. 2024, 53, 3036–3064. 10.1039/D3CS00815K. PubMed DOI
Nicolosi V.; Chhowalla M.; Kanatzidis M. G.; Strano M. S.; Coleman J. N. Liquid Exfoliation of Layered Materials. Science 2013, 340, 122641910.1126/science.1226419. DOI
Pinilla S.; Coelho J.; Li K.; Liu J.; Nicolosi V. Two-dimensional material inks. Nat. Rev. Mater. 2022, 7, 717–735. 10.1038/s41578-022-00448-7. DOI
Hu G.; Yang L.; Yang Z.; Wang Y.; Jin X.; Dai J.; Wu Q.; Liu S.; Zhu X.; Wang X.; et al. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Sci. Adv. 2020, 6, eaba502910.1126/sciadv.aba5029. PubMed DOI PMC
Macadam N.; Ng L. W. T.; Hu G.; Shi H. H.; Wang W.; Zhu X.; Ogbeide O.; Liu S.; Yang Z.; Howe R. C. T.; et al. 100 m min–1 Industrial-Scale Flexographic Printing of Graphene-Incorporated Conductive Ink. Adv. Eng. Mater. 2021, 24, 210121710.1002/adem.202101217. DOI
Cho K.; Lee T.; Chung S. Inkjet printing of two-dimensional van der Waals materials: a new route towards emerging electronic device applications. Nanoscale Horizon 2022, 7, 1161–1176. 10.1039/D2NH00162D. PubMed DOI
Song O. K.; Kang J. H. Solution-Processed 2D Materials for Electronic Applications. ACS Appl. Electron. Mater. 2023, 5, 1335–1346. 10.1021/acsaelm.2c01784. DOI
Witomska S.; Leydecker T.; Ciesielski A.; Samorì P. Production and Patterning of Liquid Phase-Exfoliated 2D Sheets for Applications in Optoelectronics. Adv. Funct. Mater. 2019, 29, 190112610.1002/adfm.201901126. DOI
Wu X.; Ge R.; Chen P.; Chou H.; Zhang Z.; Zhang Y.; Banerjee S.; Chiang M.; Lee J. C.; Akinwande D. Thinnest Nonvolatile Memory Based on Monolayer h-BN. Adv. Mater. 2019, 31, e180679010.1002/adma.201806790. PubMed DOI
Sangwan V. K.; Rangnekar S. V.; Kang J.; Shen J. N.; Lee H. S.; Lam D.; Shen J. H.; Liu X. L.; de Moraes A. C. M.; Kuo L. D.; et al. Visualizing Thermally Activated Memristive Switching in Percolating Networks of Solution-Processed 2D Semiconductors. Adv. Funct. Mater. 2021, 31, 210738510.1002/adfm.202107385. DOI
Carey T.; Cassidy O.; Synnatschke K.; Caffrey E.; Garcia J.; Liu S.; Kaur H.; Kelly A. G.; Munuera J.; Gabbett C.; et al. High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides. ACS Nano 2023, 17, 2912–2922. 10.1021/acsnano.2c11319. PubMed DOI PMC
Sui X.; Rangnekar S. V.; Lee J.; Liu S. E.; Downing J. R.; Chaney L. E.; Yan X. D.; Jang H.-J.; Pu H.; Shi X. A.; et al. Fully Inkjet-Printed, 2D Materials-Based Field-Effect Transistor for Water Sensing. Adv. Mater. Technol. 2023, 8, 230128810.1002/admt.202301288. DOI
Lin Z.; Liu Y.; Halim U.; Ding M.; Liu Y.; Wang Y.; Jia C.; Chen P.; Duan X.; Wang C.; et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254–258. 10.1038/s41586-018-0574-4. PubMed DOI
Kim J.; Rhee D.; Song O.; Kim M.; Kwon Y. H.; Lim D. U.; Kim I. S.; Mazánek V.; Valdman L.; Sofer Z.; et al. All-Solution-Processed Van der Waals Heterostructures for Wafer-Scale Electronics. Adv. Mater. 2022, 34, 210611010.1002/adma.202106110. PubMed DOI
Bellani S.; Bartolotta A.; Agresti A.; Calogero G.; Grancini G.; Di Carlo A.; Kymakis E.; Bonaccorso F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 2021, 50, 11870–11965. 10.1039/D1CS00106J. PubMed DOI PMC
Liu S.; Ding E. X.; Kelly A. G.; Doolan L.; Gabbett C.; Kaur H.; Munuera J.; Carey T.; Garcia J.; Coleman J. N. Solution processed, vertically stacked hetero-structured diodes based on liquid-exfoliated WS(2) nanosheets: from electrode-limited to bulk-limited behavior. Nanoscale 2022, 14, 15679–15690. 10.1039/D2NR04196K. PubMed DOI
Kuo L.; Sangwan V. K.; Rangnekar S. V.; Chu T. C.; Lam D.; Zhu Z.; Richter L. J.; Li R.; Szydlowska B. M.; Downing J. R.; et al. All-Printed Ultrahigh-Responsivity MoS(2) Nanosheet Photodetectors Enabled by Megasonic Exfoliation. Adv. Mater. 2022, 34, e220377210.1002/adma.202203772. PubMed DOI
Gabbett C.; Doolan L.; Synnatschke K.; Gambini L.; Coleman E.; Kelly A. G.; Liu S.; Caffrey E.; Munuera J.; Murphy C.; et al. Quantitative analysis of printed nanostructured networks using high-resolution 3D FIB-SEM nanotomography. Nat. Commun. 2024, 15, 278.10.1038/s41467-023-44450-1. PubMed DOI PMC
Gabbett C.; Kelly A. G.; Coleman E.; Doolan L.; Carey T.; Synnatschke K.; Liu S.; Dawson A.; O’Suilleabhain D.; Munuera J.; et al. Understanding how junction resistances impact the conduction mechanism in nano-networks. Nat. Commun. 2024, 15, 4517.10.1038/s41467-024-48614-5. PubMed DOI PMC
Zhang J.; Kong N.; Uzun S.; Levitt A.; Seyedin S.; Lynch P. A.; Qin S.; Han M.; Yang W.; Liu J.; et al. Scalable Manufacturing of Free-Standing, Strong Ti(3) C(2) T(x) MXene Films with Outstanding Conductivity. Adv. Mater. 2020, 32, e200109310.1002/adma.202001093. PubMed DOI
Ippolito S.; Kelly A. G.; Furlan de Oliveira R.; Stoeckel M. A.; Iglesias D.; Roy A.; Downing C.; Bian Z.; Lombardi L.; Samad Y. A.; et al. Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nat. Nanotechnol. 2021, 16, 592–598. 10.1038/s41565-021-00857-9. PubMed DOI
Ippolito S.; Urban F.; Zheng W.; Mazzarisi O.; Valentini C.; Kelly A. G.; Gali S. M.; Bonn M.; Beljonne D.; Corberi F.; et al. Unveiling Charge-Transport Mechanisms in Electronic Devices Based on Defect-Engineered MoS(2) Covalent Networks. Adv. Mater. 2023, 35, e221115710.1002/adma.202211157. PubMed DOI
Neilson J.; Avery M. P.; Derby B. Tiled Monolayer Films of 2D Molybdenum Disulfide Nanoflakes Assembled at Liquid/Liquid Interfaces. ACS Appl. Mater. Interfaces 2020, 12, 25125–25134. 10.1021/acsami.0c03794. PubMed DOI PMC
Fan L.; Wen P.; Zhao X.; Zou J.; Kim F. Langmuir–Blodgett Assembly of Ti3C2Tx Nanosheets for Planar Microsupercapacitors. ACS Appl. Nano Mater. 2022, 5, 4170–4179. 10.1021/acsanm.2c00103. DOI
Lipton J.; Weng G.-M.; Röhr J. A.; Wang H.; Taylor A. D. Layer-by-Layer Assembly of Two-Dimensional Materials: Meticulous Control on the Nanoscale. Matter 2020, 2, 1148–1165. 10.1016/j.matt.2020.03.012. DOI
Kelly A. G.; O’Reilly J.; Gabbett C.; Szydlowska B.; O’Suilleabhain D.; Khan U.; Maughan J.; Carey T.; Sheil S.; Stamenov P.; Coleman J. N. Highly Conductive Networks of Silver Nanosheets. Small 2022, 18, e210599610.1002/smll.202105996. PubMed DOI
Goggin D. M.; Zhang H.; Miller E. M.; Samaniuk J. R. Interference Provides Clarity: Direct Observation of 2D Materials at Fluid–Fluid Interfaces. ACS Nano 2020, 14, 777–790. 10.1021/acsnano.9b07776. PubMed DOI
Nair R. R.; Blake P.; Grigorenko A. N.; Novoselov K. S.; Booth T. J.; Stauber T.; Peres N. M.; Geim A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.10.1126/science.1156965. PubMed DOI
Tene T.; Guevara M.; Palacios F. B.; Barrionuevo T. P. M.; Gomez C. V.; Bellucci S. Optical properties of graphene oxide. Front. Chem. 2023, 11, 121407210.3389/fchem.2023.1214072. PubMed DOI PMC
Backes C.; Paton K. R.; Hanlon D.; Yuan S.; Katsnelson M. I.; Houston J.; Smith R. J.; McCloskey D.; Donegan J. F.; Coleman J. N. Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 2016, 8, 4311–4323. 10.1039/C5NR08047A. PubMed DOI
Finn D. J.; Lotya M.; Coleman J. N. Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 2015, 7, 9254–9261. 10.1021/acsami.5b01875. PubMed DOI
Namba Y. Resistivity and Temperature Coefficient of Thin Metal Films with Rough Surface. Jpn. J. Appl. Phys. 1970, 9, 1326.10.1143/JJAP.9.1326. DOI
Zhou T. J.; Zheng P. Y.; Pandey S. C.; Sundararaman R.; Gall D. The electrical resistivity of rough thin films: A model based on electron reflection at discrete step edges. J. Appl. Phys. 2018, 123, 155107.10.1063/1.5020577. DOI
De S.; King P. J.; Lyons P. E.; Khan U.; Coleman J. N. Size effects and the problem with percolation in nanostructured transparent conductors. ACS Nano 2010, 4, 7064–7072. 10.1021/nn1025803. PubMed DOI
Caffrey E.; Garcia J. R.; O’Suilleabhain D.; Gabbett C.; Carey T.; Coleman J. N. Quantifying the Piezoresistive Mechanism in High-Performance Printed Graphene Strain Sensors. ACS Appl. Mater. Interfaces 2022, 14, 7141–7151. 10.1021/acsami.1c21623. PubMed DOI PMC
Forro C.; Demko L.; Weydert S.; Voros J.; Tybrandt K. Predictive Model for the Electrical Transport within Nanowire Networks. ACS Nano 2018, 12, 11080–11087. 10.1021/acsnano.8b05406. PubMed DOI
Ponzoni A. The contributions of junctions and nanowires/nanotubes in conductive networks. Appl. Phys. Lett. 2019, 114, 153105.10.1063/1.5090117. DOI
Miao F. J.; Majee S.; Song M.; Zhao J.; Zhang S. L.; Zhang Z. B. Inkjet printing of electrochemically-exfoliated graphene nano-platelets. Synth. Met. 2016, 220, 318–322. 10.1016/j.synthmet.2016.06.029. DOI
Liu B.; Zhang Q.; Zhang L.; Xu C.; Pan Z.; Zhou Q.; Zhou W.; Wang J.; Gu L.; Liu H. Electrochemically Exfoliated Chlorine-Doped Graphene for Flexible All-Solid-State Micro-Supercapacitors with High Volumetric Energy Density. Adv. Mater. 2022, 34, e210630910.1002/adma.202106309. PubMed DOI
Marković Z. M.; Budimir M. D.; Kepić D. P.; Holclajtner-Antunović I. D.; Marinović-Cincović M. T.; Dramićanin M. D.; Spasojević V. D.; Peruško D. B.; Špitalský Z.; Mičušik M.; et al. Semi-transparent, conductive thin films of electrochemical exfoliated graphene. RSC Adv. 2016, 6, 39275–39283. 10.1039/C6RA04250C. DOI
Parvez K.; Worsley R.; Alieva A.; Felten A.; Casiraghi C. Water-based and inkjet printable inks made by electrochemically exfoliated graphene. Carbon 2019, 149, 213–221. 10.1016/j.carbon.2019.04.047. DOI
Majee S.; Song M.; Zhang S. L.; Zhang Z. B. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon 2016, 102, 51–57. 10.1016/j.carbon.2016.02.013. DOI
Calabrese G.; Pimpolari L.; Conti S.; Mavier F.; Majee S.; Worsley R.; Wang Z.; Pieri F.; Basso G.; Pennelli G.; et al. Inkjet-printed graphene Hall mobility measurements and low-frequency noise characterization. Nanoscale 2020, 12, 6708–6716. 10.1039/C9NR09289G. PubMed DOI
Parvez K.; Wu Z. S.; Li R.; Liu X.; Graf R.; Feng X.; Mullen K. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 2014, 136, 6083–6091. 10.1021/ja5017156. PubMed DOI
Kim J.; Rhee D.; Song O.; Kim M.; Kwon Y. H.; Lim D. U.; Kim I. S.; Mazanek V.; Valdman L.; Sofer Z.; et al. All-Solution-Processed Van der Waals Heterostructures for Wafer-Scale Electronics. Adv. Mater. 2022, 34, e210611010.1002/adma.202106110. PubMed DOI
Nakamura S.; Miyafuji D.; Fujii T.; Matsui T.; Fukuyama H. Low temperature transport properties of pyrolytic graphite sheet. Cryogenics 2017, 86, 118–122. 10.1016/j.cryogenics.2017.08.004. DOI
Xue J. Y.; Dai Y. P.; Wang S. Q.; He J.; Xia T. Y.; Hao J.; Sofer Z.; Lin Z. Y. Solution-processable assembly of 2D semiconductor thin films and superlattices with photoluminescent monolayer inks. Chem. 2024, 10, 1471–1484. 10.1016/j.chempr.2024.01.016. DOI
Li H.; Zhang Q.; Yap C. C. R.; Tay B. K.; Edwin T. H. T.; Olivier A.; Baillargeat D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. 10.1002/adfm.201102111. DOI
Mak K. F.; Lee C.; Hone J.; Shan J.; Heinz T. F. Atomically thin MoS(2): a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 13680510.1103/PhysRevLett.105.136805. PubMed DOI
Splendiani A.; Sun L.; Zhang Y.; Li T.; Kim J.; Chim C. Y.; Galli G.; Wang F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. 10.1021/nl903868w. PubMed DOI
Scheuschner N.; Ochedowski O.; Kaulitz A.-M.; Gillen R.; Schleberger M.; Maultzsch J. Photoluminescence of freestanding single- and few-layerMoS2. Phys. Rev. B 2014, 89, 12540610.1103/PhysRevB.89.125406. DOI
Kwak J. Y. Absorption coefficient estimation of thin MoS2 film using attenuation of silicon substrate Raman signal. Results in Physics 2019, 13, 10220210.1016/j.rinp.2019.102202. DOI
Tsai D. S.; Liu K. K.; Lien D. H.; Tsai M. L.; Kang C. F.; Lin C. A.; Li L. J.; He J. H. Few-Layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905–3911. 10.1021/nn305301b. PubMed DOI
Beal A. R.; Hughes H. P. Kramers-Kronig Analysis of the Reflectivity Spectra of 2h-Mos2, 2h-Mose2 and 2h-Mote2. J. Phys. C 1979, 12, 881–890. 10.1088/0022-3719/12/5/017. DOI
George A.; Fistul M. V.; Gruenewald M.; Kaiser D.; Lehnert T.; Mupparapu R.; Neumann C.; Hübner U.; Schaal M.; Masurkar N.; et al. Giant persistent photoconductivity in monolayer MoS2 field-effect transistors. NPJ 2D Mater. Appl. 2021, 5, 15.10.1038/s41699-020-00182-0. DOI
Wu Y. C.; Liu C. H.; Chen S. Y.; Shih F. Y.; Ho P. H.; Chen C. W.; Liang C. T.; Wang W. H. Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect Transistors. Sci. Rep. 2015, 5, 11472.10.1038/srep11472. PubMed DOI PMC
Higgins T. M.; Finn S.; Matthiesen M.; Grieger S.; Synnatschke K.; Brohmann M.; Rother M.; Backes C.; Zaumseil J. Electrolyte-Gated n-Type Transistors Produced from Aqueous Inks of WS2 Nanosheets. Adv. Funct. Mater. 2019, 29, 180438710.1002/adfm.201804387. DOI
Kocabas C.; Pimparkar N.; Yesilyurt O.; Kang S. J.; Alam M. A.; Rogers J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202. 10.1021/nl062907m. PubMed DOI
Joung S. Y.; Yim H.; Lee D.; Shim J.; Yoo S. Y.; Kim Y. H.; Kim J. S.; Kim H.; Hyeong S. K.; Kim J.; et al. All-Solution-Processed High-Performance MoS(2) Thin-Film Transistors with a Quasi-2D Perovskite Oxide Dielectric. ACS Nano 2024, 18, 1958–1968. 10.1021/acsnano.3c06972. PubMed DOI
Carey T.; Arbab A.; Anzi L.; Bristow H.; Hui F.; Bohm S.; Wyatt-Moon G.; Flewitt A.; Wadsworth A.; Gasparini N.; et al. Inkjet Printed Circuits with 2D Semiconductor Inks for High-Performance Electronics. Adv. Electron. Mater. 2021, 7, 210011210.1002/aelm.202100112. DOI
Pacheco-Sanchez A.; Claus M.; Mothes S.; Schröter M. Contact resistance extraction methods for short- and long-channel. Solid-State Electron. 2016, 125, 161–166. 10.1016/j.sse.2016.07.011. DOI
Radisavljevic B.; Radenovic A.; Brivio J.; Giacometti V.; Kis A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. 10.1038/nnano.2010.279. PubMed DOI
Novoselov K. S.; Jiang D.; Schedin F.; Booth T. J.; Khotkevich V. V.; Morozov S. V.; Geim A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451–10453. 10.1073/pnas.0502848102. PubMed DOI PMC
Liu H.; Neal A. T.; Ye P. D. Channel length scaling of MoS2MOSFETs. ACS Nano 2012, 6, 8563–8569. 10.1021/nn303513c. PubMed DOI
Chan M. Y.; Komatsu K.; Li S. L.; Xu Y.; Darmawan P.; Kuramochi H.; Nakaharai S.; Aparecido-Ferreira A.; Watanabe K.; Taniguchi T.; Tsukagoshi K. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. Nanoscale 2013, 5, 9572–9576. 10.1039/c3nr03220e. PubMed DOI
Dagan R.; Vaknin Y.; Henning A.; Shang J. Y.; Lauhon L. J.; Rosenwaks Y. Two-dimensional charge carrier distribution in MoS2 monolayer and multilayers. Appl. Phys. Lett. 2019, 114, 101602.10.1063/1.5078711. DOI
Li X.; Sun R.; Guo H.; Su B.; Li D.; Yan X.; Liu Z.; Tian J. Controllable Doping of Transition-Metal Dichalcogenides by Organic Solvents. Adv. Electron. Mater. 2020, 6, 190123010.1002/aelm.201901230. DOI
Lee Y. I.; Kim S.; Jung S. B.; Myung N. V.; Choa Y. H. Enhanced electrical and mechanical properties of silver nanoplatelet-based conductive features direct printed on a flexible substrate. ACS Appl. Mater. Interfaces 2013, 5, 5908–5913. 10.1021/am401757y. PubMed DOI
Stewart I. E.; Kim M. J.; Wiley B. J. Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films. ACS Appl. Mater. Interfaces 2017, 9, 1870–1876. 10.1021/acsami.6b12289. PubMed DOI
Tai Y. L.; Yang Z. G. Preparation of stable aqueous conductive ink with silver nanoflakes and its application on paper-based flexible electronics. Surf. Interface Anal. 2012, 44, 529–534. 10.1002/sia.3839. DOI
Backes C.; Szydłowska B. M.; Harvey A.; Yuan S.; Vega-Mayoral V.; Davies B. R.; Zhao P. L.; Hanlon D.; Santos E. J. G.; Katsnelson M. I.; et al. Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. ACS Nano 2016, 10, 1589–1601. 10.1021/acsnano.5b07228. PubMed DOI
Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Paton K. R.; Varrla E.; Backes C.; Smith R. J.; Khan U.; O’Neill A.; Boland C.; Lotya M.; Istrate O. M.; King P.; et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630. 10.1038/nmat3944. PubMed DOI
Backes C.; Smith R. J.; McEvoy N.; Berner N. C.; McCloskey D.; Nerl H. C.; O’Neill A.; King P. J.; Higgins T.; Hanlon D.; et al. Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nat. Commun. 2014, 5, 4576.10.1038/ncomms5576. PubMed DOI
Griffin A.; Harvey A.; Cunningham B.; Scullion D.; Tian T.; Shih C. J.; Greening M.; Donegan J. F.; Santos E. J. G.; Backes C.; Coleman J. N. Spectroscopic Size and Thickness Metrics for Liquid-Exfoliated h -BN. Chem. Mater. 2018, 30, 1998–2005. 10.1021/acs.chemmater.7b05188. DOI
Backes C.; Szydlowska B. M.; Harvey A.; Yuan S.; Vega-Mayoral V.; Davies B. R.; Zhao P. L.; Hanlon D.; Santos E. J.; Katsnelson M. I.; et al. Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. ACS Nano 2016, 10, 1589–1601. 10.1021/acsnano.5b07228. PubMed DOI
Gosch J.; Synnatschke K.; Stock N.; Backes C. Comparative study of sonication-assisted liquid phase exfoliation of six layered coordination polymers. Chem. Commun. 2022, 59, 55–58. 10.1039/D2CC03366F. PubMed DOI
Smits F. M. Measurement of Sheet Resistivities with the Four-Point Probe. Bell System Technical Journal 1958, 37, 711–718. 10.1002/j.1538-7305.1958.tb03883.x. DOI
Liu Y.; Guo J.; Zhu E.; Liao L.; Lee S.-J.; Ding M.; Shakir I.; Gambin V.; Huang Y.; Duan X. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700. 10.1038/s41586-018-0129-8. PubMed DOI