transistor
Dotaz
Zobrazit nápovědu
The potential of organic semiconductor based devices for light generation is demonstrated by the commercialisation of display technologies using organic light emitting diode (OLED). In OLED, organic materials plays an important role of emitting light once the current is passed through. However OLED have drawbacks whereby it suffers from photon loss and exciton quenching. Organic light emitting transistor (OLET) emerged as a new technology to compensate the efficiency and brightness loss encountered in OLED. The structure has combinational capability to switch the electronic signal such as the field effect transistor (FET) as well as to generate light. Different colours of light could be generated by using different types of organic material. The light emission could also be tuned and scanned in OLET. The studies carried out in this paper focuses on investigation of fabricated MEH-PPV based OLED and also OLET via current voltage characteristics. These studies will continue with a view to develop an optimised MEH-PPV based OLET.
- MeSH
- analýza selhání vybavení MeSH
- design vybavení MeSH
- elektrická vodivost MeSH
- elektronické tranzistory * MeSH
- organické látky chemie MeSH
- osvětlení přístrojové vybavení MeSH
- polovodiče * MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
We show the influence of osteoblastic SAOS-2 cells on the transfer characteristics of nanocrystalline diamond solution-gated field-effect transistors (SGFET) prepared on glass substrates. Channels of these fully transparent SGFETs are realized by hydrogen termination of undoped diamond film. After cell cultivation, the transistors exhibit about 100× increased leakage currents (up to 10nA). During and after the cell delamination, the transistors return to original gate currents. We propose a mechanism where this triggering effect is attributed to ions released from adhered cells, which depends on the cell adhesion morphology, and could be used for cell culture monitoring.
- MeSH
- akční potenciály * MeSH
- biosenzitivní techniky přístrojové vybavení MeSH
- buněčná adheze * MeSH
- diamant chemie MeSH
- elektronické tranzistory * MeSH
- ionty MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- nádory kostí * MeSH
- osteosarkom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network.
This study presents a graphene field-effect transistor (gFET) biosensor with dual detection capabilities for SARS-CoV-2: one RNA detection assay to confirm viral positivity and the other for nucleocapsid (N-)protein detection as a proxy for infectiousness of the patient. This technology can be rapidly adapted to emerging infectious diseases, making an essential tool to contain future pandemics. To detect viral RNA, the highly conserved E-gene of the virus was targeted, allowing for the determination of SARS-CoV-2 presence or absence using nasopharyngeal swab samples. For N-protein detection, specific antibodies were used. Tested on 213 clinical nasopharyngeal samples, the gFET biosensor showed good correlation with RT-PCR cycle threshold values, proving its high sensitivity in detecting SARS-CoV-2 RNA. Specificity was confirmed using 21 pre-pandemic samples positive for other respiratory viruses. The gFET biosensor had a limit of detection (LOD) for N-protein of 0.9 pM, establishing a foundation for the development of a sensitive tool for monitoring active viral infection. Results of gFET based N-protein detection corresponded to the results of virus culture in all 16 available clinical samples and thus it also proved its capability to serve as a proxy for infectivity. Overall, these findings support the potential of the gFET biosensor as a point-of-care device for rapid diagnosis of SARS-CoV-2 infection and indirect assessment of infectiousness in patients, providing additional information for clinical and public health decision-making.
- MeSH
- biosenzitivní techniky * přístrojové vybavení metody MeSH
- COVID-19 * diagnóza virologie MeSH
- design vybavení MeSH
- elektronické tranzistory MeSH
- fosfoproteiny MeSH
- grafit * chemie MeSH
- koronavirové nukleokapsidové proteiny izolace a purifikace MeSH
- lidé MeSH
- limita detekce MeSH
- nazofarynx virologie MeSH
- RNA virová * izolace a purifikace analýza MeSH
- SARS-CoV-2 * izolace a purifikace genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Diamond is recognized as an attractive material for merging solid-state and biological systems. The advantage of diamond field-effect transistors (FET) is that they are chemically resistant, bio-compatible, and can operate without gate oxides. Solution-gated FETs based on H-terminated nanocrystalline diamond films exhibiting surface conductivity are employed here for studying effects of fetal bovine serum (FBS) proteins and osteoblastic SAOS-2 cells on diamond electronic properties. FBS proteins adsorbed on the diamond FETs permanently decrease diamond conductivity as reflected by the -45 mV shift of the FET transfer characteristics. Cell cultivation for 2 days results in a further shift by another -78 mV. We attribute it to a change of diamond material properties rather than purely to the field-effect. Increase in gate leakage currents (by a factor of 4) indicates that the FBS proteins also decrease the diamond-electrolyte electronic barrier induced by C-H surface dipoles. We propose a model where the proteins replace ions in the very vicinity of the H-terminated diamond surface.
- MeSH
- adsorpce MeSH
- biosenzitivní techniky přístrojové vybavení metody MeSH
- buněčné linie MeSH
- diamant chemie MeSH
- elektrochemie metody MeSH
- elektronické tranzistory MeSH
- ionty MeSH
- krevní proteiny chemie MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací MeSH
- nanočástice chemie ultrastruktura MeSH
- povrchové vlastnosti MeSH
- roztoky MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH