Thermoresponsive Hyaluronate-Based Nanogels for Enhanced Phenanthriplatin Delivery in Cisplatin-Resistant Ovarian Cancer
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40694007
PubMed Central
PMC12344714
DOI
10.1021/acs.biomac.5c00692
Knihovny.cz E-zdroje
- MeSH
- akrylové pryskyřice chemie MeSH
- chemorezistence * účinky léků MeSH
- cisplatina * farmakologie MeSH
- kyselina hyaluronová * chemie MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory vaječníků * farmakoterapie patologie MeSH
- nanogely chemie MeSH
- nosiče léků chemie MeSH
- organoplatinové sloučeniny * farmakologie chemie aplikace a dávkování MeSH
- protinádorové látky * farmakologie chemie aplikace a dávkování MeSH
- uvolňování léčiv MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akrylové pryskyřice MeSH
- cisplatina * MeSH
- kyselina hyaluronová * MeSH
- nanogely MeSH
- nosiče léků MeSH
- organoplatinové sloučeniny * MeSH
- poly-N-isopropylacrylamide MeSH Prohlížeč
- protinádorové látky * MeSH
Stimuli-responsive hyaluronic acid carriers face limitations due to limited carboxyl groups, which are divided between drug conjugation and functional modifications. Thermoresponsive nanogels based on selectively oxidized hyaluronan (2,3-dicarboxy hyaluronate, DCH) grafted with poly(N-isopropyl acrylamide) (pNIPAM) were developed for phenanthriplatin (PhPt) delivery. Sequential oxidation after pNIPAM grafting introduced additional carboxylic groups, enabling a more efficient drug loading and controlled release. Compared to nonoxidized pNIPAM-modified HA, this approach achieved 3 times higher loading efficacy and significantly slower drug release. Upon PhPt loading, DCH-pNIPAM conjugates self-assembled into nanogels, with the drug binding mode (ionic vs covalent) influencing particle rearrangement and drug release behavior. Covalently bound PhPt showed reduced release compared to nonthermoresponsive controls. In vitro studies on ovarian cancer cell lines, including cisplatin-resistant variants, demonstrated up to an 18-fold increase in cytotoxicity versus free PhPt. These nanogels offer a promising strategy for enhancing drug efficacy, reducing off-target effects, and overcoming resistance in cancer therapy.
Zobrazit více v PubMed
Fraser J. R. E., Laurent T. C., Laurent U. B. G.. Hyaluronan: Its Nature, Distribution, Functions and Turnover. J. Int. Med. 1997;242(1):27–33. doi: 10.1046/j.1365-2796.1997.00170.x. PubMed DOI
Cyphert J. M., Trempus C. S., Garantziotis S.. Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology. Int. J. Cell Biol. 2015;2015:1–8. doi: 10.1155/2015/563818. PubMed DOI PMC
Girish K. S., Kemparaju K.. The Magic Glue Hyaluronan and Its Eraser Hyaluronidase: A Biological Overview. Life Sci. 2007;80(21):1921–1943. doi: 10.1016/j.lfs.2007.02.037. PubMed DOI
Knopf-Marques H., Pravda M., Wolfova L., Velebny V., Schaaf P., Vrana N. E., Lavalle P.. Hyaluronic Acid and Its Derivatives in Coating and Delivery Systems: Applications in Tissue Engineering, Regenerative Medicine and Immunomodulation. Adv. Healthc. Mater. 2016;5(22):2841–2855. doi: 10.1002/adhm.201600316. PubMed DOI
Toole B. P.. Hyaluronan: From Extracellular Glue to Pericellular Cue. Nat. Rev. Cancer. 2004;4(7):528–539. doi: 10.1038/nrc1391. PubMed DOI
Turley E. A., Noble P. W., Bourguignon L. Y. W.. Signaling Properties of Hyaluronan Receptors. J. Biol. Chem. 2002;277(7):4589–4592. doi: 10.1074/jbc.R100038200. PubMed DOI
Dosio F., Arpicco S., Stella B., Fattal E.. Hyaluronic Acid for Anticancer Drug and Nucleic Acid Delivery. Adv. Drug Delivery Rev. 2016;97:204–236. doi: 10.1016/j.addr.2015.11.011. PubMed DOI
Harrer D., Sanchez Armengol E., Friedl J. D., Jalil A., Jelkmann M., Leichner C., Laffleur F.. Is Hyaluronic Acid the Perfect Excipient for the Pharmaceutical Need? Int. J. Pharm. 2021;601:120589. doi: 10.1016/j.ijpharm.2021.120589. PubMed DOI
Khazaei Z., Namayandeh S. M., Beiranvand R., Naemi H., Bechashk S. M., Goodarzi E.. Worldwide Incidence and Mortality of Ovarian Cancer and Human Development Index (HDI): GLOBOCAN Sources and Methods 2018. J. Prev. Med. Hyg. 2021;62(1):E174–E184. doi: 10.15167/2421-4248/jpmh2021.62.1.1606. PubMed DOI PMC
du Bois A., Baert T., Vergote I.. Role of Neoadjuvant Chemotherapy in Advanced Epithelial Ovarian Cancer. J. Clin. Oncol. 2019;37(27):2398–2405. doi: 10.1200/JCO.19.00022. PubMed DOI
Raudenska M., Balvan J., Fojtu M., Gumulec J., Masarik M.. Unexpected Therapeutic Effects of Cisplatin. Metallomics. 2019;11(7):1182–1199. doi: 10.1039/c9mt00049f. PubMed DOI
Zhang C., Xu C., Gao X., Yao Q.. Platinum-Based Drugs for Cancer Therapy and Anti-Tumor Strategies. Theranostics. 2022;12(5):2115–2132. doi: 10.7150/thno.69424. PubMed DOI PMC
Huang D., Savage S. R., Calinawan A. P., Lin C., Zhang B., Wang P., Starr T. K., Birrer M. J., Paulovich A. G.. A Highly Annotated Database of Genes Associated with Platinum Resistance in Cancer. Oncogene. 2021;40(46):6395–6405. doi: 10.1038/s41388-021-02055-2. PubMed DOI PMC
Nunes M., Bartosch C., Abreu M. H., Richardson A., Almeida R., Ricardo S.. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells. 2024;13(9):786. doi: 10.3390/cells13090786. PubMed DOI PMC
Bokatyi A. N., Dubashynskaya N. V., Skorik Y. A.. Chemical Modification of Hyaluronic Acid as a Strategy for the Development of Advanced Drug Delivery Systems. Carbohydr. Polym. 2024;337:122145. doi: 10.1016/j.carbpol.2024.122145. PubMed DOI
Cai S., Xie Y., Bagby T. R., Cohen M. S., Forrest M. L.. Intralymphatic Chemotherapy Using a Hyaluronan-Cisplatin Conjugate. J. Surg. Res. 2008;147(2):247–252. doi: 10.1016/j.jss.2008.02.048. PubMed DOI PMC
Ohta S., Hiramoto S., Amano Y., Sato M., Suzuki Y., Shinohara M., Emoto S., Yamaguchi H., Ishigami H., Sakai Y., Kitayama J., Ito T.. Production of Cisplatin-Incorporating Hyaluronan Nanogels via Chelating Ligand-Metal Coordination. Bioconjugate Chem. 2016;27(3):504–508. doi: 10.1021/acs.bioconjchem.5b00674. PubMed DOI
Quan Y. H., Kim B., Park J.-H., Choi Y., Choi Y. H., Kim H. K.. Highly Sensitive and Selective Anticancer Effect by Conjugated HA-Cisplatin in Non-Small Cell Lung Cancer Overexpressed with CD44. Exp. Lung Res. 2014;40(10):475–484. doi: 10.3109/01902148.2014.905656. PubMed DOI
Hintze V., Schnabelrauch M., Rother S.. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front. Chem. 2022;10:830671. doi: 10.3389/fchem.2022.830671. PubMed DOI PMC
Muir V. G., Burdick J. A.. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem. Rev. 2021;121(18):10908–10949. doi: 10.1021/acs.chemrev.0c00923. PubMed DOI PMC
Schanté C. E., Zuber G., Herlin C., Vandamme T. F.. Chemical Modifications of Hyaluronic Acid for the Synthesis of Derivatives for a Broad Range of Biomedical Applications. Carbohydr. Polym. 2011;85(3):469–489. doi: 10.1016/j.carbpol.2011.03.019. DOI
Fan X., Zhao X., Qu X., Fang J.. pH Sensitive Polymeric Complex of Cisplatin with Hyaluronic Acid Exhibits Tumor-Targeted Delivery and Improved in Vivo Antitumor Effect. Int. J. Pharm. 2015;496(2):644–653. doi: 10.1016/j.ijpharm.2015.10.066. PubMed DOI
Münster L., Capáková Z., Humpolíček P., Kuřitka I., Christensen B. E., Vícha J.. Dicarboxylated Hyaluronate: Synthesis of a New, Highly Functionalized and Biocompatible Derivative. Carbohydr. Polym. 2022;292:119661. doi: 10.1016/j.carbpol.2022.119661. PubMed DOI
Münster L., Fojtů M., Capáková Z., Muchová M., Musilová L., Vaculovič T., Balvan J., Kuřitka I., Masařík M., Vícha J.. Oxidized Polysaccharides for Anticancer-Drug Delivery: What Is the Role of Structure? Carbohydr. Polym. 2021;257:117562. doi: 10.1016/j.carbpol.2020.117562. PubMed DOI
D’Este M., Eglin D., Alini M.. A Systematic Analysis of DMTMM vs EDC/NHS for Ligation of Amines to Hyaluronan in Water. Carbohydr. Polym. 2014;108:239–246. doi: 10.1016/j.carbpol.2014.02.070. PubMed DOI
Capella V., Rivero R. E., Liaudat A. C., Ibarra L. E., Roma D. A., Alustiza F., Mañas F., Barbero C. A., Bosch P., Rivarola C. R., Rodriguez N.. Cytotoxicity and Bioadhesive Properties of Poly-N-Isopropylacrylamide Hydrogel. Heliyon. 2019;5(4):e01474. doi: 10.1016/j.heliyon.2019.e01474. PubMed DOI PMC
Cooperstein M. A., Canavan H. E.. Assessment of Cytotoxicity of (N-Isopropyl Acrylamide) and Poly(N-Isopropyl Acrylamide)-Coated Surfaces. Biointerphases. 2013;8(1):19. doi: 10.1186/1559-4106-8-19. PubMed DOI PMC
Soriano Pérez M. L., Funes J. A., Flores Bracamonte C., Ibarra L. E., Forrellad M. A., Taboga O., Cariddi L. N., Salinas F. J., Ortega H. H., Alustiza F., Molina M.. Development and Biological Evaluation of pNIPAM-Based Nanogels as Vaccine Carriers. Int. J. Pharm. 2023;630:122435. doi: 10.1016/j.ijpharm.2022.122435. PubMed DOI
Barbier L., Protat M., Pipart P., Marcellan A., Tran Y., Hourdet D.. Sol/Gel Transition of Thermoresponsive Hyaluronan: From Liquids to Elastic and Sticky Materials. Carbohydr. Polym. 2023;310:120715. doi: 10.1016/j.carbpol.2023.120715. PubMed DOI
Atoufi Z., Kamrava S. K., Davachi S. M., Hassanabadi M., Saeedi Garakani S., Alizadeh R., Farhadi M., Tavakol S., Bagher Z., Hashemi Motlagh G.. Injectable PNIPAM/Hyaluronic Acid Hydrogels Containing Multipurpose Modified Particles for Cartilage Tissue Engineering: Synthesis, Characterization, Drug Release and Cell Culture Study. Int. J. Biol. Macromol. 2019;139:1168–1181. doi: 10.1016/j.ijbiomac.2019.08.101. PubMed DOI
Atoufi Z., Kamrava S. K., Davachi S. M., Hassanabadi M., Saeedi Garakani S., Alizadeh R., Farhadi M., Tavakol S., Bagher Z., Hashemi Motlagh G.. Injectable PNIPAM/Hyaluronic Acid Hydrogels Containing Multipurpose Modified Particles for Cartilage Tissue Engineering: Synthesis, Characterization, Drug Release and Cell Culture Study. Int. J. Biol. Macromol. 2019;139:1168–1181. doi: 10.1016/j.ijbiomac.2019.08.101. PubMed DOI
Luckanagul J. A., Ratnatilaka Na Bhuket P., Muangnoi C., Rojsitthisak P., Wang Q., Rojsitthisak P.. Self-Assembled Thermoresponsive Nanogel from Grafted Hyaluronic Acid as a Biocompatible Delivery Platform for Curcumin with Enhanced Drug Loading and Biological Activities. Polymers. 2021;13(2):194. doi: 10.3390/polym13020194. PubMed DOI PMC
Solanki R., Bhatia D.. Stimulus-Responsive Hydrogels for Targeted Cancer Therapy. Gels. 2024;10(7):440. doi: 10.3390/gels10070440. PubMed DOI PMC
Thodikayil A. T., Yadav A., Hariprasad P., Saha S.. TEMPO-Oxidized Nanofibrillated Cellulose as Potential Carrier for Sustained Antibacterial Delivery. Int. J. Biol. Macromol. 2024;254:127604. doi: 10.1016/j.ijbiomac.2023.127604. PubMed DOI
Park G. Y., Wilson J. J., Song Y., Lippard S. J.. Phenanthriplatin, a Monofunctional DNA-Binding Platinum Anticancer Drug Candidate with Unusual Potency and Cellular Activity Profile. Proc. Natl. Acad. Sci. U. S. A. 2012;109(30):11987–11992. doi: 10.1073/pnas.1207670109. PubMed DOI PMC
Riddell I. A., Park G. Y., Agama K., Pommier Y., Lippard S. J.. Phenanthriplatin Acts as a Covalent Topoisomerase II Poison. ACS Chem. Biol. 2016;11(11):2996–3001. doi: 10.1021/acschembio.6b00565. PubMed DOI PMC
Vann K. R., Oviatt A. A., Osheroff N.. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry. 2021;60(21):1630–1641. doi: 10.1021/acs.biochem.1c00240. PubMed DOI PMC
Münster L., Fojtů M., Muchová M., Latečka F., Káčerová S., Capáková Z., Juriňáková T., Kuřitka I., Masařík M., Vícha J.. Enhancing Cisplatin Anticancer Effectivity and Migrastatic Potential by Modulation of Molecular Weight of Oxidized Dextran Carrier. Carbohydr. Polym. 2021;272:118461. doi: 10.1016/j.carbpol.2021.118461. PubMed DOI
D’Este M., Alini M., Eglin D.. Single Step Synthesis and Characterization of Thermoresponsive Hyaluronan Hydrogels. Carbohydr. Polym. 2012;90(3):1378–1385. doi: 10.1016/j.carbpol.2012.07.007. PubMed DOI
Tømmeraas K., Melander C.. Kinetics of Hyaluronan Hydrolysis in Acidic Solution at Various pH Values. Biomacromolecules. 2008;9(6):1535–1540. doi: 10.1021/bm701341y. PubMed DOI
Chen J.-P., Leu Y.-L., Fang C.-L., Chen C.-H., Fang J.-Y.. Thermosensitive Hydrogels Composed of Hyaluronic Acid and Gelatin as Carriers for the Intravesical Administration of Cisplatin. J. Pharm. Sci. 2011;100(2):655–666. doi: 10.1002/jps.22309. PubMed DOI
Venditti, R. Temperature Effects on the Zeta Potential. In Encyclopedia of Microfluidics and Nanofluidics; Li, D. , Ed.; Springer US: Boston, MA, 2008; pp 1980–1987, 10.1007/978-0-387-48998-8_1532. DOI
Kristiansen K. A., Dalheim M. Ø., Christensen B. E.. Periodate Oxidation and Macromolecular Compaction of Hyaluronan. Pure Appl. Chem. 2013;85(9):1893–1900. doi: 10.1351/pac-con-13-01-05. DOI
Dabbish E., Russo N., Sicilia E.. Rationalization of the Superior Anticancer Activity of Phenanthriplatin: An In-Depth Computational Exploration. Chem. - Eur. J. 2020;26(1):259–268. doi: 10.1002/chem.201903831. PubMed DOI
Czapar A. E., Zheng Y.-R., Riddell I. A., Shukla S., Awuah S. G., Lippard S. J., Steinmetz N. F.. Tobacco Mosaic Virus Delivery of Phenanthriplatin for Cancer Therapy. ACS Nano. 2016;10(4):4119–4126. doi: 10.1021/acsnano.5b07360. PubMed DOI PMC
Teng B., Han Y., Zhang X., Xiao H., Yu C., Li H., Cheng Z., Jin D., Wong K.-L., Ma P., Lin J.. Phenanthriplatin(IV) Conjugated Multifunctional up-Converting Nanoparticles for Drug Delivery and Biomedical Imaging. J. Mater. Chem. B. 2018;6(31):5059–5068. doi: 10.1039/C8TB01034J. PubMed DOI
Wilhelm S., Tavares A. J., Dai Q., Ohta S., Audet J., Dvorak H. F., Chan W. C. W.. Analysis of Nanoparticle Delivery to Tumours. Nat. Rev. Mater. 2016;1(5):1–12. doi: 10.1038/natrevmats.2016.14. DOI
Minervini T., Cardey B., Foley S., Ramseyer C., Enescu M.. Fate of Cisplatin and Its Main Hydrolysed Forms in the Presence of Thiolates: A Comprehensive Computational and Experimental Study. Metallomics. 2019;11(4):833–844. doi: 10.1039/c8mt00371h. PubMed DOI
Ohta S., Hiramoto S., Amano Y., Emoto S., Yamaguchi H., Ishigami H., Kitayama J., Ito T.. Intraperitoneal Delivery of Cisplatin via a Hyaluronan-Based Nanogel/in Situ Cross-Linkable Hydrogel Hybrid System for Peritoneal Dissemination of Gastric Cancer. Mol. Pharmaceutics. 2017;14(9):3105–3113. doi: 10.1021/acs.molpharmaceut.7b00349. PubMed DOI
Yao Y., Zhou Y., Liu L., Xu Y., Chen Q., Wang Y., Wu S., Deng Y., Zhang J., Shao A.. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020;7:193. doi: 10.3389/fmolb.2020.00193. PubMed DOI PMC
Yu B., Tai H. C., Xue W., Lee L. J., Lee R. J.. Receptor-Targeted Nanocarriers for Therapeutic Delivery to Cancer. Mol. Membr. Biol. 2010;27(7):286–298. doi: 10.3109/09687688.2010.521200. PubMed DOI PMC
De Luca E., Wang Y., Baars I., De Castro F., Lolaico M., Migoni D., Ducani C., Benedetti M., Högberg B., Fanizzi F. P.. Wireframe DNA Origami for the Cellular Delivery of Platinum(II)-Based Drugs. Int. J. Mol. Sci. 2023;24(23):16715. doi: 10.3390/ijms242316715. PubMed DOI PMC
Chen H., Wang Y., Liu Y., Tang L., Mu Q., Yin X., Zheng L., Chen Y., Liu C.. Delivery of Cationic Platinum Prodrugs via Reduction Sensitive Polymer for Improved Chemotherapy. Small. 2021;17(45):2101804. doi: 10.1002/smll.202101804. PubMed DOI
Münster L., Capáková Z., Fišera M., Kuřitka I., Vícha J.. Biocompatible Dialdehyde Cellulose/Poly(Vinyl Alcohol) Hydrogels with Tunable Properties. Carbohydr. Polym. 2019;218:333–342. doi: 10.1016/j.carbpol.2019.04.091. PubMed DOI
Baribeau S., Chaudhry P., Parent S., Asselin É.. Resveratrol Inhibits Cisplatin-Induced Epithelial-to-Mesenchymal Transition in Ovarian Cancer Cell Lines. PLoS One. 2014;9(1):e86987. doi: 10.1371/journal.pone.0086987. PubMed DOI PMC