Gibberellin-deactivating GA2OX enzymes act as a hub for auxin-gibberellin cross talk in Arabidopsis thaliana root growth regulation

. 2025 Jul 29 ; 122 (30) : e2425574122. [epub] 20250722

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40694327

Grantová podpora
101125499 EC | ERC | HORIZON EUROPE European Research Council (ERC)
759282 EC | ERC | HORIZON EUROPE European Research Council (ERC)
CZ.02.01.01/00/22_008/0004581 ERDF programme Johannes Amos Comenius

Plant bodies are built from immobile cells, making the regulation of cell expansion essential for growth, development, and adaptation. In roots, cell elongation executes the movement of the root tips through the soil. This process is tightly controlled by numerous signaling pathways. Among these, gibberellin and auxin signaling stand out for their contrasting effects on root growth, interacting through complex cross talk at multiple regulatory levels. Here, we reveal the molecular basis of the auxin-gibberellin cross talk in the model plant Arabidopsis thaliana. We show that the auxin signaling pathway steers the expression of GIBBERELLIN 2-OXIDASES (GA2OXs), key gibberellin-deactivating enzymes in the root elongation zone (EZ). GA2OXs are negative regulators of root cell elongation; GA2OX8 overexpression decreases gibberellin levels and inhibits root cell elongation; in contrast, the ga2ox heptuple mutant roots show elevated gibberellin levels in the EZ and grow longer roots. Intriguingly, shoot-derived auxin can regulate GA2OX6 and GA2OX8 expression in roots, linking systemic auxin signaling to local gibberellin level modulation. Together, our findings identify GA2OX6 and GA2OX8 enzymes as key mediators of auxin-gibberellin cross talk, providing insights into their roles in root elongation. These results expand our understanding of how auxin integrates with gibberellin signaling to coordinate root development and growth dynamics.

Zobrazit více v PubMed

Leyser O., Auxin signaling. Plant Physiol. 176, 465–479 (2018). PubMed PMC

Bonner J., Koepfli J. B., The inhibition of root growth by auxins. Am. J. Bot. 26, 557–566 (1939).

Kubalová M., et al. , Auxin co-receptor IAA17/AXR3 controls cell elongation in PubMed

Ubeda-Tomás S., et al. , Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nat. Cell Biol. 10, 625–628 (2008). PubMed

Silverstone A. L., et al. , Repressing a repressor. Plant Cell 13, 1555–1566 (2001). PubMed PMC

Cheng H., et al. , Gibberellin regulates PubMed

Yoshida H., et al. , DELLA protein functions as a transcriptional activator through the DNA binding of the INDETERMINATE DOMAIN family proteins. Proc. Natl. Acad. Sci. U.S.A. 111, 7861–7866 (2014). PubMed PMC

Peng J., et al. , The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 11, 3194–3205 (1997). PubMed PMC

Shani E., et al. , Gibberellins accumulate in the elongating endodermal cells of PubMed PMC

Griffiths J., Rizza A., Tang B., Frommer W. B., Jones A. M., Gibberellin perception sensor 2 reveals genesis and role of cellular GA dynamics in light-regulated hypocotyl growth. Plant Cell 36, 4426–4441 (2024). PubMed PMC

Kubalová M., et al. , Auxin co-receptor IAA17/AXR3 controls cell elongation in Arabidopsis thaliana root solely by modulation of nuclear auxin pathway. New Phytol. 241, 2448–2463 (2024). PubMed

Rizza A., Walia A., Lanquar V., Frommer W. B., Jones A. M., In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat. Plants 3, 803–813 (2017). PubMed

Ubeda-Tomás S., et al. , Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr. Biol. 19, 1194–1199 (2009). PubMed

Moubayidin L., et al. , The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr. Biol. 20, 1138–1143 (2010). PubMed

Paquette A. J., Benfey P. N., Maturation of the ground tissue of the root is regulated by gibberellin and PubMed PMC

Yamaguchi S., Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59, 225–251 (2008). PubMed

Hedden P., The current status of research on gibberellin biosynthesis. Plant Cell Physiol. 61, 1832–1849 (2020). PubMed PMC

Lange T., Pimenta Lange M. J., The multifunctional dioxygenases of gibberellin synthesis. Plant Cell Physiol. 61, 1869–1879 (2020). PubMed

Barker R., et al. , Mapping sites of gibberellin biosynthesis in the Arabidopsis root tip. New Phytol. 229, 1521–1534 (2021). PubMed

Schomburg F. M., Bizzell C. M., Lee D. J., Zeevaart J. A. D., Amasino R. M., Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15, 151–163 (2003). PubMed PMC

Lange T., Krämer C., Pimenta Lange M. J., The class III gibberellin 2-oxidases AtGA2ox9 and AtGA2ox10 contribute to cold stress tolerance and fertility. Plant Physiol. 184, 478–486 (2020). PubMed PMC

Rieu I., et al. , Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20, 2420–2436 (2008). PubMed PMC

Weiss D., Ori N., Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 144, 1240–1246 (2007). PubMed PMC

Frigerio M., et al. , Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol. 142, 553–563 (2006). PubMed PMC

Fu X., Harberd N. P., Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743 (2003). PubMed

Li G., Zhu C., Gan L., Ng D., Xia K., GA3 enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis. Plant Cell Rep. 34, 483–494 (2015). PubMed

Ross J. J., O'neill D. P., Smith J. J., Kerckhoffs L. H. J., Elliott R. C., Evidence that auxin promotes gibberellin A PubMed

O’Neill D. P., Ross J. J., Auxin regulation of the gibberellin pathway in pea. Plant Physiol. 130, 1974–1982 (2002). PubMed PMC

Mäkilä R., et al. , Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. Nat. Plants 9, 631–644 (2023). PubMed PMC

Fu X., Harberd N. P., Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743 (2003). PubMed

Moreno-Risueno M. A., et al. , Oscillating gene expression determines competence for periodic PubMed PMC

He W., et al. , A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23, 3944–3960 (2011). PubMed PMC

Kinoshita A., et al. , Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. eLife 9, e60661 (2020). PubMed PMC

Zuo J., Niu Q.-W., Chua N.-H., An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273 (2000). PubMed

Nishimura T., Nakano H., Hayashi K.-I., Niwa C., Koshiba T., Differential downward stream of auxin synthesized at the tip has a key role in gravitropic curvature via TIR1/AFBs-mediated auxin signaling pathways. Plant Cell Physiol. 50, 1874–1885 (2009). PubMed

Mäkilä R., et al. , Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. Nat. Plants 9, 631–644 (2023). PubMed PMC

Tanimoto E., Regulation of root growth by plant hormones—Roles for auxin and gibberellin. Crit. Rev. Plant Sci. 24, 249–265 (2005).

Wiesen L. B., et al. , A role for GIBBERELLIN 2-OXIDASE6 and gibberellins in regulating nectar production. Mol. Plant 9, 753–756 (2016). PubMed

Mitchum M. G., et al. , Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J. 45, 804–818 (2006). PubMed

Rizza A., et al. , Differential biosynthesis and cellular permeability explain longitudinal gibberellin gradients in growing roots. Proc. Natl. Acad. Sci. U.S.A. 118, e1921960118 (2021). PubMed PMC

Thomas S. G., Phillips A. L., Hedden P., Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc. Natl. Acad. Sci. U.S.A. 96, 4698–4703 (1999). PubMed PMC

Meents A. K., et al. , Beneficial and pathogenic Arabidopsis root-interacting fungi differently affect auxin levels and responsive genes during early infection. Front. Microbiol. 10, 380 (2019). PubMed PMC

Korver R. A., Koevoets I. T., Testerink C., Out of shape during stress: A key role for auxin. Trends Plant Sci. 23, 783–793 (2018). PubMed PMC

Gou J., et al. , Gibberellins regulate lateral root formation in PubMed PMC

Du R., et al. , The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers. Sci. Rep. 7, 16637 (2017). PubMed PMC

Regnault T., et al. , The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis. Nat. Plants 1, 15073 (2015). PubMed

Mähönen A. P., et al. , Plethora gradient formation mechanism separates auxin responses. Nature 515, 125–129 (2014). PubMed PMC

Gonzalez J. H., Taylor J. S., Reed K. M., Wright R. C., Bargmann B. O. R., Temporal control of morphogenic factor expression determines efficacy in enhancing regeneration. Plants 10, 2271 (2021). PubMed PMC

Mateos J. L., et al. , Combinatorial activities of short vegetative phase and flowering locus c define distinct modes of flowering regulation in arabidopsis. Genome Biol. 16, 31 (2015). PubMed PMC

Lindsey B. E., Rivero L., Calhoun C. S., Grotewold E., Brkljacic J., Standardized method for high-throughput sterilization of PubMed DOI PMC

Sarrion-Perdigones A., et al. , Goldenbraid: An iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6, e21622 (2011). PubMed PMC

Gould S. J., Subramani S., Firefly luciferase as a tool in molecular and cell biology. Anal. Biochem. 175, 5–13 (1988). PubMed

Bindels D. S., et al. , Mscarlet: A bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2017). PubMed

Sarrion-Perdigones A., et al. , Goldenbraid 2.0: A comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 162, 1618–1631 (2013). PubMed PMC

Shaner N. C., et al. , Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004). PubMed

Dusek J., et al. , Extended set of GoldenBraid compatible vectors for fast assembly of multigenic constructs and their use to create geminiviral expression vectors. Front. Plant Sci. 11, 522059 (2020). PubMed PMC

Clough S. J., Bent A. F., Floral dip: A simplified method for PubMed

Fendrych M., et al. , Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Curr. Biol. 24, 931–940 (2014). PubMed

Serre N. B. C., et al. , AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nat. Plants 7, 1229–1238 (2021). PubMed PMC

Schindelin J., et al. , Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC

Rowe J. H., Rizza A., Jones A. M., Quantifying phytohormones in vivo with FRET biosensors and the FRETENATOR analysis toolset. Methods Mol. Biol. 2494, 239–253 (2022). PubMed

Song L., Florea L., Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 4, 48 (2015). PubMed PMC

Patro R., Duggal G., Love M. I., Irizarry R. A., Kingsford C., Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017). PubMed PMC

Pimentel H., Bray N. L., Puente S., Melsted P., Pachter L., Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017). PubMed

Voinnet O., Rivas S., Mestre P., Baulcombe D., An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956 (2003). PubMed

Lord S. J., Velle K. B., Mullins R. D., Fritz-Laylin L. K., Superplots: Communicating reproducibility and variability in cell biology. J. Cell Biol. 219, e202001064 (2020). PubMed PMC

Kubalová M., Fendrych M., Müller K., Gibberellin-deactivating GA2OX enzymes act as a hub for auxin-gibberellin crosstalk in Arabidopsis thaliana root growth regulation. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE282145. Deposited 18 November 2024. PubMed PMC

Fendrych M., Kubalová M., Source data for publication: “Gibberellin-deactivating GA2OX enzymes act as a hub for auxin–gibberellin cross talk in Arabidopsis thaliana root growth regulation”. Zenodo. 10.5281/zenodo.15689296. Deposited 8 July 2025. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...