Prevalence of Ixodes ricinus and possible hybrids of I. ricinus and I. inopinatus on the edible dormouse in a Central European woodland
Jazyk angličtina Země Česko Médium electronic
Typ dokumentu časopisecké články
PubMed
40696823
DOI
10.14411/fp.2025.022
PII: 2025.022
Knihovny.cz E-zdroje
- Klíčová slova
- Glis glis, hybridisation, infestation, rodent, tick-host interactions,
- MeSH
- hybridizace genetická * MeSH
- infestace klíšťaty * epidemiologie veterinární parazitologie MeSH
- klíště * genetika klasifikace fyziologie MeSH
- lesy MeSH
- Myoxidae * parazitologie MeSH
- nymfa MeSH
- prevalence MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Ixodes inopinatus Estrada-Peña, Nava et Petney, 2014 was described in 2014 from the Iberian Peninsula and later reported from Algeria, Morocco, Tunisia, Germany, Austria and Romania. However, recent studies raised serious doubts about the presence of I. inopinatus in Central Europe and reported hybridisation between the Ixodes ricinus (Linnaeus, 1758) and I. inopinatus. In this study, we selected a locally common rodent host, the edible dormouse Glis glis (Linnaeus) (Rodentia: Gliridae), to study the prevalence of these two tick species and their hybrids in a Central European woodland. The TROSPA nuclear gene and the COI mitochondrial gene were used for tick identification. Overall, 581 dormice were screened and 383 I. ricinus, 17 I. ricinus/inopinatus hybrids and no I. inopinatus were found. Co-infection of I. ricinus and hybrids was found on 11 dormice with the overall prevalence of I. ricinus 28.8% and hybrids 2.5%. Seasonal occurrence of I. ricinus and hybrids reached a peak in August. Edible dormouse males were more frequently infected than females and larvae of both tick taxa greatly outnumbered the nymphs. Detection of a large number of hybrid larvae on this mammal host demonstrates that tick hybridisation likely occurs further north and outside the originally described distribution range of I. inopinatus.
Biology Centre Institute of Parasitology Czech Academy of Sciences Ceske Budejovice Czech Republic
CEITEC University of Veterinary Sciences Brno Czech Republic
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Zoology Palacky University Olomouc Olomouc Czech Republic
Zobrazit více v PubMed
Adamík P., Emmenegger T., Briedis M., Gustafsson L., Henshaw I., Krist M. Laaksonen T., Liechti F., Procházka P., Salewski V., Hahn S. 2016: Barrier crossing in small avian migrants: individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Sci. Rep. 6: 21560. PubMed DOI
Adamík P., Poledník L., Poledníková K., Romportl D. 2019: Mapping an elusive arboreal rodent: combining nocturnal acoustic surveys and citizen science data extends the known distribution of the edible dormouse (Glis glis) in the Czech Republic. Mamm. Biol. 99: 12-18. DOI
Alale T.Y., Sormunen J.J., Vesterinen E.J., Klemola T., Knott K.E., Baltazar-Soares M. 2024: Genomic signatures of hybridization between Ixodes ricinus and Ixodes persulcatus in natural populations. Ecol. Evol. 14: e11415. PubMed DOI
Araya-Anchetta A., Scoles G.A., Giles J., Busch J.D., Wagner D.M. 2013: Hybridization in natural sympatric populations of Dermacentor ticks in northwestern North America. Ecol. Evol. 3: 714-724. PubMed DOI
Bursali A., Tekin Ş., Keskin A. 2020: A contribution to the tick (Acari: Ixodidae) fauna of Turkey: the first record of Ixodes inopinatus Estrada-Peña, Nava & Petney. Acarol. Stud. 2: 126-130. DOI
Chitimia-Dobler L., Rieß R., Kahl O., Wölfel S., Dobler G., Nava S., Estrada-Peña A. 2018: Ixodes inopinatus - occurring also outside the Mediterranean region. Ticks Tick-Borne Dis. 9: 196-200. PubMed DOI
Daněk O., Hrbatová A., Volfová K., Ševčíková S., Lesiczka P., Nováková M., Ghodrati S., Hrazdilová K., Veneziano V., Napoli E., Otranto D., Montarsi F., Mihalca A.D., Mechouk N., Adamík P., Modrý D., Zurek L. 2024: Italian peninsula as a hybridization zone of Ixodes inopinatus and I. ricinus and the prevalence of tick-borne pathogens in I. inopinatus, I. ricinus, and their hybrids. Parasit. Vectors 17: 196. PubMed DOI
Durden L.A. 2006: Taxonomy, host associations, life cycles and vectorial importance of ticks parasitizing small mammals. In: S. Morand, B.R. Krasnov and R. Poulin (Eds.), Micromammals and Macroparasites. Springer, Tokyo, pp. 91-102. DOI
Estrada-Peña A. 2017: Ixodes inopinatus. In: A. Estrada-Peña, A.D. Mihalca, T.N. Petney (Eds.), Ticks of Europe and North Africa: a Guide to Species Identification. Springer, Cham, pp. 203-206. DOI
Estrada-Peña A., Mihalca A.D., Petney T.N. (Eds.) 2017: Ticks of Europe and North Africa: a Guide to Species Identification. Springer, Cham, 404 pp. DOI
Estrada-Peña A., Nava S., Petney T. 2014: Description of all the stages of Ixodes inopinatus n. sp. (Acari: Ixodidae). Ticks Tick-Borne Dis. 5: 734-743. PubMed DOI
Fietz J., Langer F., Havenstein N., Matuschka F.R., Richter D. 2016: The vector tick Ixodes ricinus feeding on an arboreal rodent - the edible dormouse Glis glis. Parasitol. Res. 115: 1435-1442. PubMed DOI
Fietz J., Tomiuk J., Matuschka F.R., Richter D. 2014: Seasonal prevalence of Lyme disease spirochetes in a heterothermic mammal, the edible dormouse (Glis glis). Appl. Environ. Microbiol. 80: 3615-3621. PubMed DOI
Guindon S., Gascuel O. 2003: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704. PubMed DOI
Harrison R.G., Larson E.L. 2014: Hybridization, introgression, and the nature of species boundaries. J. Heredity 105 (S1): 795-809.
Hasle G. 2013: Transport of ixodid ticks and tick-borne pathogens by migratory birds. Front. Cell Infect. Microbiol. 3: 48. PubMed DOI
Hauck D., Springer A., Pachnicke S., Schunack B., Fingerle V., Strube C. 2019: Ixodes inopinatus in northern Germany: occurrence and potential vector role for Borrelia spp., Rickettsia spp., and Anaplasma phagocytophilum in comparison with Ixodes ricinus. Parasitol. Res. 118: 3205-3216. PubMed DOI
Hekimoğlu O. 2022: Phylogenetic placement of Turkish populations of Ixodes ricinus and Ixodes inopinatus. Exp. Appl. Acarol. 88: 179-189. PubMed DOI
Holcová Gazárková A., Adamík P. 2016: Timing of breeding and second litters in edible dormouse (Glis glis). Folia Zool. 65: 165-168. DOI
Hrazdilová K., Daněk O., Hrbatová A., Červená B., Nosková E., Adamík P., Votýpka J., Mihalca A.D., Noureddine M., Modrý D., Žůrek L. 2023: Genetic analysis challenges the presence of Ixodes inopinatus in Central Europe: development of a multiplex PCR to distinguish I. inopinatus from I. ricinus. Parasit. Vectors 16: 354. PubMed DOI
Kalyaanamoorthy S., Minh B., Wong T.K.F., von Haeseler, Jermiin A., L. S. 2017: ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14: 587-589. PubMed DOI
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thiere T., Ashton B., Meintjes P., Drummond A. 2012: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649. PubMed DOI
Krasnov B.R., Morand S., Hawlena H., Khokhlova I.S., Shenbrot G.I. 2005: Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146: 209-217. PubMed DOI
Lang J., Beer S., Bräsel N., Leonhardt I., Büchner S. 2018: Prevalence and seasonal variation in ticks on Muscardinus avellanarius from Germany (Rodentia: Gliridae). Lynx 49: 49-55. DOI
Mancuso E., Di Domenico M., Di Gialleonardo L., Menegon M., Toma L., Di Luca M., Casale F., Di Donato G., D'Onofrio L., De Rosa A., Riello S., Ferri A., Serra L., Monaco F. 2023: Tick species diversity and molecular identification of spotted fever group Rickettsiae collected from migratory birds arriving from Africa. Microorganisms 11: 2036. PubMed DOI
Matuschka F.R., Allgower R., Spielman A., Righter D. 1999: Characteristics of garden dormice that contribute to their capacity as reservoirs for Lyme disease spirochetes. Appl. Environ. Microbiol. 65: 707-711. PubMed DOI
Matuschka F.R., Eifert H., Ohlenbusch A., Spielman A. 1994: Amplifying role of edible dormice in Lyme disease transmission in central Europe. J. Infect. Dis. 170: 122-127. PubMed DOI
Matuschka F.R., Fischer P., Musgrave K., Richter D., Spielman A. 1991: Hosts on which nymphal Ixodes ricinus most abundantly feed. Am. J. Trop. Med. Hyg. 44: 100-107. PubMed DOI
Minh B.Q., Nguyen M.A.T., Von Haeseler A. 2013: Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30: 1188-1195. PubMed DOI
Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. 2015: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32: 268-274. PubMed DOI
Noureddine R., Chauvin A., Plantard O. 2011: Lack of genetic structure among Eurasian populations of the tick Ixodes ricinus contrasts with marked divergence from North-African populations. Int. J. Parasitol. 41: 183-192. PubMed DOI
Petney T.N., Moser E., Littwin N., Pfäffle M., Muders S.V., Taraschewski H. 2015: Additions to the "annotated checklist of the ticks of Germany": Ixodes acuminatus and Ixodes inopinatus. Syst. Appl. Acarol. 20: 221-224. DOI
Plantard O., Poli P., Bouattour A., Sarih M., Dib L., Rispe C. 2022: Ixodes inopinatus cannot be distinguished from I. ricinus by the sole use of the 16S ribosomal gene. Proc. 10th Tick Tick-Borne Pathog. Conf.: 73. [accessed 2023 Dec 28]. https://hal.science/hal-03771157/.
Reiczigel J., Marozzi M., Fábián I., Rózsa L. 2019: Biostatistics for parasitologists - a primer to quantitative parasitology. Trends Parasitol. 35: 277-281. PubMed DOI
Richter D., Schlee D.B., Allgöwer R., Matuschka F.R. 2004: Relationships of a novel Lyme disease spirochete, Borrelia spielmani sp. nov., with its hosts in Central Europe. Appl. Environ. Microbiol. 70: 6414-6419. PubMed DOI
Rollins R.E., Margos G., Brachmann A., Krebs S., Mouchet A., Dingemanse N.J., Laatamna A.E., Reghaissia N., Fingerle V., Metzler D., Becker N.S., Chitimia-Dobler L. 2023: German Ixodes inopinatus samples may not actually represent this tick species. Int. J. Parasitol. 53: 751-761. PubMed DOI
Toma L., Mancuso E., d'Alessio S.G., Menegon M., Spina F., Pascucci I., Monaco F., Goffredo M., Di Luca M. 2021: Tick species from Africa by migratory birds: a 3-year study in Italy. Exp. Appl. Acarol. 83: 147-164. PubMed DOI
Velez R., De Meeûs T., Beati L., Younsi H., Zhioua E., Antunes S., Domingos A., Sampaio D.A., Carpinteiro D., Moerbeck L., Estrada-Peña A., Santos-Silva M.M., Santos A.S. 2023: Development and testing of microsatellite loci for the study of population genetics of Ixodes ricinus Linnaeus, 1758 and Ixodes inopinatus Estrada-Peña, Nava & Petney, 2014 (Acari: Ixodidae) in the western Mediterranean region. Acarologia 63: 356-372. DOI
Younsi H., Fares W., Cherni S., Dachraoui K., Barhoumi W., Najjar C., Zhioua E. 2020: Ixodes inopinatus and Ixodes ricinus (Acari: Ixodidae) are sympatric ticks in North Africa. J. Med. Entomol. 57: 952-956. PubMed DOI