• This record comes from PubMed

Nanobodies: a new frontier in influenza virus neutralization

. 2025 Jul 23 ; () : . [epub] 20250723

Status Publisher Language English Country United States Media print-electronic

Document type Journal Article, Review

Links

PubMed 40699443
DOI 10.1007/s12223-025-01303-2
PII: 10.1007/s12223-025-01303-2
Knihovny.cz E-resources

Recurrent epidemics and pandemics caused by seasonal human influenza viruses result in substantial morbidity and are a significant public health burden worldwide annually. Antiviral drugs are used to treat influenza infections but have several limitations.. Therefore, monoclonal antibody therapy is an exciting and promising approach. Nanobodies, also known as single-domain antibodies, are a new class derived from heavy-chain-only antibodies found in camelids like alpacas, llamas, and camels. These antibodies neutralize influenza viruses by targeting various proteins through multiple mechanisms. For example, they can target the hemagglutinin protein to prevent its functions. By focusing on conserved epitopes, they can neutralize a variety of influenza subtypes, including seasonal flu strains and possible pandemic variants. Additionally, these antibodies can neutralize free-floating viruses in the extracellular environment, preventing them from infecting cells. They can reduce the viral load and limit the spread of the infection. Using nanobodies to neutralize influenza viruses provides numerous advantages compared to conventional antibodies. Thanks to their unique properties, nanobodies play a crucial role in fighting influenza, improving disease management, and strengthening public health responses. In this review, we summarize the role of nanobodies in influenza virus neutralization.

See more in PubMed

Aartse A, Mortier D, Mooij P, Hofman S, van Haaren MM, Corcoran M et al (2022) Primary antibody response after influenza virus infection is first dominated by low-mutated HA-stem antibodies followed by higher-mutated HA-head antibodies. Front Immunol 13:1026951 PubMed PMC

Alexander E, Leong KW (2024) Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. Journal of Nanobiotechnology 22(1):661 PubMed PMC

Ashour J, Schmidt FI, Hanke L, Cragnolini J, Cavallari M, Altenburg A et al (2015) Intracellular expression of camelid single-domain antibodies specific for influenza virus nucleoprotein uncovers distinct features of its nuclear localization. J Virol 89(5):2792–2800 PubMed

Bai Y, Jones JC, Wong S‑S, Zanin M. Antivirals targeting the surface glycoproteins of influenza virus: mechanisms of action and resistance. Viruses. 2021 Apr 6;13(4):624. https://doi.org/10.3390/v13040624 .

Barbieri ES, Sosa-Holt C, Ibañez LI, Baztarrica J, Garaicoechea L, Gay CL et al (2024) Anti-hemagglutinin monomeric nanobody provides prophylactic immunity against H1 subtype influenza A viruses. PLoS ONE 19(7):e0301664 PubMed PMC

Bessonne M (2023) Développement et caractérisation fonctionnelle de nanoligands spécifiques de l'ARN polymérase des virus Influenza: Université Paris-Saclay

Bessonne M, Morel J, Nevers Q, Da Costa B, Ballandras-Colas A, Chenavier F et al (2024) Antiviral activity of intracellular nanobodies targeting the influenza virus RNA-polymerase core. PLoS Pathog 20(6):e1011642 PubMed PMC

Bhattacharya M, Chatterjee S, Lee S-S, Chakraborty C (2023) Therapeutic applications of nanobodies against SARS-CoV-2 and other viral infections: current update. Int J Biol Macromol 229:70–80 PubMed

Bond CJ, Marsters JC Jr, Sidhu SS (2003) Contributions of CDR3 to VHH domain stability and the design of monobody scaffolds for naive antibody libraries. J Mol Biol 332(3):643–655 PubMed

Broadbent L, Parke HG, Ferguson LJ, Millar A, Shields MD, Detalle L et al (2020) Comparative therapeutic potential of ALX-0171 and palivizumab against respiratory syncytial virus clinical isolate infection of well-differentiated primary pediatric bronchial epithelial cell cultures. Antimicrob Agents Chemother 64(2).  https://doi.org/10.1128/aac.02034–19

Cao J, Zhong N, Wang G, Wang M, Zhang B, Fu B et al (2019) Nanobody-based sandwich reporter system for living cell sensing influenza A virus infection. Sci Rep 9(1):15899 PubMed PMC

Cardoso FM, Ibañez LI, Van den Hoecke S, De Baets S, Smet A, Roose K et al (2014) Single-domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge. J Virol 88(15):8278–8296 PubMed PMC

Centers for Disease Control and Prevention. 2024–2025 influenza burden data visualization [Internet]. Atlanta: CDC; 2025 [cited 2025 Jul 20]. Available from: https://www.cdc.gov/flu-burden/php/data-vis/2024-2025.html .

Chabrol E, Stojko J, Nicolas A, Botzanowski T, Fould B, Antoine M et al (2020) VHH characterization. Recombinant VHHs: production, characterization and affinity. Anal Biochem 589:113491

Chames P, Rothbauer U. Special Issue: Nanobody. Antibodies. 2020 Mar 6;9(1):6. https://doi.org/10.3390/antib9010006 .

Chen Y-Q, Wohlbold TJ, Zheng N-Y, Huang M, Huang Y, Neu KE et al (2018) Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 173(2):417–29.e10

Chen Z-S, Huang H-C, Wang X, Schön K, Jia Y, Lebens M et al (2025) Influenza A Virus H7 nanobody recognizes a conserved immunodominant epitope on hemagglutinin head and confers heterosubtypic protection. Nat Commun 16(1):432 PubMed PMC

Cong Y, Devoogdt N, Lambin P, Dubois LJ, Yaromina A (2024) Promising diagnostic and therapeutic approaches based on VHHs for cancer management. Cancers 16(2):371 PubMed PMC

Coughlan L, Palese P (2018) Overcoming barriers in the path to a universal influenza virus vaccine. Cell Host Microbe 24(1):18–24 PubMed

Crowe SR, Miller SC, Brown DM, Adams PS, Dutton RW, Harmsen AG et al (2006) Uneven distribution of MHC class II epitopes within the influenza virus. Vaccine 24(4):457–467 PubMed

Danke NA, Kwok WW (2003) HLA class II-restricted CD4+ T cell responses directed against influenza viral antigens postinfluenza vaccination. J Immunol 171(6):3163–3169 PubMed

De Marco A (2015) Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact 14:1–17

De Greve H, Fioravanti A (2024) Single domain antibodies from camelids in the treatment of microbial infections. Front Immunol 15:1334829 PubMed PMC

De Vlieger D, Ballegeer M, Rossey I, Schepens B, Saelens X (2018) Single-domain antibodies and their formatting to combat viral infections. Antibodies 8(1):1 PubMed PMC

Delmas B, Bessonne M, Morel J, Minard P. Inhibition of influenza virus replication by artificial proteins (αReps) targeting its RNA‑polymerase [preprint]. Jul 2024. Available from: https://www.researchgate.net/publication/268793052_Structure_of_influenza_A_polymerase_bound_to_the_viral_RNA_promoter

Del Rosario JMM (2020) Immunoprophylaxis of influenza using AAV vector delivery of cross-subtype neutralizing nanobodies: UCL (University College London)

Del Rosario JMM, Smith M, Zaki K, Risley P, Temperton N, Engelhardt OG et al (2020a) Protection from influenza by intramuscular gene vector delivery of a broadly neutralizing nanobody does not depend on antibody dependent cellular cytotoxicity. Front Immunol 11:627 PubMed PMC

Del Rosario J, Smith M, Zaki K, Risley P, Temperton N, Engelhardt O (2020b) Protection from influenza by intramuscular gene vector delivery of a broadly neutralizing nanobody does not depend on antibody dependent cellular cytotoxicity. Front Immunol 2020(11):1–15

Ekiert DC, Kashyap AK, Steel J, Rubrum A, Bhabha G, Khayat R et al (2012) Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489(7417):526–532 PubMed PMC

Elshina E, Te Velthuis AJ (2021) The influenza virus RNA polymerase as an innate immune agonist and antagonist. Cell Mol Life Sci 78(23):7237–7256 PubMed PMC

Fan H, Walker AP, Carrique L, Keown JR, Martin IS, Karia D et al (2019) Influenza A virus RNA polymerase structures provide insights into viral genome replication. Nature 573(7773):287 PubMed PMC

Fodor E, Te Velthuis AJ (2020) Structure and function of the influenza virus transcription and replication machinery. Cold Spring Harb Perspect Med 10(9):a038398 PubMed PMC

Gaiotto T, Hufton SE (2016) Cross-neutralising nanobodies bind to a conserved pocket in the hemagglutinin stem region identified using yeast display and deep mutational scanning. PLoS ONE 11(10):e0164296 PubMed PMC

Galloway SE, Liang B, Steinhauer DA (2018) Activation of the hemagglutinin of influenza viruses. Activation of viruses by host proteases 3–26

Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W et al (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368(20):1888–1897 PubMed

Georges S-L (2019) Therapeutic and diagnostic nanobodies and their application in veterinary medicine: Ghent University

Gómez-Sebastián S, Nuñez MC, Garaicoechea L, Alvarado C, Mozgovoj M, Lasa R et al (2012) Rotavirus A-specific single-domain antibodies produced in baculovirus-infected insect larvae are protective in vivo. BMC Biotechnol 12:1–11

Hanke L, Knockenhauer KE, Brewer RC, van Diest E, Schmidt FI, Schwartz TU et al (2016) The antiviral mechanism of an influenza A virus nucleoprotein-specific single-domain antibody fragment. MBio 7(6). https://doi.org/10.1128/mbio.01569–16

Harmsen MM, de Smit H. Serum immunoglobulin or albumin binding single‑domain antibodies that enable tailored half‑life extension of biologics in multiple animal species. Front Immunol. 2024;15:1346328. https://doi.org/10.3389/fimmu.2024.1346328 .

Helma J, Cardoso MC, Muyldermans S, Leonhardt H (2015) Nanobodies and recombinant binders in cell biology. J Cell Biol 209(5):633–644 PubMed PMC

Hu Y, Lu S, Song Z, Wang W, Hao P, Li J et al (2013) Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. The Lancet 381(9885):2273–2279

Hu S, Jiang S, Qi X, Bai R, Ye XY, Xie T (2022) Races of small molecule clinical trials for the treatment of COVID-19: an up-to-date comprehensive review. Drug Dev Res 83(1):16–54 PubMed

Huang X, Li W, Cao X, Zhang Q, Lin Y, Xu S et al (2024) Generation and characterization of a nanobody against the avian influenza virus H7 subtype. Int J Biol Macromol 267:131458 PubMed

Hufton SE, Risley P, Ball CR, Major D, Engelhardt OG, Poole S (2014) The breadth of cross sub-type neutralisation activity of a single domain antibody to influenza hemagglutinin can be increased by antibody valency. PLoS ONE 9(8):e103294 PubMed PMC

Ibanez LI, De Filette M, Hultberg A, Verrips T, Temperton N, Weiss RA et al (2011) Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. J Infect Dis 203(8):1063–1072 PubMed

Jalily PH, Duncan MC, Fedida D, Wang J, Tietjen I (2020) Put a cork in it: plugging the M2 viral ion channel to sink influenza. Antiviral Res 178:104780 PubMed PMC

Jiang W, Huang C, Muyldermans S, Jia L (2025) Small but mighty: nanobodies in the fight against infectious diseases. Biomolecules 15(5):610 PubMed PMC

Jiao C, Wang B, Chen P, Jiang Y, Liu J (2023) Analysis of the conserved protective epitopes of hemagglutinin on influenza A viruses. Front Immunol 14:1086297 PubMed PMC

Keown JR, Zhu Z, Carrique L, Fan H, Walker AP, Serna Martin I et al (2022) Mapping inhibitory sites on the RNA polymerase of the 1918 pandemic influenza virus using nanobodies. Nat Commun 13(1):251 PubMed PMC

Kitamura S, Lin T-H, Lee C-CD, Takamura A, Kadam RU, Zhang D et al (2024) Ultrapotent influenza hemagglutinin fusion inhibitors developed through SuFEx-enabled high-throughput medicinal chemistry. Proceedings of the National Academy of Sciences 121(22):e2310677121.

Konwarh R (2020) Nanobodies: prospects of expanding the gamut of neutralizing antibodies against the novel coronavirus, SARS-CoV-2. Front Immunol 11:1531 PubMed PMC

Kunz S, Durandy M, Seguin L, Feral CC (2023) NANOBODY® molecule, a giga medical tool in nanodimensions. Int J Mol Sci 24(17):13229 PubMed PMC

Landman A, Pascha M, de Haan X. Improving binding breadth and potency of NA-targeting nanobodies by multivalency. Final report. Utrecht: Virology Group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University; 2024.

Lazniewski M, Dawson WK, Szczepińska T, Plewczynski D (2018) The structural variability of the influenza A hemagglutinin receptor-binding site. Brief Funct Genomics 17(6):415–427 PubMed

Li X-F, Zhang Y-J, Yao Y-L, Chen M-X, Wang L-L, Wang M-D et al (2024) The association of post–embryo transfer SARS-CoV-2 infection with early pregnancy outcomes in in vitro fertilization: a prospective cohort study. Am J Obstet Gynecol 230(4):436. e1-e12

Liu X, Balligand T, Carpenet C, Ploegh HL (2023) An armed anti-immunoglobulin light chain nanobody protects mice against influenza A and B infections. Sci Immunol 8(84):eadg9459

Liu C, Lin H, Cao L, Wang K, Sui J (2022) Research progress on unique paratope structure, antigen binding modes, and systematic mutagenesis strategies of single-domain antibodies. Front Immunol 13:1059771 PubMed PMC

Luke TC, Kilbane EM, Jackson JL, Hoffman SL (2006) Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med 145(8):599–609 PubMed

Luo M. Influenza virus entry. In: Rossmann MG, Rao VB, editors. Viral Molecular Machines. Vol. 726. Berlin: Springer; 2012. p. 201–21. https://doi.org/10.1007/978‑1‑4614‑0980‑9_9

Mair CM, Ludwig K, Herrmann A, Sieben C (2014) Receptor binding and pH stability—how influenza A virus hemagglutinin affects host-specific virus infection. Biochim Biophys Acta Biomembr 1838(4):1153–68

Matthys A, Saelens X (2024) Promises and challenges of single-domain antibodies to control influenza. Antivir Res 105807

Mauskopf J, Klesse M, Lee S, Herrera-Taracena G (2013) The burden of influenza complications in different high-risk groups: a targeted literature review. J Med Econ 16(2):264–277 PubMed

McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL (2019) Influenza virus neuraminidase structure and functions. Front Microbiol 10:39 PubMed PMC

Meade P, Strohmeier S, Bermúdez-González MC, García-Sastre A, Palese P, Simon V et al (2023) Antigenic landscape analysis of individuals vaccinated with a universal influenza virus vaccine candidate reveals induction of cross-subtype immunity. J Virol 97(1):e01070-e1122 PubMed

Messer A, Butler DC (2020) Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis 134:104619 PubMed

Minatel VM, Prudencio CR, Barraviera B, Ferreira RS Jr (2024) Nanobodies: a promising approach to treatment of viral diseases. Front Immunol 14:1303353 PubMed PMC

Moliner-Morro A, McInerney GM, Hanke L (2022) Nanobodies in the limelight: multifunctional tools in the fight against viruses. J Gen Virol 103(5):001731

Moore KA, Ostrowsky JT, Kraigsley AM, Mehr AJ, Bresee JS, Friede MH et al (2021) A Research and Development (R&D) roadmap for influenza vaccines: looking toward the future. Vaccine 39(45):6573–6584 PubMed

Mtambo SE, Amoako DG, Somboro AM, Agoni C, Lawal MM, Gumede NS et al (2021) Influenza viruses: harnessing the crucial role of the M2 ion-channel and neuraminidase toward inhibitor design. Molecules 26(4):880 PubMed PMC

Mustafa MI, Mohammed A. Nanobodies as Spray and Aerosol Particles: A Breakthrough in Treating Respiratory Viral Infections [Preprint]. Preprints.org; 2023 Oct 18. https://doi.org/10.20944/preprints202310.1097.v1

Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82(1):775–797 PubMed

Muyldermans S (2021) A guide to: generation and design of nanobodies. FEBS J 288(7):2084–2102 PubMed

Nath Neerukonda S, Vassell R, Weiss CD (2020) Neutralizing antibodies targeting the conserved stem region of influenza hemagglutinin. Vaccines 8(3):382 PubMed PMC

Nayak DP, Baluda MA. Characterization of influenza virus ribonucleic acid duplex produced by annealing in vitro. J Virol. 1969 Sep;3(3):318–25. https://doi.org/10.1128/JVI.3.3.318-325.1969 .

Nguyen JVMH. Developing VHH-based tools to study Ebolavirus infection [dissertation]. Cambridge (MA): Massachusetts Institute of Technology; 2019

Nogales A, Aydillo T, Ávila-Pérez G, Escalera A, Chiem K, Cadagan R et al (2019) Functional characterization and direct comparison of influenza A, B, C, and D NS1 proteins in vitro and in vivo. Front Microbiol 10:2862 PubMed PMC

Olga P (2021) Development of neutralizing nanobodies to the hemagglutinin stem domain of influenza A viruses. Acta Naturae (aнглoязычнaя Вepcия) 13(4):33–41

Pan American Health Organization. . Epidemiological alert: Influenza – overview [PDF]. 2025. https://www.paho.org/sites/default/files/2025-01/2025-jan-17-phe-alert-flu-ovr-he-norenfinal.pdf (Accessed July 20, 2025).

Pedreáñez A, Mosquera-Sulbarán J, Muñóz N, Tene D, Robalino J (2021) Nanoantibodies: small molecules, big possibilities. Biotechnologia 102(3):321 PubMed PMC

Peng J, Ge C, Shang K, Liu S, Jiang Y (2024) Comprehensive profiling of the chemical constituents in Dayuanyin decoction using UPLC-QTOF-MS combined with molecular networking. Pharm Biol 62(1):480–498 PubMed PMC

Peteranderl C, Herold S, Schmoldt C (ed) (2016) Human influenza virus infections. Seminars in respiratory and critical care medicine. Thieme Medical Publishers

Pillay TS, Muyldermans S (2021) Application of single-domain antibodies (“nanobodies”) to laboratory diagnosis. Ann Lab Med 41(6):549–558 PubMed PMC

Salvador J-P, Vilaplana L, Marco M-P (2019) Nanobody: outstanding features for diagnostic and therapeutic applications. Anal Bioanal Chem 411:1703–1713 PubMed

Samson M, Pizzorno A, Abed Y, Boivin G (2013) Influenza virus resistance to neuraminidase inhibitors. Antiviral Res 98(2):174–185 PubMed

Sangesland M, Lingwood D (2021) Antibody focusing to conserved sites of vulnerability: the immunological pathways for ‘universal’ influenza vaccines. Vaccines 9(2):125 PubMed PMC

Schmidt FI, Hanke L, Morin B, Brewer R, Brusic V, Whelan SP et al (2016) Phenotypic lentivirus screens to identify functional single domain antibodies. Nat Microbiol 1(8):1–10

Schmitt AP, Lamb RA (2005) Influenza virus assembly and budding at the viral budozone. Adv Virus Res 64:383–416 PubMed

Schmolke M, García-Sastre A (2010) Evasion of innate and adaptive immune responses by influenza A virus. Cell Microbiol 12(7):873–880 PubMed PMC

Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe N et al (2020) An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 370(6523):1473–1479 PubMed PMC

Shafiuddin M, Boon AC (2019) RNA sequence features are at the core of influenza a virus genome packaging. J Mol Biol 431(21):4217–4228 PubMed PMC

Silva-Pilipich N, Smerdou C, Vanrell L (2021) A small virus to deliver small antibodies: new targeted therapies based on AAV delivery of nanobodies. Microorganisms 9(9):1956 PubMed PMC

Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69(1):531–569 PubMed

Sroga P, Safronetz D, Stein DR (2020) Nanobodies: a new approach for the diagnosis and treatment of viral infectious diseases. Futur Virol 15(3):195–205

Steeland S, Vandenbroucke RE, Libert C (2016) Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discovery Today 21(7):1076–1113 PubMed

Sun X, Ling Z, Yang Z, Sun B (2022) Broad neutralizing antibody-based strategies to tackle influenza. Curr Opin Virol 53:101207 PubMed

Sun W, Wu Y, Ying T (2024) Progress in novel delivery technologies to improve efficacy of therapeutic antibodies. Antivir Res 105867

Tan HX, Jegaskanda S, Juno JA, Esterbauer R, Wong J, Kelly HG et al (2019) Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA stem. J Clin Invest 129(2):850–862 PubMed PMC

Te Velthuis AJ, Grimes JM, Fodor E (2021) Structural insights into RNA polymerases of negative-sense RNA viruses. Nat Rev Microbiol 19(5):303–318

Terryn S, Francart A, Rommelaere H, Stortelers C, Van Gucht S (2016) Post-exposure treatment with anti-rabies VHH and vaccine significantly improves protection of mice from lethal rabies infection. PLoS Negl Trop Dis 10(8):e0004902 PubMed PMC

Tillib SV, Ivanova TI, Vasilev LA, Rutovskaya MV, Saakyan SA, Gribova IY et al (2013) Formatted single-domain antibodies can protect mice against infection with influenza virus (H5N2). Antiviral Res 97(3):245–254 PubMed

Treanor JJ, Tierney EL, Zebedee SL, Lamb RA, Murphy BR (1990) Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J Virol 64(3):1375–1377 PubMed PMC

Tscherne DM, Garcia-Sastre A (2011) Virulence determinants of pandemic influenza viruses. J Clin Investig 121(1):6–13 PubMed PMC

Tung Yep AD (2023) Increasing the breadth and potency of a neutralising single domain antibody against the influenza haemagglutinin stem: UCL (University College London)

Tung Yep A, Takeuchi Y, Engelhardt OG, Hufton SE (2021) Broad reactivity single domain antibodies against influenza virus and their applications to vaccine potency testing and immunotherapy. Biomolecules 11(3):407 PubMed PMC

Tutykhina IL, Sedova ES, Gribova IY, Ivanova TI, Vasilev LA, Rutovskaya MV et al (2013) Passive immunization with a recombinant adenovirus expressing an HA (H5)-specific single-domain antibody protects mice from lethal influenza infection. Antiviral Res 97(3):318–328 PubMed

Van Heeke G, Allosery K, De Brabandere V, De Smedt T, Detalle L, de Fougerolles A (2017) Nanobodies® as inhaled biotherapeutics for lung diseases. Pharmacol Ther 169:47–56 PubMed

Vanlandschoot P, Stortelers C, Beirnaert E, Ibañez LI, Schepens B, Depla E et al (2011) Nanobodies®: new ammunition to battle viruses. Antiviral Res 92(3):389–407 PubMed

Venkataraman S, Prasad BV, Selvarajan R (2018) RNA dependent RNA polymerases: insights from structure, function and evolution. Viruses 10(2):76 PubMed PMC

Verma V, Sinha N, Raja A (ed) (2025) Nanoscale warriors against viral invaders: a comprehensive review of Nanobodies as potential antiviral therapeutics. mAbs. Taylor & Francis

Wang M, Wei L, Xiang H, Ren B, Liu X, Jiang L et al (2022) A megadiverse naive library derived from numerous camelids for efficient and rapid development of vhh antibodies. Anal Biochem 657:114871 PubMed

Wang W, Wang J, Hu Z, Yan X, Gao Q, Li X et al (2025) Advancing aggregation-induced emission-derived biomaterials in viral, tuberculosis, and fungal infectious diseases. Aggregate 6(3):e715

Watanabe K, Ishikawa T, Otaki H, Mizuta S, Hamada T, Nakagaki T et al (2017) Structure-based drug discovery for combating influenza virus by targeting the PA–PB1 interaction. Sci Rep 7(1):9500 PubMed PMC

Wei G, Meng W, Guo H, Pan W, Liu J, Peng T et al (2011) Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein. PLoS ONE 6(12):e28309 PubMed PMC

Weiss RA, Verrips CT (2019) Nanobodies That Neutralize HIV Vaccines 7(3):77 PubMed

World Health Organization. Influenza Update N° 525 [Internet]. 2025 May 7 [cited 2025 Jul 20]. Available from: https://www.who.int/publications/m/item/influenza-update-n--525 .

Williams JA, Gui L, Hom N, Mileant A, Lee KK (2018) Dissection of epitope-specific mechanisms of neutralization of influenza virus by intact IgG and Fab fragments. J Virol 92(6):10.1128/jvi. 02006-17

Wolff T, Veit M. Influenza B, C and D viruses (Orthomyxoviridae). In: Bamford DH, Zuckerman M, editors. Encyclopedia of Virology. 4th ed. Oxford: Elsevier; 2021. p. 561–574

Wu NC, Wilson IA (2020) Influenza hemagglutinin structures and antibody recognition. Cold Spring Harb Perspect Med 10(8):a038778 PubMed PMC

Wu Y, Jiang S, Ying T (2017) Single-domain antibodies as therapeutics against human viral diseases. Front Immunol 8:1802 PubMed PMC

Yin D, Zhong Y, Ling S, Lu S, Wang X, Jiang Z et al (2024) Dendritic-cell-targeting virus-like particles as potent mRNA vaccine carriers. Nat Biomed Eng 1–16

Zare H, Aghamollaei H, Hosseindokht M, Heiat M, Razei A, Bakherad H (2021) Nanobodies, the potent agents to detect and treat the Coronavirus infections: A systematic review. Mol Cell Probes 55:101692 PubMed

Zhao L, Liao M, Li L, Chen L, Zhang T, Li R (2024) Cadmium activates the innate immune system through the AIM2 inflammasome. Chem Biol Interact 399:111122 PubMed

Zhou B, Zhong N, Guan Y (2007) Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med 357(14):1450–1451 PubMed

Zhou Y, Li L, Yu Z, Gu X, Pan R, Li Q et al (2022a) Dermatophagoides pteronyssinus allergen Der p 22: cloning, expression, IgE-binding in asthmatic children, and immunogenicity. Pediatr Allergy Immunol 33(8):e13835 PubMed

Zhou Y, Li Q, Pan R, Wang Q, Zhu X, Yuan C et al (2022b) Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy 77(2):469–482 PubMed

Zhu L, Huang B, Wang X, Ni F, Ao M, Wang R et al (2024) Highly potent and broadly neutralizing anti-CD4 trimeric nanobodies inhibit HIV-1 infection by inducing CD4 conformational alteration. Nat Commun 15(1):6961 PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...