Nanobodies: a new frontier in influenza virus neutralization
Status Publisher Language English Country United States Media print-electronic
Document type Journal Article, Review
PubMed
40699443
DOI
10.1007/s12223-025-01303-2
PII: 10.1007/s12223-025-01303-2
Knihovny.cz E-resources
- Keywords
- Influenza virus, Nanobody, Neutralization, Single-domain antibody,
- Publication type
- Journal Article MeSH
- Review MeSH
Recurrent epidemics and pandemics caused by seasonal human influenza viruses result in substantial morbidity and are a significant public health burden worldwide annually. Antiviral drugs are used to treat influenza infections but have several limitations.. Therefore, monoclonal antibody therapy is an exciting and promising approach. Nanobodies, also known as single-domain antibodies, are a new class derived from heavy-chain-only antibodies found in camelids like alpacas, llamas, and camels. These antibodies neutralize influenza viruses by targeting various proteins through multiple mechanisms. For example, they can target the hemagglutinin protein to prevent its functions. By focusing on conserved epitopes, they can neutralize a variety of influenza subtypes, including seasonal flu strains and possible pandemic variants. Additionally, these antibodies can neutralize free-floating viruses in the extracellular environment, preventing them from infecting cells. They can reduce the viral load and limit the spread of the infection. Using nanobodies to neutralize influenza viruses provides numerous advantages compared to conventional antibodies. Thanks to their unique properties, nanobodies play a crucial role in fighting influenza, improving disease management, and strengthening public health responses. In this review, we summarize the role of nanobodies in influenza virus neutralization.
College of Pharmacy the Islamic University Najaf Iraq
College of Pharmacy the Islamic University of Al Diwaniyah Al Diwaniyah Iraq
Department of Allied Science Graphic Era Hill University Dehradun Uttarakhand 248002 India
Department of Chemistry and Biochemistry School of Sciences JAIN Bangalore Karnataka India
Department of Infectious Disease Zanjan University of Medical Sciences Zanjan Iran
Department of Pharmacology and Toxicology College of Pharmacy Al Farahidi University Baghdad Iraq
Faculty of Pharmacy Middle East University Amman 11831 Jordan
Graphic Era Deemed to Be University Dehradun Uttarakhand India
See more in PubMed
Aartse A, Mortier D, Mooij P, Hofman S, van Haaren MM, Corcoran M et al (2022) Primary antibody response after influenza virus infection is first dominated by low-mutated HA-stem antibodies followed by higher-mutated HA-head antibodies. Front Immunol 13:1026951 PubMed PMC
Alexander E, Leong KW (2024) Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. Journal of Nanobiotechnology 22(1):661 PubMed PMC
Ashour J, Schmidt FI, Hanke L, Cragnolini J, Cavallari M, Altenburg A et al (2015) Intracellular expression of camelid single-domain antibodies specific for influenza virus nucleoprotein uncovers distinct features of its nuclear localization. J Virol 89(5):2792–2800 PubMed
Bai Y, Jones JC, Wong S‑S, Zanin M. Antivirals targeting the surface glycoproteins of influenza virus: mechanisms of action and resistance. Viruses. 2021 Apr 6;13(4):624. https://doi.org/10.3390/v13040624 .
Barbieri ES, Sosa-Holt C, Ibañez LI, Baztarrica J, Garaicoechea L, Gay CL et al (2024) Anti-hemagglutinin monomeric nanobody provides prophylactic immunity against H1 subtype influenza A viruses. PLoS ONE 19(7):e0301664 PubMed PMC
Bessonne M (2023) Développement et caractérisation fonctionnelle de nanoligands spécifiques de l'ARN polymérase des virus Influenza: Université Paris-Saclay
Bessonne M, Morel J, Nevers Q, Da Costa B, Ballandras-Colas A, Chenavier F et al (2024) Antiviral activity of intracellular nanobodies targeting the influenza virus RNA-polymerase core. PLoS Pathog 20(6):e1011642 PubMed PMC
Bhattacharya M, Chatterjee S, Lee S-S, Chakraborty C (2023) Therapeutic applications of nanobodies against SARS-CoV-2 and other viral infections: current update. Int J Biol Macromol 229:70–80 PubMed
Bond CJ, Marsters JC Jr, Sidhu SS (2003) Contributions of CDR3 to VHH domain stability and the design of monobody scaffolds for naive antibody libraries. J Mol Biol 332(3):643–655 PubMed
Broadbent L, Parke HG, Ferguson LJ, Millar A, Shields MD, Detalle L et al (2020) Comparative therapeutic potential of ALX-0171 and palivizumab against respiratory syncytial virus clinical isolate infection of well-differentiated primary pediatric bronchial epithelial cell cultures. Antimicrob Agents Chemother 64(2). https://doi.org/10.1128/aac.02034–19
Cao J, Zhong N, Wang G, Wang M, Zhang B, Fu B et al (2019) Nanobody-based sandwich reporter system for living cell sensing influenza A virus infection. Sci Rep 9(1):15899 PubMed PMC
Cardoso FM, Ibañez LI, Van den Hoecke S, De Baets S, Smet A, Roose K et al (2014) Single-domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge. J Virol 88(15):8278–8296 PubMed PMC
Centers for Disease Control and Prevention. 2024–2025 influenza burden data visualization [Internet]. Atlanta: CDC; 2025 [cited 2025 Jul 20]. Available from: https://www.cdc.gov/flu-burden/php/data-vis/2024-2025.html .
Chabrol E, Stojko J, Nicolas A, Botzanowski T, Fould B, Antoine M et al (2020) VHH characterization. Recombinant VHHs: production, characterization and affinity. Anal Biochem 589:113491
Chames P, Rothbauer U. Special Issue: Nanobody. Antibodies. 2020 Mar 6;9(1):6. https://doi.org/10.3390/antib9010006 .
Chen Y-Q, Wohlbold TJ, Zheng N-Y, Huang M, Huang Y, Neu KE et al (2018) Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 173(2):417–29.e10
Chen Z-S, Huang H-C, Wang X, Schön K, Jia Y, Lebens M et al (2025) Influenza A Virus H7 nanobody recognizes a conserved immunodominant epitope on hemagglutinin head and confers heterosubtypic protection. Nat Commun 16(1):432 PubMed PMC
Cong Y, Devoogdt N, Lambin P, Dubois LJ, Yaromina A (2024) Promising diagnostic and therapeutic approaches based on VHHs for cancer management. Cancers 16(2):371 PubMed PMC
Coughlan L, Palese P (2018) Overcoming barriers in the path to a universal influenza virus vaccine. Cell Host Microbe 24(1):18–24 PubMed
Crowe SR, Miller SC, Brown DM, Adams PS, Dutton RW, Harmsen AG et al (2006) Uneven distribution of MHC class II epitopes within the influenza virus. Vaccine 24(4):457–467 PubMed
Danke NA, Kwok WW (2003) HLA class II-restricted CD4+ T cell responses directed against influenza viral antigens postinfluenza vaccination. J Immunol 171(6):3163–3169 PubMed
De Marco A (2015) Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact 14:1–17
De Greve H, Fioravanti A (2024) Single domain antibodies from camelids in the treatment of microbial infections. Front Immunol 15:1334829 PubMed PMC
De Vlieger D, Ballegeer M, Rossey I, Schepens B, Saelens X (2018) Single-domain antibodies and their formatting to combat viral infections. Antibodies 8(1):1 PubMed PMC
Delmas B, Bessonne M, Morel J, Minard P. Inhibition of influenza virus replication by artificial proteins (αReps) targeting its RNA‑polymerase [preprint]. Jul 2024. Available from: https://www.researchgate.net/publication/268793052_Structure_of_influenza_A_polymerase_bound_to_the_viral_RNA_promoter
Del Rosario JMM (2020) Immunoprophylaxis of influenza using AAV vector delivery of cross-subtype neutralizing nanobodies: UCL (University College London)
Del Rosario JMM, Smith M, Zaki K, Risley P, Temperton N, Engelhardt OG et al (2020a) Protection from influenza by intramuscular gene vector delivery of a broadly neutralizing nanobody does not depend on antibody dependent cellular cytotoxicity. Front Immunol 11:627 PubMed PMC
Del Rosario J, Smith M, Zaki K, Risley P, Temperton N, Engelhardt O (2020b) Protection from influenza by intramuscular gene vector delivery of a broadly neutralizing nanobody does not depend on antibody dependent cellular cytotoxicity. Front Immunol 2020(11):1–15
Ekiert DC, Kashyap AK, Steel J, Rubrum A, Bhabha G, Khayat R et al (2012) Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489(7417):526–532 PubMed PMC
Elshina E, Te Velthuis AJ (2021) The influenza virus RNA polymerase as an innate immune agonist and antagonist. Cell Mol Life Sci 78(23):7237–7256 PubMed PMC
Fan H, Walker AP, Carrique L, Keown JR, Martin IS, Karia D et al (2019) Influenza A virus RNA polymerase structures provide insights into viral genome replication. Nature 573(7773):287 PubMed PMC
Fodor E, Te Velthuis AJ (2020) Structure and function of the influenza virus transcription and replication machinery. Cold Spring Harb Perspect Med 10(9):a038398 PubMed PMC
Gaiotto T, Hufton SE (2016) Cross-neutralising nanobodies bind to a conserved pocket in the hemagglutinin stem region identified using yeast display and deep mutational scanning. PLoS ONE 11(10):e0164296 PubMed PMC
Galloway SE, Liang B, Steinhauer DA (2018) Activation of the hemagglutinin of influenza viruses. Activation of viruses by host proteases 3–26
Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W et al (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368(20):1888–1897 PubMed
Georges S-L (2019) Therapeutic and diagnostic nanobodies and their application in veterinary medicine: Ghent University
Gómez-Sebastián S, Nuñez MC, Garaicoechea L, Alvarado C, Mozgovoj M, Lasa R et al (2012) Rotavirus A-specific single-domain antibodies produced in baculovirus-infected insect larvae are protective in vivo. BMC Biotechnol 12:1–11
Hanke L, Knockenhauer KE, Brewer RC, van Diest E, Schmidt FI, Schwartz TU et al (2016) The antiviral mechanism of an influenza A virus nucleoprotein-specific single-domain antibody fragment. MBio 7(6). https://doi.org/10.1128/mbio.01569–16
Harmsen MM, de Smit H. Serum immunoglobulin or albumin binding single‑domain antibodies that enable tailored half‑life extension of biologics in multiple animal species. Front Immunol. 2024;15:1346328. https://doi.org/10.3389/fimmu.2024.1346328 .
Helma J, Cardoso MC, Muyldermans S, Leonhardt H (2015) Nanobodies and recombinant binders in cell biology. J Cell Biol 209(5):633–644 PubMed PMC
Hu Y, Lu S, Song Z, Wang W, Hao P, Li J et al (2013) Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. The Lancet 381(9885):2273–2279
Hu S, Jiang S, Qi X, Bai R, Ye XY, Xie T (2022) Races of small molecule clinical trials for the treatment of COVID-19: an up-to-date comprehensive review. Drug Dev Res 83(1):16–54 PubMed
Huang X, Li W, Cao X, Zhang Q, Lin Y, Xu S et al (2024) Generation and characterization of a nanobody against the avian influenza virus H7 subtype. Int J Biol Macromol 267:131458 PubMed
Hufton SE, Risley P, Ball CR, Major D, Engelhardt OG, Poole S (2014) The breadth of cross sub-type neutralisation activity of a single domain antibody to influenza hemagglutinin can be increased by antibody valency. PLoS ONE 9(8):e103294 PubMed PMC
Ibanez LI, De Filette M, Hultberg A, Verrips T, Temperton N, Weiss RA et al (2011) Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. J Infect Dis 203(8):1063–1072 PubMed
Jalily PH, Duncan MC, Fedida D, Wang J, Tietjen I (2020) Put a cork in it: plugging the M2 viral ion channel to sink influenza. Antiviral Res 178:104780 PubMed PMC
Jiang W, Huang C, Muyldermans S, Jia L (2025) Small but mighty: nanobodies in the fight against infectious diseases. Biomolecules 15(5):610 PubMed PMC
Jiao C, Wang B, Chen P, Jiang Y, Liu J (2023) Analysis of the conserved protective epitopes of hemagglutinin on influenza A viruses. Front Immunol 14:1086297 PubMed PMC
Keown JR, Zhu Z, Carrique L, Fan H, Walker AP, Serna Martin I et al (2022) Mapping inhibitory sites on the RNA polymerase of the 1918 pandemic influenza virus using nanobodies. Nat Commun 13(1):251 PubMed PMC
Kitamura S, Lin T-H, Lee C-CD, Takamura A, Kadam RU, Zhang D et al (2024) Ultrapotent influenza hemagglutinin fusion inhibitors developed through SuFEx-enabled high-throughput medicinal chemistry. Proceedings of the National Academy of Sciences 121(22):e2310677121.
Konwarh R (2020) Nanobodies: prospects of expanding the gamut of neutralizing antibodies against the novel coronavirus, SARS-CoV-2. Front Immunol 11:1531 PubMed PMC
Kunz S, Durandy M, Seguin L, Feral CC (2023) NANOBODY® molecule, a giga medical tool in nanodimensions. Int J Mol Sci 24(17):13229 PubMed PMC
Landman A, Pascha M, de Haan X. Improving binding breadth and potency of NA-targeting nanobodies by multivalency. Final report. Utrecht: Virology Group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University; 2024.
Lazniewski M, Dawson WK, Szczepińska T, Plewczynski D (2018) The structural variability of the influenza A hemagglutinin receptor-binding site. Brief Funct Genomics 17(6):415–427 PubMed
Li X-F, Zhang Y-J, Yao Y-L, Chen M-X, Wang L-L, Wang M-D et al (2024) The association of post–embryo transfer SARS-CoV-2 infection with early pregnancy outcomes in in vitro fertilization: a prospective cohort study. Am J Obstet Gynecol 230(4):436. e1-e12
Liu X, Balligand T, Carpenet C, Ploegh HL (2023) An armed anti-immunoglobulin light chain nanobody protects mice against influenza A and B infections. Sci Immunol 8(84):eadg9459
Liu C, Lin H, Cao L, Wang K, Sui J (2022) Research progress on unique paratope structure, antigen binding modes, and systematic mutagenesis strategies of single-domain antibodies. Front Immunol 13:1059771 PubMed PMC
Luke TC, Kilbane EM, Jackson JL, Hoffman SL (2006) Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med 145(8):599–609 PubMed
Luo M. Influenza virus entry. In: Rossmann MG, Rao VB, editors. Viral Molecular Machines. Vol. 726. Berlin: Springer; 2012. p. 201–21. https://doi.org/10.1007/978‑1‑4614‑0980‑9_9
Mair CM, Ludwig K, Herrmann A, Sieben C (2014) Receptor binding and pH stability—how influenza A virus hemagglutinin affects host-specific virus infection. Biochim Biophys Acta Biomembr 1838(4):1153–68
Matthys A, Saelens X (2024) Promises and challenges of single-domain antibodies to control influenza. Antivir Res 105807
Mauskopf J, Klesse M, Lee S, Herrera-Taracena G (2013) The burden of influenza complications in different high-risk groups: a targeted literature review. J Med Econ 16(2):264–277 PubMed
McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL (2019) Influenza virus neuraminidase structure and functions. Front Microbiol 10:39 PubMed PMC
Meade P, Strohmeier S, Bermúdez-González MC, García-Sastre A, Palese P, Simon V et al (2023) Antigenic landscape analysis of individuals vaccinated with a universal influenza virus vaccine candidate reveals induction of cross-subtype immunity. J Virol 97(1):e01070-e1122 PubMed
Messer A, Butler DC (2020) Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis 134:104619 PubMed
Minatel VM, Prudencio CR, Barraviera B, Ferreira RS Jr (2024) Nanobodies: a promising approach to treatment of viral diseases. Front Immunol 14:1303353 PubMed PMC
Moliner-Morro A, McInerney GM, Hanke L (2022) Nanobodies in the limelight: multifunctional tools in the fight against viruses. J Gen Virol 103(5):001731
Moore KA, Ostrowsky JT, Kraigsley AM, Mehr AJ, Bresee JS, Friede MH et al (2021) A Research and Development (R&D) roadmap for influenza vaccines: looking toward the future. Vaccine 39(45):6573–6584 PubMed
Mtambo SE, Amoako DG, Somboro AM, Agoni C, Lawal MM, Gumede NS et al (2021) Influenza viruses: harnessing the crucial role of the M2 ion-channel and neuraminidase toward inhibitor design. Molecules 26(4):880 PubMed PMC
Mustafa MI, Mohammed A. Nanobodies as Spray and Aerosol Particles: A Breakthrough in Treating Respiratory Viral Infections [Preprint]. Preprints.org; 2023 Oct 18. https://doi.org/10.20944/preprints202310.1097.v1
Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82(1):775–797 PubMed
Muyldermans S (2021) A guide to: generation and design of nanobodies. FEBS J 288(7):2084–2102 PubMed
Nath Neerukonda S, Vassell R, Weiss CD (2020) Neutralizing antibodies targeting the conserved stem region of influenza hemagglutinin. Vaccines 8(3):382 PubMed PMC
Nayak DP, Baluda MA. Characterization of influenza virus ribonucleic acid duplex produced by annealing in vitro. J Virol. 1969 Sep;3(3):318–25. https://doi.org/10.1128/JVI.3.3.318-325.1969 .
Nguyen JVMH. Developing VHH-based tools to study Ebolavirus infection [dissertation]. Cambridge (MA): Massachusetts Institute of Technology; 2019
Nogales A, Aydillo T, Ávila-Pérez G, Escalera A, Chiem K, Cadagan R et al (2019) Functional characterization and direct comparison of influenza A, B, C, and D NS1 proteins in vitro and in vivo. Front Microbiol 10:2862 PubMed PMC
Olga P (2021) Development of neutralizing nanobodies to the hemagglutinin stem domain of influenza A viruses. Acta Naturae (aнглoязычнaя Вepcия) 13(4):33–41
Pan American Health Organization. . Epidemiological alert: Influenza – overview [PDF]. 2025. https://www.paho.org/sites/default/files/2025-01/2025-jan-17-phe-alert-flu-ovr-he-norenfinal.pdf (Accessed July 20, 2025).
Pedreáñez A, Mosquera-Sulbarán J, Muñóz N, Tene D, Robalino J (2021) Nanoantibodies: small molecules, big possibilities. Biotechnologia 102(3):321 PubMed PMC
Peng J, Ge C, Shang K, Liu S, Jiang Y (2024) Comprehensive profiling of the chemical constituents in Dayuanyin decoction using UPLC-QTOF-MS combined with molecular networking. Pharm Biol 62(1):480–498 PubMed PMC
Peteranderl C, Herold S, Schmoldt C (ed) (2016) Human influenza virus infections. Seminars in respiratory and critical care medicine. Thieme Medical Publishers
Pillay TS, Muyldermans S (2021) Application of single-domain antibodies (“nanobodies”) to laboratory diagnosis. Ann Lab Med 41(6):549–558 PubMed PMC
Salvador J-P, Vilaplana L, Marco M-P (2019) Nanobody: outstanding features for diagnostic and therapeutic applications. Anal Bioanal Chem 411:1703–1713 PubMed
Samson M, Pizzorno A, Abed Y, Boivin G (2013) Influenza virus resistance to neuraminidase inhibitors. Antiviral Res 98(2):174–185 PubMed
Sangesland M, Lingwood D (2021) Antibody focusing to conserved sites of vulnerability: the immunological pathways for ‘universal’ influenza vaccines. Vaccines 9(2):125 PubMed PMC
Schmidt FI, Hanke L, Morin B, Brewer R, Brusic V, Whelan SP et al (2016) Phenotypic lentivirus screens to identify functional single domain antibodies. Nat Microbiol 1(8):1–10
Schmitt AP, Lamb RA (2005) Influenza virus assembly and budding at the viral budozone. Adv Virus Res 64:383–416 PubMed
Schmolke M, García-Sastre A (2010) Evasion of innate and adaptive immune responses by influenza A virus. Cell Microbiol 12(7):873–880 PubMed PMC
Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe N et al (2020) An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 370(6523):1473–1479 PubMed PMC
Shafiuddin M, Boon AC (2019) RNA sequence features are at the core of influenza a virus genome packaging. J Mol Biol 431(21):4217–4228 PubMed PMC
Silva-Pilipich N, Smerdou C, Vanrell L (2021) A small virus to deliver small antibodies: new targeted therapies based on AAV delivery of nanobodies. Microorganisms 9(9):1956 PubMed PMC
Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69(1):531–569 PubMed
Sroga P, Safronetz D, Stein DR (2020) Nanobodies: a new approach for the diagnosis and treatment of viral infectious diseases. Futur Virol 15(3):195–205
Steeland S, Vandenbroucke RE, Libert C (2016) Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discovery Today 21(7):1076–1113 PubMed
Sun X, Ling Z, Yang Z, Sun B (2022) Broad neutralizing antibody-based strategies to tackle influenza. Curr Opin Virol 53:101207 PubMed
Sun W, Wu Y, Ying T (2024) Progress in novel delivery technologies to improve efficacy of therapeutic antibodies. Antivir Res 105867
Tan HX, Jegaskanda S, Juno JA, Esterbauer R, Wong J, Kelly HG et al (2019) Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA stem. J Clin Invest 129(2):850–862 PubMed PMC
Te Velthuis AJ, Grimes JM, Fodor E (2021) Structural insights into RNA polymerases of negative-sense RNA viruses. Nat Rev Microbiol 19(5):303–318
Terryn S, Francart A, Rommelaere H, Stortelers C, Van Gucht S (2016) Post-exposure treatment with anti-rabies VHH and vaccine significantly improves protection of mice from lethal rabies infection. PLoS Negl Trop Dis 10(8):e0004902 PubMed PMC
Tillib SV, Ivanova TI, Vasilev LA, Rutovskaya MV, Saakyan SA, Gribova IY et al (2013) Formatted single-domain antibodies can protect mice against infection with influenza virus (H5N2). Antiviral Res 97(3):245–254 PubMed
Treanor JJ, Tierney EL, Zebedee SL, Lamb RA, Murphy BR (1990) Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J Virol 64(3):1375–1377 PubMed PMC
Tscherne DM, Garcia-Sastre A (2011) Virulence determinants of pandemic influenza viruses. J Clin Investig 121(1):6–13 PubMed PMC
Tung Yep AD (2023) Increasing the breadth and potency of a neutralising single domain antibody against the influenza haemagglutinin stem: UCL (University College London)
Tung Yep A, Takeuchi Y, Engelhardt OG, Hufton SE (2021) Broad reactivity single domain antibodies against influenza virus and their applications to vaccine potency testing and immunotherapy. Biomolecules 11(3):407 PubMed PMC
Tutykhina IL, Sedova ES, Gribova IY, Ivanova TI, Vasilev LA, Rutovskaya MV et al (2013) Passive immunization with a recombinant adenovirus expressing an HA (H5)-specific single-domain antibody protects mice from lethal influenza infection. Antiviral Res 97(3):318–328 PubMed
Van Heeke G, Allosery K, De Brabandere V, De Smedt T, Detalle L, de Fougerolles A (2017) Nanobodies® as inhaled biotherapeutics for lung diseases. Pharmacol Ther 169:47–56 PubMed
Vanlandschoot P, Stortelers C, Beirnaert E, Ibañez LI, Schepens B, Depla E et al (2011) Nanobodies®: new ammunition to battle viruses. Antiviral Res 92(3):389–407 PubMed
Venkataraman S, Prasad BV, Selvarajan R (2018) RNA dependent RNA polymerases: insights from structure, function and evolution. Viruses 10(2):76 PubMed PMC
Verma V, Sinha N, Raja A (ed) (2025) Nanoscale warriors against viral invaders: a comprehensive review of Nanobodies as potential antiviral therapeutics. mAbs. Taylor & Francis
Wang M, Wei L, Xiang H, Ren B, Liu X, Jiang L et al (2022) A megadiverse naive library derived from numerous camelids for efficient and rapid development of vhh antibodies. Anal Biochem 657:114871 PubMed
Wang W, Wang J, Hu Z, Yan X, Gao Q, Li X et al (2025) Advancing aggregation-induced emission-derived biomaterials in viral, tuberculosis, and fungal infectious diseases. Aggregate 6(3):e715
Watanabe K, Ishikawa T, Otaki H, Mizuta S, Hamada T, Nakagaki T et al (2017) Structure-based drug discovery for combating influenza virus by targeting the PA–PB1 interaction. Sci Rep 7(1):9500 PubMed PMC
Wei G, Meng W, Guo H, Pan W, Liu J, Peng T et al (2011) Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein. PLoS ONE 6(12):e28309 PubMed PMC
Weiss RA, Verrips CT (2019) Nanobodies That Neutralize HIV Vaccines 7(3):77 PubMed
World Health Organization. Influenza Update N° 525 [Internet]. 2025 May 7 [cited 2025 Jul 20]. Available from: https://www.who.int/publications/m/item/influenza-update-n--525 .
Williams JA, Gui L, Hom N, Mileant A, Lee KK (2018) Dissection of epitope-specific mechanisms of neutralization of influenza virus by intact IgG and Fab fragments. J Virol 92(6):10.1128/jvi. 02006-17
Wolff T, Veit M. Influenza B, C and D viruses (Orthomyxoviridae). In: Bamford DH, Zuckerman M, editors. Encyclopedia of Virology. 4th ed. Oxford: Elsevier; 2021. p. 561–574
Wu NC, Wilson IA (2020) Influenza hemagglutinin structures and antibody recognition. Cold Spring Harb Perspect Med 10(8):a038778 PubMed PMC
Wu Y, Jiang S, Ying T (2017) Single-domain antibodies as therapeutics against human viral diseases. Front Immunol 8:1802 PubMed PMC
Yin D, Zhong Y, Ling S, Lu S, Wang X, Jiang Z et al (2024) Dendritic-cell-targeting virus-like particles as potent mRNA vaccine carriers. Nat Biomed Eng 1–16
Zare H, Aghamollaei H, Hosseindokht M, Heiat M, Razei A, Bakherad H (2021) Nanobodies, the potent agents to detect and treat the Coronavirus infections: A systematic review. Mol Cell Probes 55:101692 PubMed
Zhao L, Liao M, Li L, Chen L, Zhang T, Li R (2024) Cadmium activates the innate immune system through the AIM2 inflammasome. Chem Biol Interact 399:111122 PubMed
Zhou B, Zhong N, Guan Y (2007) Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med 357(14):1450–1451 PubMed
Zhou Y, Li L, Yu Z, Gu X, Pan R, Li Q et al (2022a) Dermatophagoides pteronyssinus allergen Der p 22: cloning, expression, IgE-binding in asthmatic children, and immunogenicity. Pediatr Allergy Immunol 33(8):e13835 PubMed
Zhou Y, Li Q, Pan R, Wang Q, Zhu X, Yuan C et al (2022b) Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy 77(2):469–482 PubMed
Zhu L, Huang B, Wang X, Ni F, Ao M, Wang R et al (2024) Highly potent and broadly neutralizing anti-CD4 trimeric nanobodies inhibit HIV-1 infection by inducing CD4 conformational alteration. Nat Commun 15(1):6961 PubMed PMC