Breaking Electrochemical Scaling Laws in Atomically Engineered van der Waals Stack Multisite Edge Catalysts

. 2025 Aug 06 ; 25 (31) : 12059-12066. [epub] 20250728

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40719858

Electrocatalysis is key to sustainable energy conversion and storage, but its efficiency is limited by scaling laws between reactant adsorption and desorption. Multisite catalysts promises to overcome these limits, but challenges in fabrication and characterization hinder its validation. We present a platform to study and optimize multisite electrocatalysis. Leveraging van der Waals stacked 2D materials, we create catalytic edge assemblies with precise activity variations, enabling atomically engineered site separation and interaction. This approach enables the identification of multisite catalysts that enhance the hydrogen evolution reaction (HER) beyond single-site Sabatier scaling. Altering atomic-scale site separations reverts the system to single-site mechanisms, highlighting the importance of intermediate transport. Direct evidence of intermediate exchange is provided by electrostatic control of the sites, supported by ab initio simulations. We further engineer bifunctional catalysts for the oxygen evolution reaction (OER) and HER, achieving superior neutral water splitting. These findings enable the catalytic cascade design and complex electrochemical synthesis.

Zobrazit více v PubMed

Tuller H. L.. Solar to fuels conversion technologies: a perspective. Materials for renewable and sustainable energy. 2017;6(1):3. doi: 10.1007/s40243-017-0088-2. PubMed DOI PMC

Li W., Tian H., Ma L., Wang Y., Liu X., Gao X.. Low-temperature water electrolysis: fundamentals, progress, and new strategies. Materials Advances. 2022;3(14):5598–5644. doi: 10.1039/D2MA00185C. DOI

Zhang Y., Huang J., Eikerling M.. Criterion for finding the optimal electrocatalyst at any overpotential. Electrochim. Acta. 2021;400:139413. doi: 10.1016/j.electacta.2021.139413. DOI

Exner K. S.. On the optimum binding energy for the hydrogen evolution reaction: How do experiments contribute? Electrochemical Science Advances. 2022;2(4):e2100101. doi: 10.1002/elsa.202100101. DOI

Calle-Vallejo F., Martínez J., García-Lastra J. M., Rossmeisl J., Koper M.. Physical and Chemical Nature of the Scaling Relations between Adsorption Energies? format? of Atoms on Metal Surfaces. Physical review letters. 2012;108(11):116103. doi: 10.1103/PhysRevLett.108.116103. PubMed DOI

Xu J., White T., Li P., He C., Yu J., Yuan W., Han Y.-F.. Biphasic Pd– Au alloy catalyst for low-temperature CO oxidation. J. Am. Chem. Soc. 2010;132(30):10398–10406. doi: 10.1021/ja102617r. PubMed DOI

Ro I., Qi J., Lee S., Xu M., Yan X., Xie Z., Zakem G., Morales A., Chen J. G., Pan X.. et al. Bifunctional hydroformylation on heterogeneous Rh-WO x pair site catalysts. Nature. 2022;609(7926):287–292. doi: 10.1038/s41586-022-05075-4. PubMed DOI

Climent, M. J. ; Corma, A. ; Iborra, S. ; Sabater, M. J. . Heterogeneous catalysis for tandem reactions; ACS Publications: 2014; Vol. 4, pp 870–891.

Stürzel M., Mihan S., Mülhaupt R.. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev. 2016;116(3):1398–1433. doi: 10.1021/acs.chemrev.5b00310. PubMed DOI

Ouyang Y., Shi L., Bai X., Li Q., Wang J.. Breaking scaling relations for efficient CO 2 electrochemical reduction through dual-atom catalysts. Chemical science. 2020;11(7):1807–1813. doi: 10.1039/C9SC05236D. PubMed DOI PMC

Pérez-Ramírez J., López N.. Strategies to break linear scaling relationships. Nature Catalysis. 2019;2(11):971–976. doi: 10.1038/s41929-019-0376-6. DOI

Liu P., Rodriguez J. A.. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 2005;127(42):14871–14878. doi: 10.1021/ja0540019. PubMed DOI

Yao R. Q., Zhou Y. T., Shi H., Wan W. B., Zhang Q. H., Gu L., Zhu Y. F., Wen Z., Lang X. Y., Jiang Q.. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021;31(10):2009613. doi: 10.1002/adfm.202009613. DOI

Zhao Z.-J., Li Z., Cui Y., Zhu H., Schneider W. F., Delgass W. N., Ribeiro F., Greeley J.. Importance of metal-oxide interfaces in heterogeneous catalysis: A combined DFT, microkinetic, and experimental study of water-gas shift on Au/MgO. J. Catal. 2017;345:157–169. doi: 10.1016/j.jcat.2016.11.008. DOI

Vikraman D., Hussain S., Truong L., Karuppasamy K., Kim H.-J., Maiyalagan T., Chun S.-H., Jung J., Kim H.-S.. Fabrication of MoS2/WSe2 heterostructures as electrocatalyst for enhanced hydrogen evolution reaction. Appl. Surf. Sci. 2019;480:611–620. doi: 10.1016/j.apsusc.2019.02.236. DOI

Vikraman D., Arbab A. A., Hussain S., Shrestha N. K., Jeong S. H., Jung J., Patil S. A., Kim H.-S.. Design of WSe2/MoS2 heterostructures as the counter electrode to replace Pt for dye-sensitized solar cell. ACS Sustainable Chem. Eng. 2019;7(15):13195–13205. doi: 10.1021/acssuschemeng.9b02430. DOI

Gao M.-R., Liang J.-X., Zheng Y.-R., Xu Y.-F., Jiang J., Gao Q., Li J., Yu S.-H.. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015;6(1):5982. doi: 10.1038/ncomms6982. PubMed DOI PMC

Li R., Zhao H., Wang L., Zhou Q., Yang X., Jiang L., Luo X., Yu J., Wei J., Mu S.. Strengthened dp orbital hybridization and hydrogen diffusion in a hollow N-doped porous carbon/Ru cluster catalyst system for hydrogen evolution reactions. Chemical Science. 2025;16:4383–4391. doi: 10.1039/D4SC08498E. PubMed DOI PMC

Zhang H., Jin X., Lee J.-M., Wang X.. Tailoring of active sites from single to dual atom sites for highly efficient electrocatalysis. ACS Nano. 2022;16(11):17572–17592. doi: 10.1021/acsnano.2c06827. PubMed DOI PMC

Wang H., Chen D.-R., Lin Y.-C., Lin P.-H., Chang J.-T., Muthu J., Hofmann M., Hsieh Y.-P.. Enhancing the electrochemical activity of 2D materials edges through oriented electric fields. ACS Nano. 2024;18(30):19828–19835. doi: 10.1021/acsnano.4c06341. PubMed DOI PMC

Lu S.-S., Zhang L.-M., Dong Y.-W., Zhang J.-Q., Yan X.-T., Sun D.-F., Shang X., Chi J.-Q., Chai Y.-M., Dong B.. Tungsten-doped Ni–Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. Journal of materials chemistry A. 2019;7(28):16859–16866. doi: 10.1039/C9TA03944A. DOI

Li Y. C., Wang Z., Yuan T., Nam D.-H., Luo M., Wicks J., Chen B., Li J., Li F., De Arquer F. P. G.. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019;141(21):8584–8591. doi: 10.1021/jacs.9b02945. PubMed DOI

Zhou J., Xie Y., Yang L., Liu Y., Du Y., Yu L., Yu Y.. Development and perspectives of multi-site electrocatalysts for neutral hydrogen evolution. Inorganic Chemistry Frontiers. 2023;10(10):2842–2859. doi: 10.1039/D3QI00171G. DOI

Liao H., Wei C., Wang J., Fisher A., Sritharan T., Feng Z., Xu Z. J.. A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media. Adv. Energy Mater. 2017;7(21):1701129. doi: 10.1002/aenm.201701129. DOI

Akbashev A. R.. Electrocatalysis goes nuts. ACS Catal. 2022;12(8):4296–4301. doi: 10.1021/acscatal.2c00123. DOI

Allen A. E., MacMillan D. W.. Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chemical science. 2012;3(3):633–658. doi: 10.1039/c2sc00907b. PubMed DOI PMC

Wheeldon I., Minteer S. D., Banta S., Barton S. C., Atanassov P., Sigman M.. Substrate channelling as an approach to cascade reactions. Nature Chem. 2016;8(4):299–309. doi: 10.1038/nchem.2459. PubMed DOI

Liu L., Wu X., Wang F., Zhang L., Wang X., Song S., Zhang H.. Dual-Site Metal Catalysts for Electrocatalytic CO2 Reduction Reaction. Chemistry–A. European Journal. 2023;29(49):e202300583. doi: 10.1002/chem.202300583. PubMed DOI

Li J., Chen C., Xu L., Zhang Y., Wei W., Zhao E., Wu Y., Chen C.. Challenges and perspectives of single-atom-based catalysts for electrochemical reactions. JACS Au. 2023;3(3):736–755. doi: 10.1021/jacsau.3c00001. PubMed DOI PMC

Pan Y., Wang X., Zhang W., Tang L., Mu Z., Liu C., Tian B., Fei M., Sun Y., Su H.. et al. Boosting the performance of single-atom catalysts via external electric field polarization. Nat. Commun. 2022;13(1):3063. doi: 10.1038/s41467-022-30766-x. PubMed DOI PMC

Pan Y., Tang L., Ding M.. Electrostatic polarization in single-atom catalysis. Cell Reports Physical Science. 2023;4(5):101417. doi: 10.1016/j.xcrp.2023.101417. DOI

Chen D.-R., Hofmann M., Yao H.-M., Chiu S.-K., Chen S.-H., Luo Y.-R., Hsu C.-C., Hsieh Y.-P.. Lateral two-dimensional material heterojunction photodetectors with ultrahigh speed and detectivity. ACS Appl. Mater. Interfaces. 2019;11(6):6384–6388. doi: 10.1021/acsami.8b19093. PubMed DOI

Borhade P. S., Chen T., Chen D. R., Chen Y. X., Yao Y. C., Yen Z. L., Tsai C. H., Hsieh Y. P., Hofmann M.. Self-Expansion Based Multi-Patterning for 2D Materials Fabrication beyond the Lithographical Limit. Small. 2024;20:2311209. doi: 10.1002/smll.202311209. PubMed DOI

Li J., Hu S., Chen Z., Liang Y., Kang H., Zhang Y., Sui Y., Wang S., Yu G., Peng S.. et al. Facile and rigorous route to distinguish the boundary structure of monolayer MoS2 domains by oxygen etching. Appl. Surf. Sci. 2020;510:145412. doi: 10.1016/j.apsusc.2020.145412. DOI

Naqi M., Kang M. S., Liu N., Kim T., Baek S., Bala A., Moon C., Park J., Kim S.. Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. npj 2D Materials and Applications. 2022;6(1):53. doi: 10.1038/s41699-022-00325-5. DOI

Alqaydi M., Kotbi A., Rajput N., Bouchalkha A., Gagou Y., El Marssi M., Kasmi C., Jouiad M.. Gas sensing capabilities of MoS2 and WS2: theoretical and experimental study. Emergent Materials. 2025:1–13. doi: 10.1007/s42247-024-00967-9. DOI

Liu Y., Yin J., Zhou Y., Sun L., Yue W., Sun Y., Wang Y.. Tuning Electron Transport Direction through the Deposition Sequence of MoS2 and WS2 on Fluorine-Doped Tin Oxide for Improved Electrocatalytic Reduction Efficiency. ChemElectroChem. 2019;6(10):2737–2740. doi: 10.1002/celc.201900409. DOI

He Y., Tang P., Hu Z., He Q., Zhu C., Wang L., Zeng Q., Golani P., Gao G., Fu W.. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020;11(1):57. doi: 10.1038/s41467-019-13631-2. PubMed DOI PMC

Chen D.-R., Muthu J., Guo X.-Y., Chin H.-T., Lin Y.-C., Haider G., Ting C.-C., Kalbáč M., Hofmann M., Hsieh Y.-P.. Edge-dominated hydrogen evolution reactions in ultra-narrow MoS 2 nanoribbon arrays. Journal of Materials Chemistry A. 2023;11(29):15802–15810. doi: 10.1039/D3TA01573D. DOI

Wang Y., Qiu W., Song E., Gu F., Zheng Z., Zhao X., Zhao Y., Liu J., Zhang W.. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. National Science Review. 2018;5(3):327–341. doi: 10.1093/nsr/nwx119. DOI

Huang H., Hu G., Hu C., Fan X.. Enhanced Hydrogen Evolution Reactivity of T’-Phase Tungsten Dichalcogenides (WS2, WSe2, and WTe2) Materials: A DFT Study. International Journal of Molecular Sciences. 2022;23(19):11727. doi: 10.3390/ijms231911727. PubMed DOI PMC

Seo B., Jung G. Y., Sa Y. J., Jeong H. Y., Cheon J. Y., Lee J. H., Kim H. Y., Kim J. C., Shin H. S., Kwak S. K.. et al. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano. 2015;9(4):3728–3739. doi: 10.1021/acsnano.5b00786. PubMed DOI

Xie L., Wang L., Zhao W., Liu S., Huang W., Zhao Q.. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021;12(1):5070. doi: 10.1038/s41467-021-25381-1. PubMed DOI PMC

Zhou H., Yu F., Huang Y., Sun J., Zhu Z., Nielsen R. J., He R., Bao J., Goddard W. A. III, Chen S.. et al. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nat. Commun. 2016;7(1):12765. doi: 10.1038/ncomms12765. PubMed DOI PMC

Huang Z.-F., Song J., Dou S., Li X., Wang J., Wang X.. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter. 2019;1(6):1494–1518. doi: 10.1016/j.matt.2019.09.011. DOI

Vojvodic A., Nørskov J. K.. New design paradigm for heterogeneous catalysts. National Science Review. 2015;2(2):140–143. doi: 10.1093/nsr/nwv023. DOI

Chen J., Jia M., Mao Y., Hu P., Wang H.. Diffusion Coupling Kinetics in Multisite Catalysis: A Microkinetic Framework. ACS Catal. 2023;13(5):2937–2947. doi: 10.1021/acscatal.2c06026. DOI

Li P., Jiao Y., Huang J., Chen S.. Electric Double Layer Effects in Electrocatalysis: Insights from Ab Initio Simulation and Hierarchical Continuum Modeling. JACS Au. 2023;3(10):2640–2659. doi: 10.1021/jacsau.3c00410. PubMed DOI PMC

Zhang R., Zhang M., Yang H., Li G., Xing S., Li M., Xu Y., Zhang Q., Hu S., Liao H.. et al. Creating Fluorine-Doped MoS2 Edge Electrodes with Enhanced Hydrogen Evolution Activity. Small Methods. 2021;5(11):2100612. doi: 10.1002/smtd.202100612. PubMed DOI

Huang Y., Nielsen R. J., Goddard W. A. III, Soriaga M. P.. The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2. J. Am. Chem. Soc. 2015;137(20):6692–6698. doi: 10.1021/jacs.5b03329. PubMed DOI

Shinagawa T., Garcia-Esparza A. T., Takanabe K.. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015;5(1):13801. doi: 10.1038/srep13801. PubMed DOI PMC

Wang S., Chen X., Zhao C., Kong Y., Lin B., Wu Y., Bi Z., Xuan Z., Li T., Li Y.. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nature Electronics. 2023;6(4):281–291. doi: 10.1038/s41928-023-00950-y. DOI

Liu J., Zhu D., Ling T., Vasileff A., Qiao S.-Z.. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy. 2017;40:264–273. doi: 10.1016/j.nanoen.2017.08.031. DOI

Liu T., Xie L., Yang J., Kong R., Du G., Asiri A. M., Sun X., Chen L.. Self-standing CoP nanosheets array: a three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem. 2017;4(8):1840–1845. doi: 10.1002/celc.201700392. DOI

Jiao Y., Zheng Y., Jaroniec M., Qiao S. Z.. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015;44(8):2060–2086. doi: 10.1039/C4CS00470A. PubMed DOI

Feng Z., Dai C., Shi P., Lei X., Guo R., Wang B., Liu X., You J.. Seven mechanisms of oxygen evolution reaction proposed recently: A mini review. Chemical Engineering Journal. 2024;485:149992. doi: 10.1016/j.cej.2024.149992. DOI

Xu W., Chang J., Cheng Y., Liu H., Li J., Ai Y., Hu Z., Zhang X., Wang Y., Liang Q.. et al. A multi-step induced strategy to fabricate core-shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting. Nano Research. 2022;15:965–971. doi: 10.1007/s12274-021-3582-x. DOI

Davelou D., Mathioudakis C., Remediakis I. N., Kopidakis G.. Adsorption on Metallic Edges of Transition Metal Dichalcogenides. Phys. Status Solidi-R. 2022;16(4):2100588. doi: 10.1002/pssr.202100588. DOI

Zeng K., Zhang D.. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science. 2010;36(3):307–326. doi: 10.1016/j.pecs.2009.11.002. DOI

Hullfish C. W., Tan J. Z., Adawi H. I., Sarazen M. L.. Toward Intrinsic Catalytic Rates and Selectivities of Zeolites in the Presence of Limiting Diffusion and Deactivation. ACS Catal. 2023;13(19):13140–13150. doi: 10.1021/acscatal.3c03559. DOI

Chiang C.-H., Yang Y.-C., Lin J.-W., Lin Y.-C., Chen P.-T., Dong C.-L., Lin H.-M., Chan K. M., Kao Y.-T., Suenaga K.. et al. Bifunctional monolayer WSe2/graphene self-stitching heterojunction microreactors for efficient overall water splitting in neutral medium. ACS Nano. 2022;16(11):18274–18283. doi: 10.1021/acsnano.2c05986. PubMed DOI

Wu R., Xiao B., Gao Q., Zheng Y. R., Zheng X. S., Zhu J. F., Gao M. R., Yu S. H.. A janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting. Angew. Chem. 2018;130(47):15671–15675. doi: 10.1002/ange.201808929. PubMed DOI

Peng J., Dong W., Wang Z., Meng Y., Liu W., Song P., Liu Z.. Recent advances in 2D transition metal compounds for electrocatalytic full water splitting in neutral media. Materials today advances. 2020;8:100081. doi: 10.1016/j.mtadv.2020.100081. DOI

Zeng L., Sun K., Chen Y., Liu Z., Chen Y., Pan Y., Zhao R., Liu Y., Liu C.. Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst. Journal of materials chemistry A. 2019;7(28):16793–16802. doi: 10.1039/C9TA05601G. DOI

Scheepers F., Stähler M., Stähler A., Rauls E., Müller M., Carmo M., Lehnert W.. Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency. Applied Energy. 2021;283:116270. doi: 10.1016/j.apenergy.2020.116270. DOI

Eiler K., Krawiec H., Kozina I., Sort J., Pellicer E.. Electrochemical characterisation of multifunctional electrocatalytic mesoporous Ni-Pt thin films in alkaline and acidic media. Electrochim. Acta. 2020;359:136952. doi: 10.1016/j.electacta.2020.136952. DOI

Kang M., Lin C., Yang H., Guo Y., Liu L., Xue T., Liu Y., Gong Y., Zhao Z., Zhai T.. et al. Proximity enhanced hydrogen evolution reactivity of substitutional doped monolayer WS2. ACS Appl. Mater. Interfaces. 2021;13(16):19406–19413. doi: 10.1021/acsami.1c00139. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...