Breaking Electrochemical Scaling Laws in Atomically Engineered van der Waals Stack Multisite Edge Catalysts
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40719858
PubMed Central
PMC12333411
DOI
10.1021/acs.nanolett.5c03027
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, Hydrogen evolution reaction (HER), Multisite catalysts, Overall water splitting, van der Waals stack edges,
- Publikační typ
- časopisecké články MeSH
Electrocatalysis is key to sustainable energy conversion and storage, but its efficiency is limited by scaling laws between reactant adsorption and desorption. Multisite catalysts promises to overcome these limits, but challenges in fabrication and characterization hinder its validation. We present a platform to study and optimize multisite electrocatalysis. Leveraging van der Waals stacked 2D materials, we create catalytic edge assemblies with precise activity variations, enabling atomically engineered site separation and interaction. This approach enables the identification of multisite catalysts that enhance the hydrogen evolution reaction (HER) beyond single-site Sabatier scaling. Altering atomic-scale site separations reverts the system to single-site mechanisms, highlighting the importance of intermediate transport. Direct evidence of intermediate exchange is provided by electrostatic control of the sites, supported by ab initio simulations. We further engineer bifunctional catalysts for the oxygen evolution reaction (OER) and HER, achieving superior neutral water splitting. These findings enable the catalytic cascade design and complex electrochemical synthesis.
Department of Electronic Engineering Chung Yuan Christian University Taoyuan 320 Taiwan
Department of Physics National Taiwan University Taipei 10617 Taiwan
Institute of Atomic and Molecular Sciences Academia Sinica Taipei 10617 Taiwan
Zobrazit více v PubMed
Tuller H. L.. Solar to fuels conversion technologies: a perspective. Materials for renewable and sustainable energy. 2017;6(1):3. doi: 10.1007/s40243-017-0088-2. PubMed DOI PMC
Li W., Tian H., Ma L., Wang Y., Liu X., Gao X.. Low-temperature water electrolysis: fundamentals, progress, and new strategies. Materials Advances. 2022;3(14):5598–5644. doi: 10.1039/D2MA00185C. DOI
Zhang Y., Huang J., Eikerling M.. Criterion for finding the optimal electrocatalyst at any overpotential. Electrochim. Acta. 2021;400:139413. doi: 10.1016/j.electacta.2021.139413. DOI
Exner K. S.. On the optimum binding energy for the hydrogen evolution reaction: How do experiments contribute? Electrochemical Science Advances. 2022;2(4):e2100101. doi: 10.1002/elsa.202100101. DOI
Calle-Vallejo F., Martínez J., García-Lastra J. M., Rossmeisl J., Koper M.. Physical and Chemical Nature of the Scaling Relations between Adsorption Energies? format? of Atoms on Metal Surfaces. Physical review letters. 2012;108(11):116103. doi: 10.1103/PhysRevLett.108.116103. PubMed DOI
Xu J., White T., Li P., He C., Yu J., Yuan W., Han Y.-F.. Biphasic Pd– Au alloy catalyst for low-temperature CO oxidation. J. Am. Chem. Soc. 2010;132(30):10398–10406. doi: 10.1021/ja102617r. PubMed DOI
Ro I., Qi J., Lee S., Xu M., Yan X., Xie Z., Zakem G., Morales A., Chen J. G., Pan X.. et al. Bifunctional hydroformylation on heterogeneous Rh-WO x pair site catalysts. Nature. 2022;609(7926):287–292. doi: 10.1038/s41586-022-05075-4. PubMed DOI
Climent, M. J. ; Corma, A. ; Iborra, S. ; Sabater, M. J. . Heterogeneous catalysis for tandem reactions; ACS Publications: 2014; Vol. 4, pp 870–891.
Stürzel M., Mihan S., Mülhaupt R.. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev. 2016;116(3):1398–1433. doi: 10.1021/acs.chemrev.5b00310. PubMed DOI
Ouyang Y., Shi L., Bai X., Li Q., Wang J.. Breaking scaling relations for efficient CO 2 electrochemical reduction through dual-atom catalysts. Chemical science. 2020;11(7):1807–1813. doi: 10.1039/C9SC05236D. PubMed DOI PMC
Pérez-Ramírez J., López N.. Strategies to break linear scaling relationships. Nature Catalysis. 2019;2(11):971–976. doi: 10.1038/s41929-019-0376-6. DOI
Liu P., Rodriguez J. A.. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 2005;127(42):14871–14878. doi: 10.1021/ja0540019. PubMed DOI
Yao R. Q., Zhou Y. T., Shi H., Wan W. B., Zhang Q. H., Gu L., Zhu Y. F., Wen Z., Lang X. Y., Jiang Q.. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021;31(10):2009613. doi: 10.1002/adfm.202009613. DOI
Zhao Z.-J., Li Z., Cui Y., Zhu H., Schneider W. F., Delgass W. N., Ribeiro F., Greeley J.. Importance of metal-oxide interfaces in heterogeneous catalysis: A combined DFT, microkinetic, and experimental study of water-gas shift on Au/MgO. J. Catal. 2017;345:157–169. doi: 10.1016/j.jcat.2016.11.008. DOI
Vikraman D., Hussain S., Truong L., Karuppasamy K., Kim H.-J., Maiyalagan T., Chun S.-H., Jung J., Kim H.-S.. Fabrication of MoS2/WSe2 heterostructures as electrocatalyst for enhanced hydrogen evolution reaction. Appl. Surf. Sci. 2019;480:611–620. doi: 10.1016/j.apsusc.2019.02.236. DOI
Vikraman D., Arbab A. A., Hussain S., Shrestha N. K., Jeong S. H., Jung J., Patil S. A., Kim H.-S.. Design of WSe2/MoS2 heterostructures as the counter electrode to replace Pt for dye-sensitized solar cell. ACS Sustainable Chem. Eng. 2019;7(15):13195–13205. doi: 10.1021/acssuschemeng.9b02430. DOI
Gao M.-R., Liang J.-X., Zheng Y.-R., Xu Y.-F., Jiang J., Gao Q., Li J., Yu S.-H.. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015;6(1):5982. doi: 10.1038/ncomms6982. PubMed DOI PMC
Li R., Zhao H., Wang L., Zhou Q., Yang X., Jiang L., Luo X., Yu J., Wei J., Mu S.. Strengthened dp orbital hybridization and hydrogen diffusion in a hollow N-doped porous carbon/Ru cluster catalyst system for hydrogen evolution reactions. Chemical Science. 2025;16:4383–4391. doi: 10.1039/D4SC08498E. PubMed DOI PMC
Zhang H., Jin X., Lee J.-M., Wang X.. Tailoring of active sites from single to dual atom sites for highly efficient electrocatalysis. ACS Nano. 2022;16(11):17572–17592. doi: 10.1021/acsnano.2c06827. PubMed DOI PMC
Wang H., Chen D.-R., Lin Y.-C., Lin P.-H., Chang J.-T., Muthu J., Hofmann M., Hsieh Y.-P.. Enhancing the electrochemical activity of 2D materials edges through oriented electric fields. ACS Nano. 2024;18(30):19828–19835. doi: 10.1021/acsnano.4c06341. PubMed DOI PMC
Lu S.-S., Zhang L.-M., Dong Y.-W., Zhang J.-Q., Yan X.-T., Sun D.-F., Shang X., Chi J.-Q., Chai Y.-M., Dong B.. Tungsten-doped Ni–Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. Journal of materials chemistry A. 2019;7(28):16859–16866. doi: 10.1039/C9TA03944A. DOI
Li Y. C., Wang Z., Yuan T., Nam D.-H., Luo M., Wicks J., Chen B., Li J., Li F., De Arquer F. P. G.. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019;141(21):8584–8591. doi: 10.1021/jacs.9b02945. PubMed DOI
Zhou J., Xie Y., Yang L., Liu Y., Du Y., Yu L., Yu Y.. Development and perspectives of multi-site electrocatalysts for neutral hydrogen evolution. Inorganic Chemistry Frontiers. 2023;10(10):2842–2859. doi: 10.1039/D3QI00171G. DOI
Liao H., Wei C., Wang J., Fisher A., Sritharan T., Feng Z., Xu Z. J.. A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media. Adv. Energy Mater. 2017;7(21):1701129. doi: 10.1002/aenm.201701129. DOI
Akbashev A. R.. Electrocatalysis goes nuts. ACS Catal. 2022;12(8):4296–4301. doi: 10.1021/acscatal.2c00123. DOI
Allen A. E., MacMillan D. W.. Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chemical science. 2012;3(3):633–658. doi: 10.1039/c2sc00907b. PubMed DOI PMC
Wheeldon I., Minteer S. D., Banta S., Barton S. C., Atanassov P., Sigman M.. Substrate channelling as an approach to cascade reactions. Nature Chem. 2016;8(4):299–309. doi: 10.1038/nchem.2459. PubMed DOI
Liu L., Wu X., Wang F., Zhang L., Wang X., Song S., Zhang H.. Dual-Site Metal Catalysts for Electrocatalytic CO2 Reduction Reaction. Chemistry–A. European Journal. 2023;29(49):e202300583. doi: 10.1002/chem.202300583. PubMed DOI
Li J., Chen C., Xu L., Zhang Y., Wei W., Zhao E., Wu Y., Chen C.. Challenges and perspectives of single-atom-based catalysts for electrochemical reactions. JACS Au. 2023;3(3):736–755. doi: 10.1021/jacsau.3c00001. PubMed DOI PMC
Pan Y., Wang X., Zhang W., Tang L., Mu Z., Liu C., Tian B., Fei M., Sun Y., Su H.. et al. Boosting the performance of single-atom catalysts via external electric field polarization. Nat. Commun. 2022;13(1):3063. doi: 10.1038/s41467-022-30766-x. PubMed DOI PMC
Pan Y., Tang L., Ding M.. Electrostatic polarization in single-atom catalysis. Cell Reports Physical Science. 2023;4(5):101417. doi: 10.1016/j.xcrp.2023.101417. DOI
Chen D.-R., Hofmann M., Yao H.-M., Chiu S.-K., Chen S.-H., Luo Y.-R., Hsu C.-C., Hsieh Y.-P.. Lateral two-dimensional material heterojunction photodetectors with ultrahigh speed and detectivity. ACS Appl. Mater. Interfaces. 2019;11(6):6384–6388. doi: 10.1021/acsami.8b19093. PubMed DOI
Borhade P. S., Chen T., Chen D. R., Chen Y. X., Yao Y. C., Yen Z. L., Tsai C. H., Hsieh Y. P., Hofmann M.. Self-Expansion Based Multi-Patterning for 2D Materials Fabrication beyond the Lithographical Limit. Small. 2024;20:2311209. doi: 10.1002/smll.202311209. PubMed DOI
Li J., Hu S., Chen Z., Liang Y., Kang H., Zhang Y., Sui Y., Wang S., Yu G., Peng S.. et al. Facile and rigorous route to distinguish the boundary structure of monolayer MoS2 domains by oxygen etching. Appl. Surf. Sci. 2020;510:145412. doi: 10.1016/j.apsusc.2020.145412. DOI
Naqi M., Kang M. S., Liu N., Kim T., Baek S., Bala A., Moon C., Park J., Kim S.. Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. npj 2D Materials and Applications. 2022;6(1):53. doi: 10.1038/s41699-022-00325-5. DOI
Alqaydi M., Kotbi A., Rajput N., Bouchalkha A., Gagou Y., El Marssi M., Kasmi C., Jouiad M.. Gas sensing capabilities of MoS2 and WS2: theoretical and experimental study. Emergent Materials. 2025:1–13. doi: 10.1007/s42247-024-00967-9. DOI
Liu Y., Yin J., Zhou Y., Sun L., Yue W., Sun Y., Wang Y.. Tuning Electron Transport Direction through the Deposition Sequence of MoS2 and WS2 on Fluorine-Doped Tin Oxide for Improved Electrocatalytic Reduction Efficiency. ChemElectroChem. 2019;6(10):2737–2740. doi: 10.1002/celc.201900409. DOI
He Y., Tang P., Hu Z., He Q., Zhu C., Wang L., Zeng Q., Golani P., Gao G., Fu W.. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020;11(1):57. doi: 10.1038/s41467-019-13631-2. PubMed DOI PMC
Chen D.-R., Muthu J., Guo X.-Y., Chin H.-T., Lin Y.-C., Haider G., Ting C.-C., Kalbáč M., Hofmann M., Hsieh Y.-P.. Edge-dominated hydrogen evolution reactions in ultra-narrow MoS 2 nanoribbon arrays. Journal of Materials Chemistry A. 2023;11(29):15802–15810. doi: 10.1039/D3TA01573D. DOI
Wang Y., Qiu W., Song E., Gu F., Zheng Z., Zhao X., Zhao Y., Liu J., Zhang W.. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. National Science Review. 2018;5(3):327–341. doi: 10.1093/nsr/nwx119. DOI
Huang H., Hu G., Hu C., Fan X.. Enhanced Hydrogen Evolution Reactivity of T’-Phase Tungsten Dichalcogenides (WS2, WSe2, and WTe2) Materials: A DFT Study. International Journal of Molecular Sciences. 2022;23(19):11727. doi: 10.3390/ijms231911727. PubMed DOI PMC
Seo B., Jung G. Y., Sa Y. J., Jeong H. Y., Cheon J. Y., Lee J. H., Kim H. Y., Kim J. C., Shin H. S., Kwak S. K.. et al. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano. 2015;9(4):3728–3739. doi: 10.1021/acsnano.5b00786. PubMed DOI
Xie L., Wang L., Zhao W., Liu S., Huang W., Zhao Q.. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021;12(1):5070. doi: 10.1038/s41467-021-25381-1. PubMed DOI PMC
Zhou H., Yu F., Huang Y., Sun J., Zhu Z., Nielsen R. J., He R., Bao J., Goddard W. A. III, Chen S.. et al. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nat. Commun. 2016;7(1):12765. doi: 10.1038/ncomms12765. PubMed DOI PMC
Huang Z.-F., Song J., Dou S., Li X., Wang J., Wang X.. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter. 2019;1(6):1494–1518. doi: 10.1016/j.matt.2019.09.011. DOI
Vojvodic A., Nørskov J. K.. New design paradigm for heterogeneous catalysts. National Science Review. 2015;2(2):140–143. doi: 10.1093/nsr/nwv023. DOI
Chen J., Jia M., Mao Y., Hu P., Wang H.. Diffusion Coupling Kinetics in Multisite Catalysis: A Microkinetic Framework. ACS Catal. 2023;13(5):2937–2947. doi: 10.1021/acscatal.2c06026. DOI
Li P., Jiao Y., Huang J., Chen S.. Electric Double Layer Effects in Electrocatalysis: Insights from Ab Initio Simulation and Hierarchical Continuum Modeling. JACS Au. 2023;3(10):2640–2659. doi: 10.1021/jacsau.3c00410. PubMed DOI PMC
Zhang R., Zhang M., Yang H., Li G., Xing S., Li M., Xu Y., Zhang Q., Hu S., Liao H.. et al. Creating Fluorine-Doped MoS2 Edge Electrodes with Enhanced Hydrogen Evolution Activity. Small Methods. 2021;5(11):2100612. doi: 10.1002/smtd.202100612. PubMed DOI
Huang Y., Nielsen R. J., Goddard W. A. III, Soriaga M. P.. The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2. J. Am. Chem. Soc. 2015;137(20):6692–6698. doi: 10.1021/jacs.5b03329. PubMed DOI
Shinagawa T., Garcia-Esparza A. T., Takanabe K.. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015;5(1):13801. doi: 10.1038/srep13801. PubMed DOI PMC
Wang S., Chen X., Zhao C., Kong Y., Lin B., Wu Y., Bi Z., Xuan Z., Li T., Li Y.. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nature Electronics. 2023;6(4):281–291. doi: 10.1038/s41928-023-00950-y. DOI
Liu J., Zhu D., Ling T., Vasileff A., Qiao S.-Z.. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy. 2017;40:264–273. doi: 10.1016/j.nanoen.2017.08.031. DOI
Liu T., Xie L., Yang J., Kong R., Du G., Asiri A. M., Sun X., Chen L.. Self-standing CoP nanosheets array: a three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem. 2017;4(8):1840–1845. doi: 10.1002/celc.201700392. DOI
Jiao Y., Zheng Y., Jaroniec M., Qiao S. Z.. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015;44(8):2060–2086. doi: 10.1039/C4CS00470A. PubMed DOI
Feng Z., Dai C., Shi P., Lei X., Guo R., Wang B., Liu X., You J.. Seven mechanisms of oxygen evolution reaction proposed recently: A mini review. Chemical Engineering Journal. 2024;485:149992. doi: 10.1016/j.cej.2024.149992. DOI
Xu W., Chang J., Cheng Y., Liu H., Li J., Ai Y., Hu Z., Zhang X., Wang Y., Liang Q.. et al. A multi-step induced strategy to fabricate core-shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting. Nano Research. 2022;15:965–971. doi: 10.1007/s12274-021-3582-x. DOI
Davelou D., Mathioudakis C., Remediakis I. N., Kopidakis G.. Adsorption on Metallic Edges of Transition Metal Dichalcogenides. Phys. Status Solidi-R. 2022;16(4):2100588. doi: 10.1002/pssr.202100588. DOI
Zeng K., Zhang D.. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science. 2010;36(3):307–326. doi: 10.1016/j.pecs.2009.11.002. DOI
Hullfish C. W., Tan J. Z., Adawi H. I., Sarazen M. L.. Toward Intrinsic Catalytic Rates and Selectivities of Zeolites in the Presence of Limiting Diffusion and Deactivation. ACS Catal. 2023;13(19):13140–13150. doi: 10.1021/acscatal.3c03559. DOI
Chiang C.-H., Yang Y.-C., Lin J.-W., Lin Y.-C., Chen P.-T., Dong C.-L., Lin H.-M., Chan K. M., Kao Y.-T., Suenaga K.. et al. Bifunctional monolayer WSe2/graphene self-stitching heterojunction microreactors for efficient overall water splitting in neutral medium. ACS Nano. 2022;16(11):18274–18283. doi: 10.1021/acsnano.2c05986. PubMed DOI
Wu R., Xiao B., Gao Q., Zheng Y. R., Zheng X. S., Zhu J. F., Gao M. R., Yu S. H.. A janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting. Angew. Chem. 2018;130(47):15671–15675. doi: 10.1002/ange.201808929. PubMed DOI
Peng J., Dong W., Wang Z., Meng Y., Liu W., Song P., Liu Z.. Recent advances in 2D transition metal compounds for electrocatalytic full water splitting in neutral media. Materials today advances. 2020;8:100081. doi: 10.1016/j.mtadv.2020.100081. DOI
Zeng L., Sun K., Chen Y., Liu Z., Chen Y., Pan Y., Zhao R., Liu Y., Liu C.. Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst. Journal of materials chemistry A. 2019;7(28):16793–16802. doi: 10.1039/C9TA05601G. DOI
Scheepers F., Stähler M., Stähler A., Rauls E., Müller M., Carmo M., Lehnert W.. Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency. Applied Energy. 2021;283:116270. doi: 10.1016/j.apenergy.2020.116270. DOI
Eiler K., Krawiec H., Kozina I., Sort J., Pellicer E.. Electrochemical characterisation of multifunctional electrocatalytic mesoporous Ni-Pt thin films in alkaline and acidic media. Electrochim. Acta. 2020;359:136952. doi: 10.1016/j.electacta.2020.136952. DOI
Kang M., Lin C., Yang H., Guo Y., Liu L., Xue T., Liu Y., Gong Y., Zhao Z., Zhai T.. et al. Proximity enhanced hydrogen evolution reactivity of substitutional doped monolayer WS2. ACS Appl. Mater. Interfaces. 2021;13(16):19406–19413. doi: 10.1021/acsami.1c00139. PubMed DOI