Liposomal Delivery of a Biotechnological Lavandula angustifolia Miller Extract Rich in Rosmarinic Acid for Topical Herpes Simplex Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PE00000007, INF-ACT
Next Generation EU-MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases
BG16RFPR002-1.014-0003-C01
Programme Research Innovation and Digitalisation for Smart Transformation
61989592
Palacký University Olomouc
PubMed
40722915
PubMed Central
PMC12291716
DOI
10.3390/antiox14070811
PII: antiox14070811
Knihovny.cz E-zdroje
- Klíčová slova
- Normal Human Dermal Fibroblasts, Vero cells, antioxidant, antiviral activity, cutaneous delivery, drug delivery system, nanocarriers,
- Publikační typ
- časopisecké články MeSH
Herpes simplex virus type 1 (HSV-1) is a widespread pathogen responsible for recurrent infections, primarily affecting the skin and mucous membranes. With the aim of targeting both the viral infection and the associated inflammatory response, biotechnologically produced Lavandula angustifolia Miller (L. angustifolia) extract, rich in rosmarinic acid, was incorporated into liposomal formulations intended for topical application. Lavender is known for its strong anti-inflammatory, antioxidant, wound-healing, and antiviral properties. However, its low stability under certain conditions limits its therapeutic potential. Four different formulations were developed: conventional liposomes, glycerosomes, hyalurosomes, and glycerohyalurosomes. The vesicles were characterized for size, stability, and entrapment efficiency. Glycerosomes were the smallest (~58 nm), while the other formulations ranged around 77 nm, all maintaining a highly negative surface charge, ensuring stability and reduced aggregation. Glycerol-containing formulations demonstrated superior stability over 12 months, while liposomes and hyalurosomes increased their size after only two months. Entrapment efficiency reached up to 100% for most vesicles, except for glycerohyalurosomes (~54%). In vitro studies on Normal Human Dermal Fibroblasts (NHDFs) demonstrated that all formulations were biocompatible and enhanced cell viability under oxidative stress. Glycerosomes, hyalurosomes, and glycerohyalurosomes exhibited significant anti-inflammatory activity by reducing MMP-1 and IL-6 levels in LPS-stimulated fibroblasts. Furthermore, these preliminary results highlighted promising antiviral activity against HSV-1 of the obtained formulations, particularly when applied during or post-infection. Overall, these phospholipid vesicles offer a dual therapeutic approach, combining antioxidant, anti-inflammatory, and antiviral effects, positioning them as promising candidates for the treatment of HSV-induced skin lesions and related inflammatory conditions.
Zobrazit více v PubMed
Bradshaw M.J., Venkatesan A. Herpes Simplex Virus-1 Encephalitis in Adults: Pathophysiology, Diagnosis, and Management. Neurotherapeutics. 2016;13:493–508. doi: 10.1007/s13311-016-0433-7. PubMed DOI PMC
Looker K.J., Magaret A.S., May M.T., Turner K.M.E., Vickerman P., Gottlieb S.L., Newman L.M. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS ONE. 2015;10:e0140765. doi: 10.1371/journal.pone.0140765. PubMed DOI PMC
Gopinath D., Koe K.H., Maharajan M.K., Panda S. A Comprehensive Overview of Epidemiology, Pathogenesis and the Management of Herpes Labialis. Viruses. 2023;15:225. doi: 10.3390/v15010225. PubMed DOI PMC
Herpes Simplex Virus. [(accessed on 13 January 2025)]. Available online: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus.
Whitley R., Kimberlin D.W., Prober C.G. Rhizoctonia Solani, Biology and Pathology: Based on an American Phytopathological Society Symposium on Rhizoctonia solani held at the Miami meeting of the Society, October, 1965. American Phytopathological Society (APS); St. Paul, MN, USA: 2007. Pathogenesis and Disease; pp. 161–171. DOI
Miller C.S., Berger J.R., Mootoor Y., Avdiushko S.A., Zhu H., Kryscio R.J. High Prevalence of Multiple Human Herpesviruses in Saliva from Human Immunodeficiency Virus-Infected Persons in the Era of Highly Active Antiretroviral Therapy. J. Clin. Microbiol. 2006;44:2409–2415. doi: 10.1128/JCM.00256-06. PubMed DOI PMC
Chentoufi A.A., Benmohamed L. Mucosal Herpes Immunity and Immunopathology to Ocular and Genital Herpes Simplex Virus Infections. J. Immunol. Res. 2012;2012:149135. doi: 10.1155/2012/149135. PubMed DOI PMC
Price R.W., Antoinette Walz M., Wohlenberg C., Notkins A.L. Latent Infection of Sensory Ganglia with Herpes Simplex Virus: Efficacy of Immunization. Science. 1975;188:938–940. doi: 10.1126/science.166432. PubMed DOI
Stoeger T., Adler H. “Novel” Triggers of Herpesvirus Reactivation and Their Potential Health Relevance. Front. Microbiol. 2019;10:429807. doi: 10.3389/fmicb.2018.03207. PubMed DOI PMC
Pieknik J.R., Bertke A.S., Krause P.R. Herpes Simplex Virus 2 in Autonomic Ganglia: Evidence for Spontaneous Reactivation. J. Virol. 2019;93:e00227-19. doi: 10.1128/JVI.00227-19. PubMed DOI PMC
Kaul R., Nagelkerke N.J., Kimani J., Ngugi E., Bwayo J.J., MacDonald K.S., Rebbaprgada A., Fonck K., Temmerman M., Ronald A.R., et al. Prevalent Herpes Simplex Virus Type 2 Infection Is Associated with Altered Vaginal Flora and an Increased Susceptibility to Multiple Sexually Transmitted Infections. J. Infect. Dis. 2007;196:1692–1697. doi: 10.1086/522006. PubMed DOI
Chang J.Y., Balch C., Puccio J., Oh H.S. A Narrative Review of Alternative Symptomatic Treatments for Herpes Simplex Virus. Viruses. 2023;15:1314. doi: 10.3390/v15061314. PubMed DOI PMC
Reusser P. Herpesvirus Resistance to Antiviral Drugs: A Review of the Mechanisms, Clinical Importance and Therapeutic Options. J. Hosp. Infect. 1996;33:235–248. doi: 10.1016/S0195-6701(96)90010-9. PubMed DOI
Schalkwijk H.H., Snoeck R., Andrei G. Acyclovir Resistance in Herpes Simplex Viruses: Prevalence and Therapeutic Alternatives. Biochem. Pharmacol. 2022;206:115322. doi: 10.1016/j.bcp.2022.115322. PubMed DOI
van de Sand L., Bormann M., Schmitz Y., Heilingloh C.S., Witzke O., Krawczyk A. Antiviral Active Compounds Derived from Natural Sources against Herpes Simplex Viruses. Viruses. 2021;13:1386. doi: 10.3390/v13071386. PubMed DOI PMC
Gavanji S., Sayedipour S.S., Larki B., Bakhtari A. Antiviral Activity of Some Plant Oils against Herpes Simplex Virus Type 1 in Vero Cell Culture. J. Acute Med. 2015;5:62–68. doi: 10.1016/j.jacme.2015.07.001. DOI
Cavanagh H.M.A., Wilkinson J.M. Biological Activities of Lavender Essential Oil. Phytother. Res. 2002;16:301–308. doi: 10.1002/ptr.1103. PubMed DOI
Barar A., Bensebia O. Surfactant Assisted Extraction for the Recovery of Bioactive Compounds from Solid Wastes of Lavender (Lavandula Angustifolia Mill): Optimization by Box–Behnken Design. Process Biochem. 2025;153:170–181. doi: 10.1016/j.procbio.2025.03.013. DOI
Kovatcheva E.G., Koleva I.I., Ilieva M., Pavlov A., Mincheva M., Konushlieva M. Antioxidant Activity of Extracts from Lavandula Vera MM Cell Cultures. Food Chem. 2001;72:295–300. doi: 10.1016/S0308-8146(00)00229-6. DOI
Yucharoen R., Chansakaow S., Tragoolpua Y. Inhibitory Effect of Aromatic Herbs, Lavender, Sage and Chamomile against Herpes Simplex Virus Infection. Afr. J. Biotechnol. 2011;10:15394–15401. doi: 10.5897/AJB11.2393. DOI
Astani A., Reichling J., Schnitzler P. Comparative Study on the Antiviral Activity of Selected Monoterpenes Derived from Essential Oils. Phytother. Res. 2010;24:673–679. doi: 10.1002/ptr.2955. PubMed DOI PMC
Chianese A., Gravina C., Morone M.V., Ambrosino A., Formato M., Palma F., Foglia F., Nastri B.M., Zannella C., Esposito A., et al. Lavandula Austroapennina: Assessment of the Antiviral Activity of Lipophilic Extracts from Its Organs. Viruses. 2023;15:1648. doi: 10.3390/v15081648. PubMed DOI PMC
Marinho S., Illanes M., Ávila-Román J., Motilva V., Talero E. Anti-Inflammatory Effects of Rosmarinic Acid-Loaded Nanovesicles in Acute Colitis through Modulation of NLRP3 Inflammasome. Biomolecules. 2021;11:162. doi: 10.3390/biom11020162. PubMed DOI PMC
Joardar S., Dewanjee S., Bhowmick S., Dua T.K., Das S., Saha A., De Feo V. Rosmarinic Acid Attenuates Cadmium-Induced Nephrotoxicity via Inhibition of Oxidative Stress, Apoptosis, Inflammation and Fibrosis. Int. J. Mol. Sci. 2019;20:2027. doi: 10.3390/ijms20082027. PubMed DOI PMC
Huerta-Madroñal M., Caro-León J., Espinosa-Cano E., Aguilar M.R., Vázquez-Lasa B. Chitosan–Rosmarinic Acid Conjugates with Antioxidant, Anti-Inflammatory and Photoprotective Properties. Carbohydr. Polym. 2021;273:118619. doi: 10.1016/j.carbpol.2021.118619. PubMed DOI
Petersen M., Simmonds M.S.J. Rosmarinic Acid. Phytochemistry. 2003;62:121–125. doi: 10.1016/S0031-9422(02)00513-7. PubMed DOI
El Kantar S., Yassin A., Nehmeh B., Labaki L., Mitri S., Naser Aldine F., Hirko A., Caballero S., Monck E., Garcia-Maruniak A., et al. Deciphering the Therapeutical Potentials of Rosmarinic Acid. Sci. Rep. 2022;12:15489. doi: 10.1038/s41598-022-19735-y. PubMed DOI PMC
Samy C.R.A., Karunanithi K., Sheshadhri J., Rengarajan M., Srinivasan P., Cherian P. (R)-(+)-Rosmarinic Acid as an Inhibitor of Herpes and Dengue Virus Replication: An In Silico Assessment. Rev. Bras. Farmacogn. 2023;33:543. doi: 10.1007/s43450-023-00381-y. PubMed DOI PMC
Koycheva I.K., Vasileva L.V., Amirova K.M., Marchev A.S., Balcheva-Sivenova Z.P., Georgiev M.I. Biotechnologically Produced Lavandula Angustifolia Mill. Extract Rich in Rosmarinic Acid Resolves Psoriasis-Related Inflammation Through Janus Kinase/Signal Transducer and Activator of Transcription Signaling. Front. Pharmacol. 2021;12:680168. doi: 10.3389/fphar.2021.680168. PubMed DOI PMC
Georgiev M., Pavlov A., Ilieva M. Selection of High Rosmarinic Acid Producing Lavandula Vera MM Cell Lines. Process Biochem. 2006;41:2068–2071. doi: 10.1016/j.procbio.2006.05.007. DOI
Fachel F.N.S., Medeiros-Neves B., Dal Prá M., Schuh R.S., Veras K.S., Bassani V.L., Koester L.S., Henriques A.T., Braganhol E., Teixeira H.F. Box-Behnken Design Optimization of Mucoadhesive Chitosan-Coated Nanoemulsions for Rosmarinic Acid Nasal Delivery—In Vitro Studies. Carbohydr. Polym. 2018;199:572–582. doi: 10.1016/j.carbpol.2018.07.054. PubMed DOI
Casanova F., Estevinho B.N., Santos L. Preliminary Studies of Rosmarinic Acid Microencapsulation with Chitosan and Modified Chitosan for Topical Delivery. Powder Technol. 2016;297:44–49. doi: 10.1016/j.powtec.2016.04.014. DOI
Sardarabadi H., Darvishi M.H., Zohrab F., Javadi H. Nanophytomedicine: A Promising Practical Approach in Phytotherapy. Phytother. Res. 2024;38:3607–3644. doi: 10.1002/ptr.8230. PubMed DOI
Yihan W., Jinjin D., Yingqi W., Guanai M., Xiwu Z. Advances in Plant Essential Oils and Drug Delivery Systems for Skincare. Front. Pharmacol. 2025;16:1578280. doi: 10.3389/fphar.2025.1578280. PubMed DOI PMC
Castangia I., Fulgheri F., Perra M., Bacchetta G., Fancello L., Corrias F., Usach I., Peris J.E., Manca M.L., Manconi M. A Cocktail-Based Formula for the Design of Nanosized Cosmeceuticals as Skincare and Anti-Age Products. Nanomaterials. 2023;13:2485. doi: 10.3390/nano13172485. PubMed DOI PMC
Perra M., Fancello L., Castangia I., Allaw M., Escribano-Ferrer E., Peris J.E., Usach I., Manca M.L., Koycheva I.K., Georgiev M.I., et al. Formulation and Testing of Antioxidant and Protective Effect of Hyalurosomes Loading Extract Rich in Rosmarinic Acid Biotechnologically Produced from Lavandula Angustifolia Miller. Molecules. 2022;27:2423. doi: 10.3390/molecules27082423. PubMed DOI PMC
Taléns-Visconti R., Perra M., Ruiz-Saurí A., Nácher A. New Vehiculation Systems of Mometasone Furoate for the Treatment of Inflammatory Skin Diseases. Pharmaceutics. 2022;14:2558. doi: 10.3390/pharmaceutics14122558. PubMed DOI PMC
Elhalmoushy P.M., Elsheikh M.A., Matar N.A., El-Hadidy W.F., Kamel M.A., Omran G.A., Elnaggar Y.S.R. Novel Berberine-Loaded Hyalurosomes as a Promising Nanodermatological Treatment for Vitiligo: Biochemical, Biological and Gene Expression Studies. Int. J. Pharm. 2022;615:121523. doi: 10.1016/j.ijpharm.2022.121523. PubMed DOI
Elsheikh M.A., Gaafar P.M.E., Khattab M.A., Mohamed M.K., Noureldin M.H., Abbas H. Dual-Effects of Caffeinated Hyalurosomes as a Nano-Cosmeceutical Gel Counteracting UV-Induced Skin Ageing. Int. J. Pharm. X. 2023;5:100170. doi: 10.1016/j.ijpx.2023.100170. PubMed DOI PMC
Zhang Y.Q., Liang R., Liu C., Yang C. Improved Stability and Skin Penetration through Glycethosomes Loaded with Glycyrrhetinic Acid. Int. J. Cosmet. Sci. 2022;44:249–261. doi: 10.1111/ics.12771. PubMed DOI
Anwer M.K., Alshdefat R., Akhtar J., Aleemuddin M. Punica Granatum Loaded Glycerosomes for Antibacterial Effect in Skin Infections: Preparation, Optimization, In Vitro and In Vivo Characterization. Bionanoscience. 2025;15:294. doi: 10.1007/s12668-025-01910-w. DOI
Melis V., Manca M.L., Bullita E., Tamburini E., Castangia I., Cardia M.C., Valenti D., Fadda A.M., Peris J.E., Manconi M. Inhalable Polymer-Glycerosomes as Safe and Effective Carriers for Rifampicin Delivery to the Lungs. Colloids Surf. B Biointerfaces. 2016;143:301–308. doi: 10.1016/j.colsurfb.2016.03.044. PubMed DOI
Manca M.L., Castangia I., Zaru M., Nácher A., Valenti D., Fernàndez-Busquets X., Fadda A.M., Manconi M. Development of Curcumin Loaded Sodium Hyaluronate Immobilized Vesicles (Hyalurosomes) and Their Potential on Skin Inflammation and Wound Restoring. Biomaterials. 2015;71:100–109. doi: 10.1016/j.biomaterials.2015.08.034. PubMed DOI
Juráňová J., Aury-Landas J., Boumediene K., Baugé C., Biedermann D., Ulrichová J., Franková J. Modulation of Skin Inflammatory Response by Active Components of Silymarin. Molecules. 2018;24:123. doi: 10.3390/molecules24010123. PubMed DOI PMC
Franková J., Pivodová V., Vágnerová H., Juráňová J., Ulrichová J. Effects of Silver Nanoparticles on Primary Cell Cultures of Fibroblasts and Keratinocytes in a Wound-Healing Model. J. Appl. Biomater. Funct. Mater. 2016;14:e137–e142. doi: 10.5301/jabfm.5000268. PubMed DOI
Angius F., Floris A. Liposomes and MTT Cell Viability Assay: An Incompatible Affair. Toxicol. Vitr. 2015;29:314–319. doi: 10.1016/j.tiv.2014.11.009. PubMed DOI
Puxeddu S., Scano A., Scorciapino M.A., Delogu I., Vascellari S., Ennas G., Manzin A., Angius F. Physico-Chemical Investigation and Antimicrobial Efficacy of Ozonated Oils: The Case Study of Commercial Ozonated Olive and Sunflower Seed Refined Oils. Molecules. 2024;29:679. doi: 10.3390/molecules29030679. PubMed DOI PMC
Roggia I., Gomes P., Dalcin A.J.F., Ourique A.F., Mânica da Cruz I.B., Ribeiro E.E., Mitjans M., Vinardell M.P. Profiling and Evaluation of the Effect of Guarana-Loaded Liposomes on Different Skin Cell Lines: An In Vitro Study. Cosmetics. 2023;10:79. doi: 10.3390/cosmetics10030079. DOI
Zangooie S., Ghanbari R., Jalilian F.A., Mahmoudvand S., Teimoori A. Antiviral Potential of Phenolic Compounds against HSV-1: In-Vitro Study. Antivir. Ther. 2024;29:13596535241271589. doi: 10.1177/13596535241271589. PubMed DOI
Zhu Y., Binder J., Yurgelonis I., Rai D.K., Lazarro S., Costales C., Kobylarz K., McMonagle P., Steppan C.M., Aschenbrenner L., et al. Generation of a VeroE6 Pgp Gene Knock out Cell Line and Its Use in SARS-CoV-2 Antiviral Study. Antivir. Res. 2022;208:105429. doi: 10.1016/j.antiviral.2022.105429. PubMed DOI PMC
Toscani A., Denaro R., Pacheco S.F.C., Biolatti M., Anselmi S., Dell’oste V., Castagnolo D. Synthesis and Biological Evaluation of Amidinourea Derivatives against Herpes Simplex Viruses. Molecules. 2021;26:4927. doi: 10.3390/molecules26164927. PubMed DOI PMC
Aldoghachi F.E.H., Noor Al-Mousawi U.M., Shari F.H. Antioxidant Activity of Rosmarinic Acid Extracted and Purified from Mentha Piperita. Arch. Razi Inst. 2021;76:1279. doi: 10.22092/ARI.2021.356072.1770. PubMed DOI PMC
Dobros N., Zawada K., Paradowska K. Phytochemical Profile and Antioxidant Activity of Lavandula Angustifolia and Lavandula x Intermedia Cultivars Extracted with Different Methods. Antioxidants. 2022;11:711. doi: 10.3390/antiox11040711. PubMed DOI PMC
Manca M.L., Cencetti C., Matricardi P., Castangia I., Zaru M., Sales O.D., Nacher A., Valenti D., Maccioni A.M., Fadda A.M., et al. Glycerosomes: Use of Hydrogenated Soy Phosphatidylcholine Mixture and Its Effect on Vesicle Features and Diclofenac Skin Penetration. Int. J. Pharm. 2016;511:198–204. doi: 10.1016/j.ijpharm.2016.07.009. PubMed DOI
Manca M.L., Manconi M., Zaru M., Valenti D., Peris J.E., Matricardi P., Maccioni A.M., Fadda A.M. Glycerosomes: Investigation of Role of 1,2-Dimyristoyl-Sn-Glycero-3-Phosphatidycholine (DMPC) on the Assembling and Skin Delivery Performances. Int. J. Pharm. 2017;532:401–407. doi: 10.1016/j.ijpharm.2017.09.026. PubMed DOI
Castangia I., Caddeo C., Manca M.L., Casu L., Latorre A.C., Díez-Sales O., Ruiz-Saurí A., Bacchetta G., Fadda A.M., Manconi M. Delivery of Liquorice Extract by Liposomes and Hyalurosomes to Protect the Skin against Oxidative Stress Injuries. Carbohydr. Polym. 2015;134:657–663. doi: 10.1016/j.carbpol.2015.08.037. PubMed DOI
Castangia I., Manca M.L., Razavi S.H., Nácher A., Díez-Sales O., Peris J.E., Allaw M., Terencio M.C., Usach I., Manconi M. Canthaxanthin Biofabrication, Loading in Green Phospholipid Vesicles and Evaluation of In Vitro Protection of Cells and Promotion of Their Monolayer Regeneration. Biomedicines. 2022;10:157. doi: 10.3390/biomedicines10010157. PubMed DOI PMC
Firoznezhad M., Castangia I., Tuberoso C.I.G., Cottiglia F., Marongiu F., Porceddu M., Usach I., Escribano-Ferrer E., Manca M.L., Manconi M. Formulation and In Vitro Efficacy Assessment of Teucrium Marum Extract Loading Hyalurosomes Enriched with Tween 80 and Glycerol. Nanomaterials. 2022;12:1096. doi: 10.3390/nano12071096. PubMed DOI PMC
Mehdipour A., Reza M.A.S., Rasouli A., Baravati M.H.J., Jafari G.A., Heidari F. Green Synthesis of Zinc Nanoparticles by Hydroalcoholic Extract of Lavender (Lavandula stoechas L.), Characterization, and Cytotoxic Effects on Human Breast and Colon Cancer. Sci. Rep. 2024;14:29543. doi: 10.1038/s41598-024-81295-0. PubMed DOI PMC
Souza I.D.L., Saez V., Mansur C.R.E. Lipid Nanoparticles Containing Coenzyme Q10 for Topical Applications: An Overview of Their Characterization. Colloids Surf. B Biointerfaces. 2023;230:113491. doi: 10.1016/j.colsurfb.2023.113491. PubMed DOI
Casula E., Manca M.L., Perra M., Pedraz J.L., Lopez-Mendez T.B., Lozano A., Calvo E., Zaru M., Manconi M. Nasal Spray Formulations Based on Combined Hyalurosomes and Glycerosomes Loading Zingiber Officinalis Extract as Green and Natural Strategy for the Treatment of Rhinitis and Rhinosinusitis. Antioxidants. 2021;10:1109. doi: 10.3390/antiox10071109. PubMed DOI PMC
Oliveira S., Chaleix V., Baccile N., Helary C. Cytotoxicity Evaluation of Microbial Sophorolipids and Glucolipids Using Normal Human Dermal Fibroblasts (NHDF) in Vitro. Toxicol. Rep. 2025;14:101862. doi: 10.1016/J.TOXREP.2024.101862. PubMed DOI PMC
Zhao C. Cell Culture: In Vitro Model System and a Promising Path to in Vivo Applications. J. Histotechnol. 2023;46:1–4. doi: 10.1080/01478885.2023.2170772. PubMed DOI
Stunova A., Vistejnova L. Dermal Fibroblasts—A Heterogeneous Population with Regulatory Function in Wound Healing. Cytokine Growth Factor. Rev. 2018;39:137–150. doi: 10.1016/j.cytogfr.2018.01.003. PubMed DOI
Hahn H.J., Kim K.B., An I.S., Ahn K.J., Han H.J. Protective Effects of Rosmarinic Acid against Hydrogen Peroxide-Induced Cellular Senescence and the Inflammatory Response in Normal Human Dermal Fibroblasts. Mol. Med. Rep. 2017;16:9763–9769. doi: 10.3892/mmr.2017.7804. PubMed DOI
Matwiejczuk N., Galicka A., Zaręba I., Brzóska M.M. The Protective Effect of Rosmarinic Acid against Unfavorable Influence of Methylparaben and Propylparaben on Collagen in Human Skin Fibroblasts. Nutrients. 2020;12:1282. doi: 10.3390/nu12051282. PubMed DOI PMC
Erdal A., Özdemir D., Özdemir Ş., Bakırtaş M., Ağrı İ. The Effect of Rosmarinic Acid on Wound Healing of Nasal Mucosa in the Rats. Am. J. Rhinol. Allergy. 2024;38:133–139. doi: 10.1177/19458924231216656. PubMed DOI
Lu Y.H., Hong Y., Zhang T.Y., Chen Y.X., Wei Z.J., Gao C.Y. Rosmarinic Acid Exerts Anti-Inflammatory Effect and Relieves Oxidative Stress via Nrf2 Activation in Carbon Tetrachloride-Induced Liver Damage. Food Nutr. Res. 2022;66:66. doi: 10.29219/fnr.v66.8359. PubMed DOI PMC
Ben Djemaa F.G., Bellassoued K., Zouari S., El Feki A., Ammar E. Antioxidant and Wound Healing Activity of Lavandula aspic L. Ointment. J. Tissue Viability. 2016;25:193–200. doi: 10.1016/j.jtv.2016.10.002. PubMed DOI
Mori H.M., Kawanami H., Kawahata H., Aoki M. Wound Healing Potential of Lavender Oil by Acceleration of Granulation and Wound Contraction through Induction of TGF-β in a Rat Model. BMC Complement. Altern. Med. 2016;16:144. doi: 10.1186/s12906-016-1128-7. PubMed DOI PMC
Guo X., Wu S., Shang J., Dong W., Li Y., Peng Q., Xie Z., Chen C. The Effects of Lipoic Acid on Respiratory Diseases. Int. Immunopharmacol. 2023;116:109713. doi: 10.1016/j.intimp.2023.109713. DOI
Pandur E., Balatinácz A., Micalizzi G., Mondello L., Horváth A., Sipos K., Horváth G. Anti-Inflammatory Effect of Lavender (Lavandula angustifolia Mill.) Essential Oil Prepared during Different Plant Phenophases on THP-1 Macrophages. BMC Complement. Med. Ther. 2021;21:287. doi: 10.1186/s12906-021-03461-5. PubMed DOI PMC
Huang M.Y., Liao M.H., Wang Y.K., Huang Y.S., Wen H.C. Effect of Lavender Essential Oil on LPS-Stimulated Inflammation. Am. J. Chin. Med. 2012;40:845–859. doi: 10.1142/S0192415X12500632. PubMed DOI
Kobayashi H., Hirao Y., Kawanishi S., Kato S., Mori Y., Murata M., Oikawa S. Rosmarinic Acid, a Natural Polyphenol, Has a Potential pro-Oxidant Risk via NADH-Mediated Oxidative DNA Damage. Genes Environ. 2024;46:13. doi: 10.1186/s41021-024-00307-7. PubMed DOI PMC
Boots A.W., Haenen G.R.M.M., Bast A. Health Effects of Quercetin: From Antioxidant to Nutraceutical. Eur. J. Pharmacol. 2008;585:325–337. doi: 10.1016/j.ejphar.2008.03.008. PubMed DOI
Galati G., O’Brien P.J. Potential Toxicity of Flavonoids and Other Dietary Phenolics: Significance for Their Chemopreventive and Anticancer Properties. Free Radic. Biol. Med. 2004;37:287–303. doi: 10.1016/j.freeradbiomed.2004.04.034. PubMed DOI
Keane T.J., Horejs C.M., Stevens M.M. Scarring vs. Functional Repair: Matrix-Based Strategies to Regulate Tissue Healing. Adv. Drug Deliv. Rev. 2018;129:407. doi: 10.1016/j.addr.2018.02.002. PubMed DOI PMC
Caley M.P., Martins V.L.C., O’Toole E.A. Metalloproteinases and Wound Healing. Adv. Wound Care. 2015;4:225. doi: 10.1089/wound.2014.0581. PubMed DOI PMC
Koujah L., Suryawanshi R.K., Shukla D. Pathological Processes Activated by Herpes Simplex Virus-1 (HSV-1) Infection in the Cornea. Cell Mol. Life Sci. 2018;76:405. doi: 10.1007/s00018-018-2938-1. PubMed DOI PMC
Yuan X., Mitchell B.M., Wilhelmus K.R. Expression of Matrix Metalloproteinases during Experimental Candida Albicans Keratitis. Invest. Ophthalmol. Vis. Sci. 2009;50:737. doi: 10.1167/iovs.08-2390. PubMed DOI PMC
Elion G.B. Mechanism of Action and Selectivity of Acyclovir. Am. J. Med. 1982;73:7–13. doi: 10.1016/0002-9343(82)90055-9. PubMed DOI
Kimberlin D.W., Whitley R.J. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press; Cambridge, UK: 2007. Antiviral Therapy of HSV-1 and -2; pp. 1153–1174. DOI
Brandariz-Nuñez D., Correas-Sanahuja M., Maya-Gallego S., Martín Herranz I. Neurotoxicity Associated with Acyclovir and Valacyclovir: A Systematic Review of Cases. J. Clin. Pharm. Ther. 2021;46:918–926. doi: 10.1111/jcpt.13464. PubMed DOI
Manca M.L., Zaru M., Manconi M., Lai F., Valenti D., Sinico C., Fadda A.M. Glycerosomes: A New Tool for Effective Dermal and Transdermal Drug Delivery. Int. J. Pharm. 2013;455:66–74. doi: 10.1016/j.ijpharm.2013.07.060. PubMed DOI
Prestwich G.D. Hyaluronic Acid-Based Clinical Biomaterials Derived for Cell and Molecule Delivery in Regenerative Medicine. J. Control. Release. 2011;155:193–199. doi: 10.1016/j.jconrel.2011.04.007. PubMed DOI PMC
Huang G., Huang H. Application of Hyaluronic Acid as Carriers in Drug Delivery. Drug Deliv. 2018;25:766–772. doi: 10.1080/10717544.2018.1450910. PubMed DOI PMC
Abou Baker D.H., Amarowicz R., Kandeil A., Ali M.A., Ibrahim E.A. Antiviral Activity of Lavandula angustifolia L. and Salvia officinalis L. Essential Oils against Avian Influenza H5N1 Virus. J. Agric. Food Res. 2021;4:100135. doi: 10.1016/j.jafr.2021.100135. PubMed DOI PMC