Liposomal Delivery of a Biotechnological Lavandula angustifolia Miller Extract Rich in Rosmarinic Acid for Topical Herpes Simplex Therapy

. 2025 Jun 30 ; 14 (7) : . [epub] 20250630

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40722915

Grantová podpora
PE00000007, INF-ACT Next Generation EU-MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases
BG16RFPR002-1.014-0003-C01 Programme Research Innovation and Digitalisation for Smart Transformation
61989592 Palacký University Olomouc

Herpes simplex virus type 1 (HSV-1) is a widespread pathogen responsible for recurrent infections, primarily affecting the skin and mucous membranes. With the aim of targeting both the viral infection and the associated inflammatory response, biotechnologically produced Lavandula angustifolia Miller (L. angustifolia) extract, rich in rosmarinic acid, was incorporated into liposomal formulations intended for topical application. Lavender is known for its strong anti-inflammatory, antioxidant, wound-healing, and antiviral properties. However, its low stability under certain conditions limits its therapeutic potential. Four different formulations were developed: conventional liposomes, glycerosomes, hyalurosomes, and glycerohyalurosomes. The vesicles were characterized for size, stability, and entrapment efficiency. Glycerosomes were the smallest (~58 nm), while the other formulations ranged around 77 nm, all maintaining a highly negative surface charge, ensuring stability and reduced aggregation. Glycerol-containing formulations demonstrated superior stability over 12 months, while liposomes and hyalurosomes increased their size after only two months. Entrapment efficiency reached up to 100% for most vesicles, except for glycerohyalurosomes (~54%). In vitro studies on Normal Human Dermal Fibroblasts (NHDFs) demonstrated that all formulations were biocompatible and enhanced cell viability under oxidative stress. Glycerosomes, hyalurosomes, and glycerohyalurosomes exhibited significant anti-inflammatory activity by reducing MMP-1 and IL-6 levels in LPS-stimulated fibroblasts. Furthermore, these preliminary results highlighted promising antiviral activity against HSV-1 of the obtained formulations, particularly when applied during or post-infection. Overall, these phospholipid vesicles offer a dual therapeutic approach, combining antioxidant, anti-inflammatory, and antiviral effects, positioning them as promising candidates for the treatment of HSV-induced skin lesions and related inflammatory conditions.

Zobrazit více v PubMed

Bradshaw M.J., Venkatesan A. Herpes Simplex Virus-1 Encephalitis in Adults: Pathophysiology, Diagnosis, and Management. Neurotherapeutics. 2016;13:493–508. doi: 10.1007/s13311-016-0433-7. PubMed DOI PMC

Looker K.J., Magaret A.S., May M.T., Turner K.M.E., Vickerman P., Gottlieb S.L., Newman L.M. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS ONE. 2015;10:e0140765. doi: 10.1371/journal.pone.0140765. PubMed DOI PMC

Gopinath D., Koe K.H., Maharajan M.K., Panda S. A Comprehensive Overview of Epidemiology, Pathogenesis and the Management of Herpes Labialis. Viruses. 2023;15:225. doi: 10.3390/v15010225. PubMed DOI PMC

Herpes Simplex Virus. [(accessed on 13 January 2025)]. Available online: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus.

Whitley R., Kimberlin D.W., Prober C.G. Rhizoctonia Solani, Biology and Pathology: Based on an American Phytopathological Society Symposium on Rhizoctonia solani held at the Miami meeting of the Society, October, 1965. American Phytopathological Society (APS); St. Paul, MN, USA: 2007. Pathogenesis and Disease; pp. 161–171. DOI

Miller C.S., Berger J.R., Mootoor Y., Avdiushko S.A., Zhu H., Kryscio R.J. High Prevalence of Multiple Human Herpesviruses in Saliva from Human Immunodeficiency Virus-Infected Persons in the Era of Highly Active Antiretroviral Therapy. J. Clin. Microbiol. 2006;44:2409–2415. doi: 10.1128/JCM.00256-06. PubMed DOI PMC

Chentoufi A.A., Benmohamed L. Mucosal Herpes Immunity and Immunopathology to Ocular and Genital Herpes Simplex Virus Infections. J. Immunol. Res. 2012;2012:149135. doi: 10.1155/2012/149135. PubMed DOI PMC

Price R.W., Antoinette Walz M., Wohlenberg C., Notkins A.L. Latent Infection of Sensory Ganglia with Herpes Simplex Virus: Efficacy of Immunization. Science. 1975;188:938–940. doi: 10.1126/science.166432. PubMed DOI

Stoeger T., Adler H. “Novel” Triggers of Herpesvirus Reactivation and Their Potential Health Relevance. Front. Microbiol. 2019;10:429807. doi: 10.3389/fmicb.2018.03207. PubMed DOI PMC

Pieknik J.R., Bertke A.S., Krause P.R. Herpes Simplex Virus 2 in Autonomic Ganglia: Evidence for Spontaneous Reactivation. J. Virol. 2019;93:e00227-19. doi: 10.1128/JVI.00227-19. PubMed DOI PMC

Kaul R., Nagelkerke N.J., Kimani J., Ngugi E., Bwayo J.J., MacDonald K.S., Rebbaprgada A., Fonck K., Temmerman M., Ronald A.R., et al. Prevalent Herpes Simplex Virus Type 2 Infection Is Associated with Altered Vaginal Flora and an Increased Susceptibility to Multiple Sexually Transmitted Infections. J. Infect. Dis. 2007;196:1692–1697. doi: 10.1086/522006. PubMed DOI

Chang J.Y., Balch C., Puccio J., Oh H.S. A Narrative Review of Alternative Symptomatic Treatments for Herpes Simplex Virus. Viruses. 2023;15:1314. doi: 10.3390/v15061314. PubMed DOI PMC

Reusser P. Herpesvirus Resistance to Antiviral Drugs: A Review of the Mechanisms, Clinical Importance and Therapeutic Options. J. Hosp. Infect. 1996;33:235–248. doi: 10.1016/S0195-6701(96)90010-9. PubMed DOI

Schalkwijk H.H., Snoeck R., Andrei G. Acyclovir Resistance in Herpes Simplex Viruses: Prevalence and Therapeutic Alternatives. Biochem. Pharmacol. 2022;206:115322. doi: 10.1016/j.bcp.2022.115322. PubMed DOI

van de Sand L., Bormann M., Schmitz Y., Heilingloh C.S., Witzke O., Krawczyk A. Antiviral Active Compounds Derived from Natural Sources against Herpes Simplex Viruses. Viruses. 2021;13:1386. doi: 10.3390/v13071386. PubMed DOI PMC

Gavanji S., Sayedipour S.S., Larki B., Bakhtari A. Antiviral Activity of Some Plant Oils against Herpes Simplex Virus Type 1 in Vero Cell Culture. J. Acute Med. 2015;5:62–68. doi: 10.1016/j.jacme.2015.07.001. DOI

Cavanagh H.M.A., Wilkinson J.M. Biological Activities of Lavender Essential Oil. Phytother. Res. 2002;16:301–308. doi: 10.1002/ptr.1103. PubMed DOI

Barar A., Bensebia O. Surfactant Assisted Extraction for the Recovery of Bioactive Compounds from Solid Wastes of Lavender (Lavandula Angustifolia Mill): Optimization by Box–Behnken Design. Process Biochem. 2025;153:170–181. doi: 10.1016/j.procbio.2025.03.013. DOI

Kovatcheva E.G., Koleva I.I., Ilieva M., Pavlov A., Mincheva M., Konushlieva M. Antioxidant Activity of Extracts from Lavandula Vera MM Cell Cultures. Food Chem. 2001;72:295–300. doi: 10.1016/S0308-8146(00)00229-6. DOI

Yucharoen R., Chansakaow S., Tragoolpua Y. Inhibitory Effect of Aromatic Herbs, Lavender, Sage and Chamomile against Herpes Simplex Virus Infection. Afr. J. Biotechnol. 2011;10:15394–15401. doi: 10.5897/AJB11.2393. DOI

Astani A., Reichling J., Schnitzler P. Comparative Study on the Antiviral Activity of Selected Monoterpenes Derived from Essential Oils. Phytother. Res. 2010;24:673–679. doi: 10.1002/ptr.2955. PubMed DOI PMC

Chianese A., Gravina C., Morone M.V., Ambrosino A., Formato M., Palma F., Foglia F., Nastri B.M., Zannella C., Esposito A., et al. Lavandula Austroapennina: Assessment of the Antiviral Activity of Lipophilic Extracts from Its Organs. Viruses. 2023;15:1648. doi: 10.3390/v15081648. PubMed DOI PMC

Marinho S., Illanes M., Ávila-Román J., Motilva V., Talero E. Anti-Inflammatory Effects of Rosmarinic Acid-Loaded Nanovesicles in Acute Colitis through Modulation of NLRP3 Inflammasome. Biomolecules. 2021;11:162. doi: 10.3390/biom11020162. PubMed DOI PMC

Joardar S., Dewanjee S., Bhowmick S., Dua T.K., Das S., Saha A., De Feo V. Rosmarinic Acid Attenuates Cadmium-Induced Nephrotoxicity via Inhibition of Oxidative Stress, Apoptosis, Inflammation and Fibrosis. Int. J. Mol. Sci. 2019;20:2027. doi: 10.3390/ijms20082027. PubMed DOI PMC

Huerta-Madroñal M., Caro-León J., Espinosa-Cano E., Aguilar M.R., Vázquez-Lasa B. Chitosan–Rosmarinic Acid Conjugates with Antioxidant, Anti-Inflammatory and Photoprotective Properties. Carbohydr. Polym. 2021;273:118619. doi: 10.1016/j.carbpol.2021.118619. PubMed DOI

Petersen M., Simmonds M.S.J. Rosmarinic Acid. Phytochemistry. 2003;62:121–125. doi: 10.1016/S0031-9422(02)00513-7. PubMed DOI

El Kantar S., Yassin A., Nehmeh B., Labaki L., Mitri S., Naser Aldine F., Hirko A., Caballero S., Monck E., Garcia-Maruniak A., et al. Deciphering the Therapeutical Potentials of Rosmarinic Acid. Sci. Rep. 2022;12:15489. doi: 10.1038/s41598-022-19735-y. PubMed DOI PMC

Samy C.R.A., Karunanithi K., Sheshadhri J., Rengarajan M., Srinivasan P., Cherian P. (R)-(+)-Rosmarinic Acid as an Inhibitor of Herpes and Dengue Virus Replication: An In Silico Assessment. Rev. Bras. Farmacogn. 2023;33:543. doi: 10.1007/s43450-023-00381-y. PubMed DOI PMC

Koycheva I.K., Vasileva L.V., Amirova K.M., Marchev A.S., Balcheva-Sivenova Z.P., Georgiev M.I. Biotechnologically Produced Lavandula Angustifolia Mill. Extract Rich in Rosmarinic Acid Resolves Psoriasis-Related Inflammation Through Janus Kinase/Signal Transducer and Activator of Transcription Signaling. Front. Pharmacol. 2021;12:680168. doi: 10.3389/fphar.2021.680168. PubMed DOI PMC

Georgiev M., Pavlov A., Ilieva M. Selection of High Rosmarinic Acid Producing Lavandula Vera MM Cell Lines. Process Biochem. 2006;41:2068–2071. doi: 10.1016/j.procbio.2006.05.007. DOI

Fachel F.N.S., Medeiros-Neves B., Dal Prá M., Schuh R.S., Veras K.S., Bassani V.L., Koester L.S., Henriques A.T., Braganhol E., Teixeira H.F. Box-Behnken Design Optimization of Mucoadhesive Chitosan-Coated Nanoemulsions for Rosmarinic Acid Nasal Delivery—In Vitro Studies. Carbohydr. Polym. 2018;199:572–582. doi: 10.1016/j.carbpol.2018.07.054. PubMed DOI

Casanova F., Estevinho B.N., Santos L. Preliminary Studies of Rosmarinic Acid Microencapsulation with Chitosan and Modified Chitosan for Topical Delivery. Powder Technol. 2016;297:44–49. doi: 10.1016/j.powtec.2016.04.014. DOI

Sardarabadi H., Darvishi M.H., Zohrab F., Javadi H. Nanophytomedicine: A Promising Practical Approach in Phytotherapy. Phytother. Res. 2024;38:3607–3644. doi: 10.1002/ptr.8230. PubMed DOI

Yihan W., Jinjin D., Yingqi W., Guanai M., Xiwu Z. Advances in Plant Essential Oils and Drug Delivery Systems for Skincare. Front. Pharmacol. 2025;16:1578280. doi: 10.3389/fphar.2025.1578280. PubMed DOI PMC

Castangia I., Fulgheri F., Perra M., Bacchetta G., Fancello L., Corrias F., Usach I., Peris J.E., Manca M.L., Manconi M. A Cocktail-Based Formula for the Design of Nanosized Cosmeceuticals as Skincare and Anti-Age Products. Nanomaterials. 2023;13:2485. doi: 10.3390/nano13172485. PubMed DOI PMC

Perra M., Fancello L., Castangia I., Allaw M., Escribano-Ferrer E., Peris J.E., Usach I., Manca M.L., Koycheva I.K., Georgiev M.I., et al. Formulation and Testing of Antioxidant and Protective Effect of Hyalurosomes Loading Extract Rich in Rosmarinic Acid Biotechnologically Produced from Lavandula Angustifolia Miller. Molecules. 2022;27:2423. doi: 10.3390/molecules27082423. PubMed DOI PMC

Taléns-Visconti R., Perra M., Ruiz-Saurí A., Nácher A. New Vehiculation Systems of Mometasone Furoate for the Treatment of Inflammatory Skin Diseases. Pharmaceutics. 2022;14:2558. doi: 10.3390/pharmaceutics14122558. PubMed DOI PMC

Elhalmoushy P.M., Elsheikh M.A., Matar N.A., El-Hadidy W.F., Kamel M.A., Omran G.A., Elnaggar Y.S.R. Novel Berberine-Loaded Hyalurosomes as a Promising Nanodermatological Treatment for Vitiligo: Biochemical, Biological and Gene Expression Studies. Int. J. Pharm. 2022;615:121523. doi: 10.1016/j.ijpharm.2022.121523. PubMed DOI

Elsheikh M.A., Gaafar P.M.E., Khattab M.A., Mohamed M.K., Noureldin M.H., Abbas H. Dual-Effects of Caffeinated Hyalurosomes as a Nano-Cosmeceutical Gel Counteracting UV-Induced Skin Ageing. Int. J. Pharm. X. 2023;5:100170. doi: 10.1016/j.ijpx.2023.100170. PubMed DOI PMC

Zhang Y.Q., Liang R., Liu C., Yang C. Improved Stability and Skin Penetration through Glycethosomes Loaded with Glycyrrhetinic Acid. Int. J. Cosmet. Sci. 2022;44:249–261. doi: 10.1111/ics.12771. PubMed DOI

Anwer M.K., Alshdefat R., Akhtar J., Aleemuddin M. Punica Granatum Loaded Glycerosomes for Antibacterial Effect in Skin Infections: Preparation, Optimization, In Vitro and In Vivo Characterization. Bionanoscience. 2025;15:294. doi: 10.1007/s12668-025-01910-w. DOI

Melis V., Manca M.L., Bullita E., Tamburini E., Castangia I., Cardia M.C., Valenti D., Fadda A.M., Peris J.E., Manconi M. Inhalable Polymer-Glycerosomes as Safe and Effective Carriers for Rifampicin Delivery to the Lungs. Colloids Surf. B Biointerfaces. 2016;143:301–308. doi: 10.1016/j.colsurfb.2016.03.044. PubMed DOI

Manca M.L., Castangia I., Zaru M., Nácher A., Valenti D., Fernàndez-Busquets X., Fadda A.M., Manconi M. Development of Curcumin Loaded Sodium Hyaluronate Immobilized Vesicles (Hyalurosomes) and Their Potential on Skin Inflammation and Wound Restoring. Biomaterials. 2015;71:100–109. doi: 10.1016/j.biomaterials.2015.08.034. PubMed DOI

Juráňová J., Aury-Landas J., Boumediene K., Baugé C., Biedermann D., Ulrichová J., Franková J. Modulation of Skin Inflammatory Response by Active Components of Silymarin. Molecules. 2018;24:123. doi: 10.3390/molecules24010123. PubMed DOI PMC

Franková J., Pivodová V., Vágnerová H., Juráňová J., Ulrichová J. Effects of Silver Nanoparticles on Primary Cell Cultures of Fibroblasts and Keratinocytes in a Wound-Healing Model. J. Appl. Biomater. Funct. Mater. 2016;14:e137–e142. doi: 10.5301/jabfm.5000268. PubMed DOI

Angius F., Floris A. Liposomes and MTT Cell Viability Assay: An Incompatible Affair. Toxicol. Vitr. 2015;29:314–319. doi: 10.1016/j.tiv.2014.11.009. PubMed DOI

Puxeddu S., Scano A., Scorciapino M.A., Delogu I., Vascellari S., Ennas G., Manzin A., Angius F. Physico-Chemical Investigation and Antimicrobial Efficacy of Ozonated Oils: The Case Study of Commercial Ozonated Olive and Sunflower Seed Refined Oils. Molecules. 2024;29:679. doi: 10.3390/molecules29030679. PubMed DOI PMC

Roggia I., Gomes P., Dalcin A.J.F., Ourique A.F., Mânica da Cruz I.B., Ribeiro E.E., Mitjans M., Vinardell M.P. Profiling and Evaluation of the Effect of Guarana-Loaded Liposomes on Different Skin Cell Lines: An In Vitro Study. Cosmetics. 2023;10:79. doi: 10.3390/cosmetics10030079. DOI

Zangooie S., Ghanbari R., Jalilian F.A., Mahmoudvand S., Teimoori A. Antiviral Potential of Phenolic Compounds against HSV-1: In-Vitro Study. Antivir. Ther. 2024;29:13596535241271589. doi: 10.1177/13596535241271589. PubMed DOI

Zhu Y., Binder J., Yurgelonis I., Rai D.K., Lazarro S., Costales C., Kobylarz K., McMonagle P., Steppan C.M., Aschenbrenner L., et al. Generation of a VeroE6 Pgp Gene Knock out Cell Line and Its Use in SARS-CoV-2 Antiviral Study. Antivir. Res. 2022;208:105429. doi: 10.1016/j.antiviral.2022.105429. PubMed DOI PMC

Toscani A., Denaro R., Pacheco S.F.C., Biolatti M., Anselmi S., Dell’oste V., Castagnolo D. Synthesis and Biological Evaluation of Amidinourea Derivatives against Herpes Simplex Viruses. Molecules. 2021;26:4927. doi: 10.3390/molecules26164927. PubMed DOI PMC

Aldoghachi F.E.H., Noor Al-Mousawi U.M., Shari F.H. Antioxidant Activity of Rosmarinic Acid Extracted and Purified from Mentha Piperita. Arch. Razi Inst. 2021;76:1279. doi: 10.22092/ARI.2021.356072.1770. PubMed DOI PMC

Dobros N., Zawada K., Paradowska K. Phytochemical Profile and Antioxidant Activity of Lavandula Angustifolia and Lavandula x Intermedia Cultivars Extracted with Different Methods. Antioxidants. 2022;11:711. doi: 10.3390/antiox11040711. PubMed DOI PMC

Manca M.L., Cencetti C., Matricardi P., Castangia I., Zaru M., Sales O.D., Nacher A., Valenti D., Maccioni A.M., Fadda A.M., et al. Glycerosomes: Use of Hydrogenated Soy Phosphatidylcholine Mixture and Its Effect on Vesicle Features and Diclofenac Skin Penetration. Int. J. Pharm. 2016;511:198–204. doi: 10.1016/j.ijpharm.2016.07.009. PubMed DOI

Manca M.L., Manconi M., Zaru M., Valenti D., Peris J.E., Matricardi P., Maccioni A.M., Fadda A.M. Glycerosomes: Investigation of Role of 1,2-Dimyristoyl-Sn-Glycero-3-Phosphatidycholine (DMPC) on the Assembling and Skin Delivery Performances. Int. J. Pharm. 2017;532:401–407. doi: 10.1016/j.ijpharm.2017.09.026. PubMed DOI

Castangia I., Caddeo C., Manca M.L., Casu L., Latorre A.C., Díez-Sales O., Ruiz-Saurí A., Bacchetta G., Fadda A.M., Manconi M. Delivery of Liquorice Extract by Liposomes and Hyalurosomes to Protect the Skin against Oxidative Stress Injuries. Carbohydr. Polym. 2015;134:657–663. doi: 10.1016/j.carbpol.2015.08.037. PubMed DOI

Castangia I., Manca M.L., Razavi S.H., Nácher A., Díez-Sales O., Peris J.E., Allaw M., Terencio M.C., Usach I., Manconi M. Canthaxanthin Biofabrication, Loading in Green Phospholipid Vesicles and Evaluation of In Vitro Protection of Cells and Promotion of Their Monolayer Regeneration. Biomedicines. 2022;10:157. doi: 10.3390/biomedicines10010157. PubMed DOI PMC

Firoznezhad M., Castangia I., Tuberoso C.I.G., Cottiglia F., Marongiu F., Porceddu M., Usach I., Escribano-Ferrer E., Manca M.L., Manconi M. Formulation and In Vitro Efficacy Assessment of Teucrium Marum Extract Loading Hyalurosomes Enriched with Tween 80 and Glycerol. Nanomaterials. 2022;12:1096. doi: 10.3390/nano12071096. PubMed DOI PMC

Mehdipour A., Reza M.A.S., Rasouli A., Baravati M.H.J., Jafari G.A., Heidari F. Green Synthesis of Zinc Nanoparticles by Hydroalcoholic Extract of Lavender (Lavandula stoechas L.), Characterization, and Cytotoxic Effects on Human Breast and Colon Cancer. Sci. Rep. 2024;14:29543. doi: 10.1038/s41598-024-81295-0. PubMed DOI PMC

Souza I.D.L., Saez V., Mansur C.R.E. Lipid Nanoparticles Containing Coenzyme Q10 for Topical Applications: An Overview of Their Characterization. Colloids Surf. B Biointerfaces. 2023;230:113491. doi: 10.1016/j.colsurfb.2023.113491. PubMed DOI

Casula E., Manca M.L., Perra M., Pedraz J.L., Lopez-Mendez T.B., Lozano A., Calvo E., Zaru M., Manconi M. Nasal Spray Formulations Based on Combined Hyalurosomes and Glycerosomes Loading Zingiber Officinalis Extract as Green and Natural Strategy for the Treatment of Rhinitis and Rhinosinusitis. Antioxidants. 2021;10:1109. doi: 10.3390/antiox10071109. PubMed DOI PMC

Oliveira S., Chaleix V., Baccile N., Helary C. Cytotoxicity Evaluation of Microbial Sophorolipids and Glucolipids Using Normal Human Dermal Fibroblasts (NHDF) in Vitro. Toxicol. Rep. 2025;14:101862. doi: 10.1016/J.TOXREP.2024.101862. PubMed DOI PMC

Zhao C. Cell Culture: In Vitro Model System and a Promising Path to in Vivo Applications. J. Histotechnol. 2023;46:1–4. doi: 10.1080/01478885.2023.2170772. PubMed DOI

Stunova A., Vistejnova L. Dermal Fibroblasts—A Heterogeneous Population with Regulatory Function in Wound Healing. Cytokine Growth Factor. Rev. 2018;39:137–150. doi: 10.1016/j.cytogfr.2018.01.003. PubMed DOI

Hahn H.J., Kim K.B., An I.S., Ahn K.J., Han H.J. Protective Effects of Rosmarinic Acid against Hydrogen Peroxide-Induced Cellular Senescence and the Inflammatory Response in Normal Human Dermal Fibroblasts. Mol. Med. Rep. 2017;16:9763–9769. doi: 10.3892/mmr.2017.7804. PubMed DOI

Matwiejczuk N., Galicka A., Zaręba I., Brzóska M.M. The Protective Effect of Rosmarinic Acid against Unfavorable Influence of Methylparaben and Propylparaben on Collagen in Human Skin Fibroblasts. Nutrients. 2020;12:1282. doi: 10.3390/nu12051282. PubMed DOI PMC

Erdal A., Özdemir D., Özdemir Ş., Bakırtaş M., Ağrı İ. The Effect of Rosmarinic Acid on Wound Healing of Nasal Mucosa in the Rats. Am. J. Rhinol. Allergy. 2024;38:133–139. doi: 10.1177/19458924231216656. PubMed DOI

Lu Y.H., Hong Y., Zhang T.Y., Chen Y.X., Wei Z.J., Gao C.Y. Rosmarinic Acid Exerts Anti-Inflammatory Effect and Relieves Oxidative Stress via Nrf2 Activation in Carbon Tetrachloride-Induced Liver Damage. Food Nutr. Res. 2022;66:66. doi: 10.29219/fnr.v66.8359. PubMed DOI PMC

Ben Djemaa F.G., Bellassoued K., Zouari S., El Feki A., Ammar E. Antioxidant and Wound Healing Activity of Lavandula aspic L. Ointment. J. Tissue Viability. 2016;25:193–200. doi: 10.1016/j.jtv.2016.10.002. PubMed DOI

Mori H.M., Kawanami H., Kawahata H., Aoki M. Wound Healing Potential of Lavender Oil by Acceleration of Granulation and Wound Contraction through Induction of TGF-β in a Rat Model. BMC Complement. Altern. Med. 2016;16:144. doi: 10.1186/s12906-016-1128-7. PubMed DOI PMC

Guo X., Wu S., Shang J., Dong W., Li Y., Peng Q., Xie Z., Chen C. The Effects of Lipoic Acid on Respiratory Diseases. Int. Immunopharmacol. 2023;116:109713. doi: 10.1016/j.intimp.2023.109713. DOI

Pandur E., Balatinácz A., Micalizzi G., Mondello L., Horváth A., Sipos K., Horváth G. Anti-Inflammatory Effect of Lavender (Lavandula angustifolia Mill.) Essential Oil Prepared during Different Plant Phenophases on THP-1 Macrophages. BMC Complement. Med. Ther. 2021;21:287. doi: 10.1186/s12906-021-03461-5. PubMed DOI PMC

Huang M.Y., Liao M.H., Wang Y.K., Huang Y.S., Wen H.C. Effect of Lavender Essential Oil on LPS-Stimulated Inflammation. Am. J. Chin. Med. 2012;40:845–859. doi: 10.1142/S0192415X12500632. PubMed DOI

Kobayashi H., Hirao Y., Kawanishi S., Kato S., Mori Y., Murata M., Oikawa S. Rosmarinic Acid, a Natural Polyphenol, Has a Potential pro-Oxidant Risk via NADH-Mediated Oxidative DNA Damage. Genes Environ. 2024;46:13. doi: 10.1186/s41021-024-00307-7. PubMed DOI PMC

Boots A.W., Haenen G.R.M.M., Bast A. Health Effects of Quercetin: From Antioxidant to Nutraceutical. Eur. J. Pharmacol. 2008;585:325–337. doi: 10.1016/j.ejphar.2008.03.008. PubMed DOI

Galati G., O’Brien P.J. Potential Toxicity of Flavonoids and Other Dietary Phenolics: Significance for Their Chemopreventive and Anticancer Properties. Free Radic. Biol. Med. 2004;37:287–303. doi: 10.1016/j.freeradbiomed.2004.04.034. PubMed DOI

Keane T.J., Horejs C.M., Stevens M.M. Scarring vs. Functional Repair: Matrix-Based Strategies to Regulate Tissue Healing. Adv. Drug Deliv. Rev. 2018;129:407. doi: 10.1016/j.addr.2018.02.002. PubMed DOI PMC

Caley M.P., Martins V.L.C., O’Toole E.A. Metalloproteinases and Wound Healing. Adv. Wound Care. 2015;4:225. doi: 10.1089/wound.2014.0581. PubMed DOI PMC

Koujah L., Suryawanshi R.K., Shukla D. Pathological Processes Activated by Herpes Simplex Virus-1 (HSV-1) Infection in the Cornea. Cell Mol. Life Sci. 2018;76:405. doi: 10.1007/s00018-018-2938-1. PubMed DOI PMC

Yuan X., Mitchell B.M., Wilhelmus K.R. Expression of Matrix Metalloproteinases during Experimental Candida Albicans Keratitis. Invest. Ophthalmol. Vis. Sci. 2009;50:737. doi: 10.1167/iovs.08-2390. PubMed DOI PMC

Elion G.B. Mechanism of Action and Selectivity of Acyclovir. Am. J. Med. 1982;73:7–13. doi: 10.1016/0002-9343(82)90055-9. PubMed DOI

Kimberlin D.W., Whitley R.J. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press; Cambridge, UK: 2007. Antiviral Therapy of HSV-1 and -2; pp. 1153–1174. DOI

Brandariz-Nuñez D., Correas-Sanahuja M., Maya-Gallego S., Martín Herranz I. Neurotoxicity Associated with Acyclovir and Valacyclovir: A Systematic Review of Cases. J. Clin. Pharm. Ther. 2021;46:918–926. doi: 10.1111/jcpt.13464. PubMed DOI

Manca M.L., Zaru M., Manconi M., Lai F., Valenti D., Sinico C., Fadda A.M. Glycerosomes: A New Tool for Effective Dermal and Transdermal Drug Delivery. Int. J. Pharm. 2013;455:66–74. doi: 10.1016/j.ijpharm.2013.07.060. PubMed DOI

Prestwich G.D. Hyaluronic Acid-Based Clinical Biomaterials Derived for Cell and Molecule Delivery in Regenerative Medicine. J. Control. Release. 2011;155:193–199. doi: 10.1016/j.jconrel.2011.04.007. PubMed DOI PMC

Huang G., Huang H. Application of Hyaluronic Acid as Carriers in Drug Delivery. Drug Deliv. 2018;25:766–772. doi: 10.1080/10717544.2018.1450910. PubMed DOI PMC

Abou Baker D.H., Amarowicz R., Kandeil A., Ali M.A., Ibrahim E.A. Antiviral Activity of Lavandula angustifolia L. and Salvia officinalis L. Essential Oils against Avian Influenza H5N1 Virus. J. Agric. Food Res. 2021;4:100135. doi: 10.1016/j.jafr.2021.100135. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...