Organ-Specific Small Protein Networks in 100 kDa Ultrafiltrates: Functional Analysis and Implications for Neuroregenerative Medicine
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No Number
EW European Wellness International GmbH
PubMed
40724909
PubMed Central
PMC12294768
DOI
10.3390/ijms26146659
PII: ijms26146659
Knihovny.cz E-zdroje
- Klíčová slova
- organ specificity, proteomics, small proteins, ultrafiltration,
- MeSH
- játra metabolismus MeSH
- králíci MeSH
- mapy interakcí proteinů * MeSH
- mozek metabolismus MeSH
- nervové kmenové buňky metabolismus cytologie účinky léků MeSH
- neuronální růst účinky léků MeSH
- orgánová specificita MeSH
- peptidy farmakologie chemie MeSH
- proteom * metabolismus MeSH
- proteomika metody MeSH
- regenerace nervu * MeSH
- regenerativní lékařství metody MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peptidy MeSH
- proteom * MeSH
In this research, the proteomic landscape of 100 kDa protein extract sourced from rabbit brain was compared to extracts from liver and from organ mixture (OM). Our aim was to compare the efficacy of Nanomised Organo Peptides (NOP) ultrafiltrates from two different tissues and a tissue mixture for inducing neurite outgrowth, and subsequently to identify the molecular networks and proteins that could explain such effects. Proteins were isolated by gentle homogenization followed by crossflow ultrafiltration. Proteomic evaluation involved gel electrophoresis, complemented by mass spectrometry and bioinformatics. GO (Gene Ontology) and protein analysis of the mass spectrometry results identified a diverse array of proteins involved in critical specific biological functions, including neuronal development, regulation of growth, immune response, and lipid and metal binding. Data from this study are accessible from the ProteomeXchange repository (identifier PXD051701). Our findings highlight the presence of small proteins that play key roles in metabolic processes and biosynthetic modulation. In vitro outgrowth experiments with neural stem cells (NSCs) showed that 100 kDa protein extracts from the brain resulted in a greater increase in neurite length compared to the liver and organ mixture extracts. The protein networks identified in the NOP ultrafiltrates may significantly improve biological therapeutic strategies related to neural differentiation and outgrowth. This comprehensive proteomic analysis of 100 kDa ultrafiltrates revealed a diverse array of proteins involved in key biological processes, such as neuronal development, metabolic regulation, and immune response. Brain-specific extracts demonstrated the capacity to promote neurite outgrowth in NSCs, suggesting potential application for neuroregenerative therapies. Our findings highlight the potential of small proteins and organ-specific proteins in the development of novel targeted treatments for various diseases, particularly those related to neurodegeneration and aging.
Department of Neurosurgery Heidelberg University Hospital 69120 Heidelberg Germany
EW European Wellness International GmbH Sommerhalde 21 72184 Eutingen Germany
MicroDiscovery 10405 Berlin Germany
Reviva Plzenska 47 252 19 Chrastany Czech Republic
Stellar Biomolecular Research GmbH Klosterstrasse 205a 67480 Edenkoben Germany
Zobrazit více v PubMed
Steinberg R., Koch H.-G. The Largely Unexplored Biology of Small Proteins in Pro- and Eukaryotes. FEBS J. 2021;288:7002–7024. doi: 10.1111/febs.15845. PubMed DOI
Wang L., Wang N., Zhang W., Cheng X., Yan Z., Shao G., Wang X., Wang R., Fu C. Therapeutic Peptides: Current Applications and Future Directions. Signal Transduct. Target. Ther. 2022;7:48. doi: 10.1038/s41392-022-00904-4. PubMed DOI PMC
Zhou J., Liu K., Bauer C., Bendner G., Dietrich H., Slivka J.P., Wink M., Wong M.B.F., Chan M.K.S., Skutella T. Modulation of Cellular Senescence in HEK293 and HepG2 Cells by Ultrafiltrates UPla and ULu Is Partly Mediated by Modulation of Mitochondrial Homeostasis under Oxidative Stress. Int. J. Mol. Sci. 2023;24:6748. doi: 10.3390/ijms24076748. PubMed DOI PMC
Bhat Z.F., Kumar S., Bhat H.F. Bioactive Peptides of Animal Origin: A Review. J. Food Sci. Technol. 2015;52:5377–5392. doi: 10.1007/s13197-015-1731-5. PubMed DOI PMC
Morozov G., Khavinson V.K. Natural and Synthetic Thymic Peptides as Therapeutics for Immune Dysfunction. Int. J. Immunopharmacol. 1997;19:501–505. doi: 10.1016/S0192-0561(97)00058-1. PubMed DOI
Lagassé H.A.D., Alexaki A., Simhadri V.L., Katagiri N.H., Jankowski W., Sauna Z.E., Kimchi-Sarfaty C. Recent Advances in (Therapeutic Protein) Drug Development. F1000Research. 2017;6:113. doi: 10.12688/f1000research.9970.1. PubMed DOI PMC
Chang H.-Y., Wu S., Li Y., Guo L., Li Y., Shah D.K. Effect of the Size of Protein Therapeutics on Brain Pharmacokinetics Following Systematic Administration. AAPS J. 2022;24:62. doi: 10.1208/s12248-022-00701-5. PubMed DOI
Gunawardana P.B.W., Gohil K., Moon K.-M., Foster L.J., Williams F.J. Molecular Neurobiology. Springer; Berlin/Heidelberg, Germany: 2024. Proteomic Investigation of Neurotrophic Trans-Banglene Reveals Potential Link to Iron Homeostasis. PubMed
Kandigian S.E., Ethier E.C., Kitchen R.R., Lam T.T., Arnold S.E., Carlyle B.C. Proteomic Characterization of Post-Mortem Human Brain Tissue Following Ultracentrifugation-Based Subcellular Fractionation. Brain Commun. 2022;4:fcac103. doi: 10.1093/braincomms/fcac103. PubMed DOI PMC
Zhang G., Bowling H., Hom N., Kirshenbaum K., Klann E., Chao M.V., Neubert T.A. In-Depth Quantitative Proteomic Analysis of de Novo Protein Synthesis Induced by Brain-Derived Neurotrophic Factor. J. Proteome Res. 2014;13:5707–5714. doi: 10.1021/pr5006982. PubMed DOI PMC
Gentile J.E., Carrizales M.G., Koleske A.J. Control of Synapse Structure and Function by Actin and Its Regulators. Cells. 2022;11:603. doi: 10.3390/cells11040603. PubMed DOI PMC
Cabri W., Cantelmi P., Corbisiero D., Fantoni T., Ferrazzano L., Martelli G., Mattellone A., Tolomelli A. Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Front. Mol. Biosci. 2021;8:697586. doi: 10.3389/fmolb.2021.697586. PubMed DOI PMC
Kolkova K., Novitskaya V., Pedersen N., Berezin V., Bock E. Neural Cell Adhesion Molecule-Stimulated Neurite Outgrowth Depends on Activation of Protein Kinase C and the Ras-Mitogen-Activated Protein Kinase Pathway. J. Neurosci. Off. J. Soc. Neurosci. 2000;20:2238–2246. doi: 10.1523/JNEUROSCI.20-06-02238.2000. PubMed DOI PMC
Huang R., Yuan D.-J., Li S., Liang X.-S., Gao Y., Lan X.-Y., Qin H.-M., Ma Y.-F., Xu G.-Y., Schachner M., et al. NCAM Regulates Temporal Specification of Neural Progenitor Cells via Profilin2 during Corticogenesis. J. Cell Biol. 2019;219:e201902164. doi: 10.1083/jcb.201902164. PubMed DOI PMC
Strittmatter S., Igarashi M., Fishman M. GAP-43 Amino Terminal Peptides Modulate Growth Cone Morphology and Neurite Outgrowth. J. Neurosci. 1994;14:5503–5513. doi: 10.1523/JNEUROSCI.14-09-05503.1994. PubMed DOI PMC
Liu Y., Fisher D.A., Storm D.R. Intracellular Sorting of Neuromodulin (GAP-43) Mutants Modified in the Membrane Targeting Domain. J. Neurosci. Off. J. Soc. Neurosci. 1994;14:5807–5817. doi: 10.1523/JNEUROSCI.14-10-05807.1994. PubMed DOI PMC
Strittmatter S.M., Vartanian T., Fishman M.C. GAP-43 as a Plasticity Protein in Neuronal Form and Repair. J. Neurobiol. 1992;23:507–520. doi: 10.1002/neu.480230506. PubMed DOI
Sébastien M., Paquette A.L., Prowse E.N.P., Hendricks A.G., Brouhard G.J. Doublecortin Restricts Neuronal Branching by Regulating Tubulin Polyglutamylation. Nat. Commun. 2025;16:1749. doi: 10.1038/s41467-025-56951-2. PubMed DOI PMC
Ayanlaja A.A., Xiong Y., Gao Y., Ji G., Tang C., Abdikani Abdullah Z., Gao D. Distinct Features of Doublecortin as a Marker of Neuronal Migration and Its Implications in Cancer Cell Mobility. Front. Mol. Neurosci. 2017;10:199. doi: 10.3389/fnmol.2017.00199. PubMed DOI PMC
Dema A., Charafeddine R.A., van Haren J., Rahgozar S., Viola G., Jacobs K.A., Kutys M.L., Wittmann T. Doublecortin Reinforces Microtubules to Promote Growth Cone Advance in Soft Environments. Curr. Biol. 2024;34:5822–5832.e5. doi: 10.1016/j.cub.2024.10.063. PubMed DOI PMC
Yang H., Cheng X., Yao Q., Li J., Ju G. The Promotive Effects of Thymosin Beta4 on Neuronal Survival and Neurite Outgrowth by Upregulating L1 Expression. Neurochem. Res. 2008;33:2269–2280. doi: 10.1007/s11064-008-9712-y. PubMed DOI
Mollinari C., Ricci-Vitiani L., Pieri M., Lucantoni C., Rinaldi A.M., Racaniello M., De Maria R., Zona C., Pallini R., Merlo D., et al. Downregulation of Thymosin Β4 in Neural Progenitor Grafts Promotes Spinal Cord Regeneration. J. Cell Sci. 2009;122:4195–4207. doi: 10.1242/jcs.056895. PubMed DOI
Wang L., Chopp M., Jia L., Lu X., Szalad A., Zhang Y., Zhang R., Zhang Z.G. Therapeutic Benefit of Extended Thymosin Β4 Treatment Is Independent of Blood Glucose Level in Mice with Diabetic Peripheral Neuropathy. J. Diabetes Res. 2015;2015:173656. doi: 10.1155/2015/173656. PubMed DOI PMC
Shigyo M., Kuboyama T., Sawai Y., Tada-Umezaki M., Tohda C. Extracellular Vimentin Interacts with Insulin-like Growth Factor 1 Receptor to Promote Axonal Growth. Sci. Rep. 2015;5:12055. doi: 10.1038/srep12055. PubMed DOI PMC
Boyne L.J., Fischer I., Shea T.B. Role of Vimentin in Early Stages of Neuritogenesis in Cultured Hippocampal Neurons. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 1996;14:739–748. doi: 10.1016/S0736-5748(96)00053-6. PubMed DOI
Brenes O., Giachello C.N.G., Corradi A.M., Ghirardi M., Montarolo P.G. Synapsin Knockdown Is Associated with Decreased Neurite Outgrowth, Functional Synaptogenesis Impairment, and Fast High-Frequency Neurotransmitter Release. J. Neurosci. Res. 2015;93:1492–1506. doi: 10.1002/jnr.23624. PubMed DOI
Vasin A., Zueva L., Torrez C., Volfson D., Littleton J.T., Bykhovskaia M. Synapsin Regulates Activity-Dependent Outgrowth of Synaptic Boutons at the Drosophila Neuromuscular Junction. J. Neurosci. 2014;34:10554–10563. doi: 10.1523/JNEUROSCI.5074-13.2014. PubMed DOI PMC
Jiang M., Swann J.W. Expression of Calretinin in Diverse Neuronal Populations during Development of Rat Hippocampus. Neuroscience. 1997;81:1137–1154. doi: 10.1016/S0306-4522(97)00231-5. PubMed DOI
Smith K.M., Browne T.J., Davis O.C., Coyle A., Boyle K.A., Watanabe M., Dickinson S.A., Iredale J.A., Gradwell M.A., Jobling P., et al. Calretinin Positive Neurons Form an Excitatory Amplifier Network in the Spinal Cord Dorsal Horn. eLife. 2019;8:e49190. doi: 10.7554/eLife.49190. PubMed DOI PMC
Iwasaki K., Isaacs K.R., Jacobowitz D.M. Brain-Derived Neurotrophic Factor Stimulates Neurite Outgrowth in a Calretinin-Enriched Neuronal Culture System. Int. J. Dev. Neurosci. 1998;16:135–145. doi: 10.1016/S0736-5748(98)00011-2. PubMed DOI
Kawasaki A., Okada M., Tamada A., Okuda S., Nozumi M., Ito Y., Kobayashi D., Yamasaki T., Yokoyama R., Shibata T., et al. Growth Cone Phosphoproteomics Reveals That GAP-43 Phosphorylated by JNK Is a Marker of Axon Growth and Regeneration. iScience. 2018;4:190–203. doi: 10.1016/j.isci.2018.05.019. PubMed DOI PMC
Lanier L.M., Gates M.A., Witke W., Menzies A.S., Wehman A.M., Macklis J.D., Kwiatkowski D., Soriano P., Gertler F.B. Mena Is Required for Neurulation and Commissure Formation. Neuron. 1999;22:313–325. doi: 10.1016/S0896-6273(00)81092-2. PubMed DOI
Meiri K.F., Saffell J.L., Walsh F.S., Doherty P. Neurite Outgrowth Stimulated by Neural Cell Adhesion Molecules Requires Growth-Associated Protein-43 (GAP-43) Function and Is Associated with GAP-43 Phosphorylation in Growth Cones. J. Neurosci. 1998;18:10429–10437. doi: 10.1523/JNEUROSCI.18-24-10429.1998. PubMed DOI PMC
Lejri I., Grimm A., Eckert A. Ginkgo Biloba Extract Increases Neurite Outgrowth and Activates the Akt/mTOR Pathway. PLoS ONE. 2019;14:e0225761. doi: 10.1371/journal.pone.0225761. PubMed DOI PMC
Quiroz-Baez R., Hernández-Ortega K., Martínez-Martínez E. Insights into the Proteomic Profiling of Extracellular Vesicles for the Identification of Early Biomarkers of Neurodegeneration. Front. Neurol. 2020;11:580030. doi: 10.3389/fneur.2020.580030. PubMed DOI PMC
Hur E.-M., Saijilafu, Zhou F.-Q. Growing the Growth Cone: Remodeling the Cytoskeleton to Promote Axon Regeneration. Trends Neurosci. 2012;35:164–174. doi: 10.1016/j.tins.2011.11.002. PubMed DOI PMC
Dovas A., Couchman J.R. RhoGDI: Multiple Functions in the Regulation of Rho Family GTPase Activities. Biochem. J. 2005;390:1–9. doi: 10.1042/BJ20050104. PubMed DOI PMC
Auer M., Schweigreiter R., Hausott B., Thongrong S., Höltje M., Just I., Bandtlow C., Klimaschewski L. Rho-Independent Stimulation of Axon Outgrowth and Activation of the ERK and Akt Signaling Pathways by C3 Transferase in Sensory Neurons. Front. Cell. Neurosci. 2012;6:43. doi: 10.3389/fncel.2012.00043. PubMed DOI PMC
Tan D., Zhang H., Deng J., Liu J., Wen J., Li L., Wang X., Pan M., Hu X., Guo J. RhoA-GTPase Modulates Neurite Outgrowth by Regulating the Expression of Spastin and P60-Katanin. Cells. 2020;9:230. doi: 10.3390/cells9010230. PubMed DOI PMC
Yamashita T., Tucker K.L., Barde Y.A. Neurotrophin Binding to the P75 Receptor Modulates Rho Activity and Axonal Outgrowth. Neuron. 1999;24:585–593. doi: 10.1016/S0896-6273(00)81114-9. PubMed DOI
Catlin J.P., Tooley C.E.S. Exploring Potential Developmental Origins of Common Neurodegenerative Disorders. [(accessed on 18 March 2025)];Biochem. Soc. Trans. 2024 52:1035–1044. doi: 10.1042/BST20230422. Available online: https://portlandpress.com/biochemsoctrans/article-abstract/52/3/1035/234369/Exploring-potential-developmental-origins-of?redirectedFrom=fulltext. PubMed DOI PMC
Marrone L., Drexler H.C.A., Wang J., Tripathi P., Distler T., Heisterkamp P., Anderson E.N., Kour S., Moraiti A., Maharana S., et al. FUS Pathology in ALS Is Linked to Alterations in Multiple ALS-Associated Proteins and Rescued by Drugs Stimulating Autophagy. Acta Neuropathol. (Berl.) 2019;138:67–84. doi: 10.1007/s00401-019-01998-x. PubMed DOI PMC
Di Domenico M., Jokwitz M., Witke W., Pilo Boyl P. Specificity and Redundancy of Profilin 1 and 2 Function in Brain Development and Neuronal Structure. Cells. 2021;10:2310. doi: 10.3390/cells10092310. PubMed DOI PMC
Issa S., Fayoud H., Shaimardanova A., Sufianov A., Sufianova G., Solovyeva V., Rizvanov A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines. 2024;12:1906. doi: 10.3390/biomedicines12081906. PubMed DOI PMC
Thanos S., Böhm M.R.R., Meyer zu Hörste M., Prokosch-Willing V., Hennig M., Bauer D., Heiligenhaus A. Role of Crystallins in Ocular Neuroprotection and Axonal Regeneration. Prog. Retin. Eye Res. 2014;42:145–161. doi: 10.1016/j.preteyeres.2014.06.004. PubMed DOI
Fasano M., Monti C., Alberio T. A Systems Biology-Led Insight into the Role of the Proteome in Neurodegenerative Diseases. Expert Rev. Proteomics. 2016;13:845–855. doi: 10.1080/14789450.2016.1219254. PubMed DOI
Alberghina L., Höfer T., Vanoni M. Molecular Networks and System-Level Properties. J. Biotechnol. 2009;144:224–233. doi: 10.1016/j.jbiotec.2009.07.009. PubMed DOI
Hao Z., Liu J., Wu B., Yu M., Wegner L.H. Strong Emergence in Biological Systems: Is It Open to Mathematical Reasoning? Acta Biotheor. 2021;69:841–856. doi: 10.1007/s10441-021-09423-1. PubMed DOI
Bhalla U.S., Iyengar R. Emergent Properties of Networks of Biological Signaling Pathways. Science. 1999;283:381–387. doi: 10.1126/science.283.5400.381. PubMed DOI
Dang V., Voigt B., Marcotte E.M. Progress toward a Comprehensive Brain Protein Interactome. Biochem. Soc. Trans. 2025;53:303–314. doi: 10.1042/BST20241135. PubMed DOI PMC
Basu A., Ash P.E., Wolozin B., Emili A. Protein Interaction Network Biology in Neuroscience. Proteomics. 2021;21:1900311. doi: 10.1002/pmic.201900311. PubMed DOI PMC
Fang F.C., Casadevall A. Reductionistic and Holistic Science. Infect. Immun. 2011;79:1401–1404. doi: 10.1128/IAI.01343-10. PubMed DOI PMC
Tran J.C., Zamdborg L., Ahlf D.R., Lee J.E., Catherman A.D., Durbin K.R., Tipton J.D., Vellaichamy A., Kellie J.F., Li M., et al. Mapping Intact Protein Isoforms in Discovery Mode Using Top Down Proteomics. Nature. 2011;480:254–258. doi: 10.1038/nature10575. PubMed DOI PMC
Kesić S. Systems Biology, Emergence and Antireductionism. Saudi J. Biol. Sci. 2016;23:584–591. doi: 10.1016/j.sjbs.2015.06.015. PubMed DOI PMC
Vaudel M., Burkhart J.M., Zahedi R.P., Oveland E., Berven F.S., Sickmann A., Martens L., Barsnes H. PeptideShaker Enables Reanalysis of MS-Derived Proteomics Data Sets. Nat. Biotechnol. 2015;33:22–24. doi: 10.1038/nbt.3109. PubMed DOI
Barabási A.-L., Gulbahce N., Loscalzo J. Network Medicine: A Network-Based Approach to Human Disease. Nat. Rev. Genet. 2011;12:56–68. doi: 10.1038/nrg2918. PubMed DOI PMC
Padula M.P., Berry I.J., O′Rourke M.B., Raymond B.B.A., Santos J., Djordjevic S.P. A Comprehensive Guide for Performing Sample Preparation and Top-Down Protein Analysis. Proteomes. 2017;5:11. doi: 10.3390/proteomes5020011. PubMed DOI PMC
Jarome T.J., Werner C.T., Kwapis J.L., Helmstetter F.J. Activity Dependent Protein Degradation Is Critical for the Formation and Stability of Fear Memory in the Amygdala. PLoS ONE. 2011;6:e24349. doi: 10.1371/journal.pone.0024349. PubMed DOI PMC
Boname J.M., Bloor S., Wandel M.P., Nathan J.A., Antrobus R., Dingwell K.S., Thurston T.L., Smith D.L., Smith J.C., Randow F., et al. Cleavage by Signal Peptide Peptidase Is Required for the Degradation of Selected Tail-Anchored Proteins. J. Cell Biol. 2014;205:847–862. doi: 10.1083/jcb.201312009. PubMed DOI PMC
Teplyashina E.A., Komleva Y.K., Lychkovskaya E.V., Deikhina A.S., Salmina A.B. Regulation of neurogenesis and cerebral angiogenesis by cell protein proteolysis products. RUDN J. Med. 2021;25:114–126. doi: 10.22363/2313-0245-2021-25-2-114-126. DOI
Gomez-Cardona E., Eskandari-Sedighi G., Fahlman R., Westaway D., Julien O. Application of N-Terminal Labeling Methods Provide Novel Insights into Endoproteolysis of the Prion Protein in Vivo. ACS Chem. Neurosci. 2024;15:134–146. doi: 10.1021/acschemneuro.3c00533. PubMed DOI PMC
Klimaschewski L. Ubiquitin-Dependent Proteolysis in Neurons. Physiology. 2003;18:29–33. doi: 10.1152/nips.01408.2002. PubMed DOI
Jiménez-Huete A., Lievens P.M.J., Vidal R., Piccardo P., Ghetti B., Tagliavini F., Frangione B., Prelli F. Endogenous Proteolytic Cleavage of Normal and Disease-Associated Isoforms of the Human Prion Protein in Neural and Non-Neural Tissues. Am. J. Pathol. 1998;153:1561–1572. doi: 10.1016/S0002-9440(10)65744-6. PubMed DOI PMC
Ahn A.C., Tewari M., Poon C.-S., Phillips R.S. The Limits of Reductionism in Medicine: Could Systems Biology Offer an Alternative? PLoS Med. 2006;3:e208. doi: 10.1371/journal.pmed.0030208. PubMed DOI PMC
Maguire G. Using a Systems-Based Approach to Overcome Reductionist Strategies in the Development of Diagnostics. Expert Rev. Mol. Diagn. 2013;13:895–905. doi: 10.1586/14737159.2013.846828. PubMed DOI
Mazzocchi F. The Limits of Reductionism in Biology: What Alternatives? E-LOGOS. 2011;2011:1–19. doi: 10.18267/j.e-logos.301. DOI
Marcus K., Rabilloud T. How Do the Different Proteomic Strategies Cope with the Complexity of Biological Regulations in a Multi-Omic World? Critical Appraisal and Suggestions for Improvements. Proteomes. 2020;8:23. doi: 10.3390/proteomes8030023. PubMed DOI PMC
Asad N. Big Data Meets Proteomics: Leveraging Systems Biology for Mining the Proteome. J. Syst. Biol. Proteome Res. 2023;4:146. doi: 10.35841/aasbpr-4.3.146. DOI
Munro V., Kelly V., Messner C.B., Kustatscher G. Cellular Control of Protein Levels: A Systems Biology Perspective. Proteomics. 2024;24:e2200220. doi: 10.1002/pmic.202200220. PubMed DOI
Noben J.-P., Dumont D., Kwasnikowska N., Verhaert P., Somers V., Hupperts R., Stinissen P., Robben J. Lumbar Cerebrospinal Fluid Proteome in Multiple Sclerosis: Characterization by Ultrafiltration, Liquid Chromatography, and Mass Spectrometry. J. Proteome Res. 2006;5:1647–1657. doi: 10.1021/pr0504788. PubMed DOI
Kangas P., Nyman T.A., Metsähonkala L., Burns C., Tempest R., Williams T., Karttunen J., Jokinen T.S. Towards Optimised Extracellular Vesicle Proteomics from Cerebrospinal Fluid. Sci. Rep. 2023;13:9564. doi: 10.1038/s41598-023-36706-z. PubMed DOI PMC
Soto-Sierra L., Nikolov Z.L. Feasibility of Membrane Ultrafiltration as a Single-Step Clarification and Fractionation of Microalgal Protein Hydrolysates. Front. Bioeng. Biotechnol. 2022;10:957268. doi: 10.3389/fbioe.2022.957268. PubMed DOI PMC
Gallagher S.R. One-Dimensional SDS Gel Electrophoresis of Proteins. Curr. Protoc. Toxicol. 2007;32:A.3F.1–A.3F.38. doi: 10.1002/0471140856.txa03fs32. PubMed DOI
topGO. [(accessed on 27 April 2025)]. Available online: http://bioconductor.org/packages/topGO/
PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences|Nucleic Acids Research|Oxford Academic. [(accessed on 18 March 2025)]. Available online: https://academic.oup.com/nar/article/50/D1/D543/6415112. PubMed PMC