Organ-Specific Small Protein Networks in 100 kDa Ultrafiltrates: Functional Analysis and Implications for Neuroregenerative Medicine

. 2025 Jul 11 ; 26 (14) : . [epub] 20250711

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40724909

Grantová podpora
No Number EW European Wellness International GmbH

In this research, the proteomic landscape of 100 kDa protein extract sourced from rabbit brain was compared to extracts from liver and from organ mixture (OM). Our aim was to compare the efficacy of Nanomised Organo Peptides (NOP) ultrafiltrates from two different tissues and a tissue mixture for inducing neurite outgrowth, and subsequently to identify the molecular networks and proteins that could explain such effects. Proteins were isolated by gentle homogenization followed by crossflow ultrafiltration. Proteomic evaluation involved gel electrophoresis, complemented by mass spectrometry and bioinformatics. GO (Gene Ontology) and protein analysis of the mass spectrometry results identified a diverse array of proteins involved in critical specific biological functions, including neuronal development, regulation of growth, immune response, and lipid and metal binding. Data from this study are accessible from the ProteomeXchange repository (identifier PXD051701). Our findings highlight the presence of small proteins that play key roles in metabolic processes and biosynthetic modulation. In vitro outgrowth experiments with neural stem cells (NSCs) showed that 100 kDa protein extracts from the brain resulted in a greater increase in neurite length compared to the liver and organ mixture extracts. The protein networks identified in the NOP ultrafiltrates may significantly improve biological therapeutic strategies related to neural differentiation and outgrowth. This comprehensive proteomic analysis of 100 kDa ultrafiltrates revealed a diverse array of proteins involved in key biological processes, such as neuronal development, metabolic regulation, and immune response. Brain-specific extracts demonstrated the capacity to promote neurite outgrowth in NSCs, suggesting potential application for neuroregenerative therapies. Our findings highlight the potential of small proteins and organ-specific proteins in the development of novel targeted treatments for various diseases, particularly those related to neurodegeneration and aging.

Zobrazit více v PubMed

Steinberg R., Koch H.-G. The Largely Unexplored Biology of Small Proteins in Pro- and Eukaryotes. FEBS J. 2021;288:7002–7024. doi: 10.1111/febs.15845. PubMed DOI

Wang L., Wang N., Zhang W., Cheng X., Yan Z., Shao G., Wang X., Wang R., Fu C. Therapeutic Peptides: Current Applications and Future Directions. Signal Transduct. Target. Ther. 2022;7:48. doi: 10.1038/s41392-022-00904-4. PubMed DOI PMC

Zhou J., Liu K., Bauer C., Bendner G., Dietrich H., Slivka J.P., Wink M., Wong M.B.F., Chan M.K.S., Skutella T. Modulation of Cellular Senescence in HEK293 and HepG2 Cells by Ultrafiltrates UPla and ULu Is Partly Mediated by Modulation of Mitochondrial Homeostasis under Oxidative Stress. Int. J. Mol. Sci. 2023;24:6748. doi: 10.3390/ijms24076748. PubMed DOI PMC

Bhat Z.F., Kumar S., Bhat H.F. Bioactive Peptides of Animal Origin: A Review. J. Food Sci. Technol. 2015;52:5377–5392. doi: 10.1007/s13197-015-1731-5. PubMed DOI PMC

Morozov G., Khavinson V.K. Natural and Synthetic Thymic Peptides as Therapeutics for Immune Dysfunction. Int. J. Immunopharmacol. 1997;19:501–505. doi: 10.1016/S0192-0561(97)00058-1. PubMed DOI

Lagassé H.A.D., Alexaki A., Simhadri V.L., Katagiri N.H., Jankowski W., Sauna Z.E., Kimchi-Sarfaty C. Recent Advances in (Therapeutic Protein) Drug Development. F1000Research. 2017;6:113. doi: 10.12688/f1000research.9970.1. PubMed DOI PMC

Chang H.-Y., Wu S., Li Y., Guo L., Li Y., Shah D.K. Effect of the Size of Protein Therapeutics on Brain Pharmacokinetics Following Systematic Administration. AAPS J. 2022;24:62. doi: 10.1208/s12248-022-00701-5. PubMed DOI

Gunawardana P.B.W., Gohil K., Moon K.-M., Foster L.J., Williams F.J. Molecular Neurobiology. Springer; Berlin/Heidelberg, Germany: 2024. Proteomic Investigation of Neurotrophic Trans-Banglene Reveals Potential Link to Iron Homeostasis. PubMed

Kandigian S.E., Ethier E.C., Kitchen R.R., Lam T.T., Arnold S.E., Carlyle B.C. Proteomic Characterization of Post-Mortem Human Brain Tissue Following Ultracentrifugation-Based Subcellular Fractionation. Brain Commun. 2022;4:fcac103. doi: 10.1093/braincomms/fcac103. PubMed DOI PMC

Zhang G., Bowling H., Hom N., Kirshenbaum K., Klann E., Chao M.V., Neubert T.A. In-Depth Quantitative Proteomic Analysis of de Novo Protein Synthesis Induced by Brain-Derived Neurotrophic Factor. J. Proteome Res. 2014;13:5707–5714. doi: 10.1021/pr5006982. PubMed DOI PMC

Gentile J.E., Carrizales M.G., Koleske A.J. Control of Synapse Structure and Function by Actin and Its Regulators. Cells. 2022;11:603. doi: 10.3390/cells11040603. PubMed DOI PMC

Cabri W., Cantelmi P., Corbisiero D., Fantoni T., Ferrazzano L., Martelli G., Mattellone A., Tolomelli A. Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Front. Mol. Biosci. 2021;8:697586. doi: 10.3389/fmolb.2021.697586. PubMed DOI PMC

Kolkova K., Novitskaya V., Pedersen N., Berezin V., Bock E. Neural Cell Adhesion Molecule-Stimulated Neurite Outgrowth Depends on Activation of Protein Kinase C and the Ras-Mitogen-Activated Protein Kinase Pathway. J. Neurosci. Off. J. Soc. Neurosci. 2000;20:2238–2246. doi: 10.1523/JNEUROSCI.20-06-02238.2000. PubMed DOI PMC

Huang R., Yuan D.-J., Li S., Liang X.-S., Gao Y., Lan X.-Y., Qin H.-M., Ma Y.-F., Xu G.-Y., Schachner M., et al. NCAM Regulates Temporal Specification of Neural Progenitor Cells via Profilin2 during Corticogenesis. J. Cell Biol. 2019;219:e201902164. doi: 10.1083/jcb.201902164. PubMed DOI PMC

Strittmatter S., Igarashi M., Fishman M. GAP-43 Amino Terminal Peptides Modulate Growth Cone Morphology and Neurite Outgrowth. J. Neurosci. 1994;14:5503–5513. doi: 10.1523/JNEUROSCI.14-09-05503.1994. PubMed DOI PMC

Liu Y., Fisher D.A., Storm D.R. Intracellular Sorting of Neuromodulin (GAP-43) Mutants Modified in the Membrane Targeting Domain. J. Neurosci. Off. J. Soc. Neurosci. 1994;14:5807–5817. doi: 10.1523/JNEUROSCI.14-10-05807.1994. PubMed DOI PMC

Strittmatter S.M., Vartanian T., Fishman M.C. GAP-43 as a Plasticity Protein in Neuronal Form and Repair. J. Neurobiol. 1992;23:507–520. doi: 10.1002/neu.480230506. PubMed DOI

Sébastien M., Paquette A.L., Prowse E.N.P., Hendricks A.G., Brouhard G.J. Doublecortin Restricts Neuronal Branching by Regulating Tubulin Polyglutamylation. Nat. Commun. 2025;16:1749. doi: 10.1038/s41467-025-56951-2. PubMed DOI PMC

Ayanlaja A.A., Xiong Y., Gao Y., Ji G., Tang C., Abdikani Abdullah Z., Gao D. Distinct Features of Doublecortin as a Marker of Neuronal Migration and Its Implications in Cancer Cell Mobility. Front. Mol. Neurosci. 2017;10:199. doi: 10.3389/fnmol.2017.00199. PubMed DOI PMC

Dema A., Charafeddine R.A., van Haren J., Rahgozar S., Viola G., Jacobs K.A., Kutys M.L., Wittmann T. Doublecortin Reinforces Microtubules to Promote Growth Cone Advance in Soft Environments. Curr. Biol. 2024;34:5822–5832.e5. doi: 10.1016/j.cub.2024.10.063. PubMed DOI PMC

Yang H., Cheng X., Yao Q., Li J., Ju G. The Promotive Effects of Thymosin Beta4 on Neuronal Survival and Neurite Outgrowth by Upregulating L1 Expression. Neurochem. Res. 2008;33:2269–2280. doi: 10.1007/s11064-008-9712-y. PubMed DOI

Mollinari C., Ricci-Vitiani L., Pieri M., Lucantoni C., Rinaldi A.M., Racaniello M., De Maria R., Zona C., Pallini R., Merlo D., et al. Downregulation of Thymosin Β4 in Neural Progenitor Grafts Promotes Spinal Cord Regeneration. J. Cell Sci. 2009;122:4195–4207. doi: 10.1242/jcs.056895. PubMed DOI

Wang L., Chopp M., Jia L., Lu X., Szalad A., Zhang Y., Zhang R., Zhang Z.G. Therapeutic Benefit of Extended Thymosin Β4 Treatment Is Independent of Blood Glucose Level in Mice with Diabetic Peripheral Neuropathy. J. Diabetes Res. 2015;2015:173656. doi: 10.1155/2015/173656. PubMed DOI PMC

Shigyo M., Kuboyama T., Sawai Y., Tada-Umezaki M., Tohda C. Extracellular Vimentin Interacts with Insulin-like Growth Factor 1 Receptor to Promote Axonal Growth. Sci. Rep. 2015;5:12055. doi: 10.1038/srep12055. PubMed DOI PMC

Boyne L.J., Fischer I., Shea T.B. Role of Vimentin in Early Stages of Neuritogenesis in Cultured Hippocampal Neurons. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 1996;14:739–748. doi: 10.1016/S0736-5748(96)00053-6. PubMed DOI

Brenes O., Giachello C.N.G., Corradi A.M., Ghirardi M., Montarolo P.G. Synapsin Knockdown Is Associated with Decreased Neurite Outgrowth, Functional Synaptogenesis Impairment, and Fast High-Frequency Neurotransmitter Release. J. Neurosci. Res. 2015;93:1492–1506. doi: 10.1002/jnr.23624. PubMed DOI

Vasin A., Zueva L., Torrez C., Volfson D., Littleton J.T., Bykhovskaia M. Synapsin Regulates Activity-Dependent Outgrowth of Synaptic Boutons at the Drosophila Neuromuscular Junction. J. Neurosci. 2014;34:10554–10563. doi: 10.1523/JNEUROSCI.5074-13.2014. PubMed DOI PMC

Jiang M., Swann J.W. Expression of Calretinin in Diverse Neuronal Populations during Development of Rat Hippocampus. Neuroscience. 1997;81:1137–1154. doi: 10.1016/S0306-4522(97)00231-5. PubMed DOI

Smith K.M., Browne T.J., Davis O.C., Coyle A., Boyle K.A., Watanabe M., Dickinson S.A., Iredale J.A., Gradwell M.A., Jobling P., et al. Calretinin Positive Neurons Form an Excitatory Amplifier Network in the Spinal Cord Dorsal Horn. eLife. 2019;8:e49190. doi: 10.7554/eLife.49190. PubMed DOI PMC

Iwasaki K., Isaacs K.R., Jacobowitz D.M. Brain-Derived Neurotrophic Factor Stimulates Neurite Outgrowth in a Calretinin-Enriched Neuronal Culture System. Int. J. Dev. Neurosci. 1998;16:135–145. doi: 10.1016/S0736-5748(98)00011-2. PubMed DOI

Kawasaki A., Okada M., Tamada A., Okuda S., Nozumi M., Ito Y., Kobayashi D., Yamasaki T., Yokoyama R., Shibata T., et al. Growth Cone Phosphoproteomics Reveals That GAP-43 Phosphorylated by JNK Is a Marker of Axon Growth and Regeneration. iScience. 2018;4:190–203. doi: 10.1016/j.isci.2018.05.019. PubMed DOI PMC

Lanier L.M., Gates M.A., Witke W., Menzies A.S., Wehman A.M., Macklis J.D., Kwiatkowski D., Soriano P., Gertler F.B. Mena Is Required for Neurulation and Commissure Formation. Neuron. 1999;22:313–325. doi: 10.1016/S0896-6273(00)81092-2. PubMed DOI

Meiri K.F., Saffell J.L., Walsh F.S., Doherty P. Neurite Outgrowth Stimulated by Neural Cell Adhesion Molecules Requires Growth-Associated Protein-43 (GAP-43) Function and Is Associated with GAP-43 Phosphorylation in Growth Cones. J. Neurosci. 1998;18:10429–10437. doi: 10.1523/JNEUROSCI.18-24-10429.1998. PubMed DOI PMC

Lejri I., Grimm A., Eckert A. Ginkgo Biloba Extract Increases Neurite Outgrowth and Activates the Akt/mTOR Pathway. PLoS ONE. 2019;14:e0225761. doi: 10.1371/journal.pone.0225761. PubMed DOI PMC

Quiroz-Baez R., Hernández-Ortega K., Martínez-Martínez E. Insights into the Proteomic Profiling of Extracellular Vesicles for the Identification of Early Biomarkers of Neurodegeneration. Front. Neurol. 2020;11:580030. doi: 10.3389/fneur.2020.580030. PubMed DOI PMC

Hur E.-M., Saijilafu, Zhou F.-Q. Growing the Growth Cone: Remodeling the Cytoskeleton to Promote Axon Regeneration. Trends Neurosci. 2012;35:164–174. doi: 10.1016/j.tins.2011.11.002. PubMed DOI PMC

Dovas A., Couchman J.R. RhoGDI: Multiple Functions in the Regulation of Rho Family GTPase Activities. Biochem. J. 2005;390:1–9. doi: 10.1042/BJ20050104. PubMed DOI PMC

Auer M., Schweigreiter R., Hausott B., Thongrong S., Höltje M., Just I., Bandtlow C., Klimaschewski L. Rho-Independent Stimulation of Axon Outgrowth and Activation of the ERK and Akt Signaling Pathways by C3 Transferase in Sensory Neurons. Front. Cell. Neurosci. 2012;6:43. doi: 10.3389/fncel.2012.00043. PubMed DOI PMC

Tan D., Zhang H., Deng J., Liu J., Wen J., Li L., Wang X., Pan M., Hu X., Guo J. RhoA-GTPase Modulates Neurite Outgrowth by Regulating the Expression of Spastin and P60-Katanin. Cells. 2020;9:230. doi: 10.3390/cells9010230. PubMed DOI PMC

Yamashita T., Tucker K.L., Barde Y.A. Neurotrophin Binding to the P75 Receptor Modulates Rho Activity and Axonal Outgrowth. Neuron. 1999;24:585–593. doi: 10.1016/S0896-6273(00)81114-9. PubMed DOI

Catlin J.P., Tooley C.E.S. Exploring Potential Developmental Origins of Common Neurodegenerative Disorders. [(accessed on 18 March 2025)];Biochem. Soc. Trans. 2024 52:1035–1044. doi: 10.1042/BST20230422. Available online: https://portlandpress.com/biochemsoctrans/article-abstract/52/3/1035/234369/Exploring-potential-developmental-origins-of?redirectedFrom=fulltext. PubMed DOI PMC

Marrone L., Drexler H.C.A., Wang J., Tripathi P., Distler T., Heisterkamp P., Anderson E.N., Kour S., Moraiti A., Maharana S., et al. FUS Pathology in ALS Is Linked to Alterations in Multiple ALS-Associated Proteins and Rescued by Drugs Stimulating Autophagy. Acta Neuropathol. (Berl.) 2019;138:67–84. doi: 10.1007/s00401-019-01998-x. PubMed DOI PMC

Di Domenico M., Jokwitz M., Witke W., Pilo Boyl P. Specificity and Redundancy of Profilin 1 and 2 Function in Brain Development and Neuronal Structure. Cells. 2021;10:2310. doi: 10.3390/cells10092310. PubMed DOI PMC

Issa S., Fayoud H., Shaimardanova A., Sufianov A., Sufianova G., Solovyeva V., Rizvanov A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines. 2024;12:1906. doi: 10.3390/biomedicines12081906. PubMed DOI PMC

Thanos S., Böhm M.R.R., Meyer zu Hörste M., Prokosch-Willing V., Hennig M., Bauer D., Heiligenhaus A. Role of Crystallins in Ocular Neuroprotection and Axonal Regeneration. Prog. Retin. Eye Res. 2014;42:145–161. doi: 10.1016/j.preteyeres.2014.06.004. PubMed DOI

Fasano M., Monti C., Alberio T. A Systems Biology-Led Insight into the Role of the Proteome in Neurodegenerative Diseases. Expert Rev. Proteomics. 2016;13:845–855. doi: 10.1080/14789450.2016.1219254. PubMed DOI

Alberghina L., Höfer T., Vanoni M. Molecular Networks and System-Level Properties. J. Biotechnol. 2009;144:224–233. doi: 10.1016/j.jbiotec.2009.07.009. PubMed DOI

Hao Z., Liu J., Wu B., Yu M., Wegner L.H. Strong Emergence in Biological Systems: Is It Open to Mathematical Reasoning? Acta Biotheor. 2021;69:841–856. doi: 10.1007/s10441-021-09423-1. PubMed DOI

Bhalla U.S., Iyengar R. Emergent Properties of Networks of Biological Signaling Pathways. Science. 1999;283:381–387. doi: 10.1126/science.283.5400.381. PubMed DOI

Dang V., Voigt B., Marcotte E.M. Progress toward a Comprehensive Brain Protein Interactome. Biochem. Soc. Trans. 2025;53:303–314. doi: 10.1042/BST20241135. PubMed DOI PMC

Basu A., Ash P.E., Wolozin B., Emili A. Protein Interaction Network Biology in Neuroscience. Proteomics. 2021;21:1900311. doi: 10.1002/pmic.201900311. PubMed DOI PMC

Fang F.C., Casadevall A. Reductionistic and Holistic Science. Infect. Immun. 2011;79:1401–1404. doi: 10.1128/IAI.01343-10. PubMed DOI PMC

Tran J.C., Zamdborg L., Ahlf D.R., Lee J.E., Catherman A.D., Durbin K.R., Tipton J.D., Vellaichamy A., Kellie J.F., Li M., et al. Mapping Intact Protein Isoforms in Discovery Mode Using Top Down Proteomics. Nature. 2011;480:254–258. doi: 10.1038/nature10575. PubMed DOI PMC

Kesić S. Systems Biology, Emergence and Antireductionism. Saudi J. Biol. Sci. 2016;23:584–591. doi: 10.1016/j.sjbs.2015.06.015. PubMed DOI PMC

Vaudel M., Burkhart J.M., Zahedi R.P., Oveland E., Berven F.S., Sickmann A., Martens L., Barsnes H. PeptideShaker Enables Reanalysis of MS-Derived Proteomics Data Sets. Nat. Biotechnol. 2015;33:22–24. doi: 10.1038/nbt.3109. PubMed DOI

Barabási A.-L., Gulbahce N., Loscalzo J. Network Medicine: A Network-Based Approach to Human Disease. Nat. Rev. Genet. 2011;12:56–68. doi: 10.1038/nrg2918. PubMed DOI PMC

Padula M.P., Berry I.J., O′Rourke M.B., Raymond B.B.A., Santos J., Djordjevic S.P. A Comprehensive Guide for Performing Sample Preparation and Top-Down Protein Analysis. Proteomes. 2017;5:11. doi: 10.3390/proteomes5020011. PubMed DOI PMC

Jarome T.J., Werner C.T., Kwapis J.L., Helmstetter F.J. Activity Dependent Protein Degradation Is Critical for the Formation and Stability of Fear Memory in the Amygdala. PLoS ONE. 2011;6:e24349. doi: 10.1371/journal.pone.0024349. PubMed DOI PMC

Boname J.M., Bloor S., Wandel M.P., Nathan J.A., Antrobus R., Dingwell K.S., Thurston T.L., Smith D.L., Smith J.C., Randow F., et al. Cleavage by Signal Peptide Peptidase Is Required for the Degradation of Selected Tail-Anchored Proteins. J. Cell Biol. 2014;205:847–862. doi: 10.1083/jcb.201312009. PubMed DOI PMC

Teplyashina E.A., Komleva Y.K., Lychkovskaya E.V., Deikhina A.S., Salmina A.B. Regulation of neurogenesis and cerebral angiogenesis by cell protein proteolysis products. RUDN J. Med. 2021;25:114–126. doi: 10.22363/2313-0245-2021-25-2-114-126. DOI

Gomez-Cardona E., Eskandari-Sedighi G., Fahlman R., Westaway D., Julien O. Application of N-Terminal Labeling Methods Provide Novel Insights into Endoproteolysis of the Prion Protein in Vivo. ACS Chem. Neurosci. 2024;15:134–146. doi: 10.1021/acschemneuro.3c00533. PubMed DOI PMC

Klimaschewski L. Ubiquitin-Dependent Proteolysis in Neurons. Physiology. 2003;18:29–33. doi: 10.1152/nips.01408.2002. PubMed DOI

Jiménez-Huete A., Lievens P.M.J., Vidal R., Piccardo P., Ghetti B., Tagliavini F., Frangione B., Prelli F. Endogenous Proteolytic Cleavage of Normal and Disease-Associated Isoforms of the Human Prion Protein in Neural and Non-Neural Tissues. Am. J. Pathol. 1998;153:1561–1572. doi: 10.1016/S0002-9440(10)65744-6. PubMed DOI PMC

Ahn A.C., Tewari M., Poon C.-S., Phillips R.S. The Limits of Reductionism in Medicine: Could Systems Biology Offer an Alternative? PLoS Med. 2006;3:e208. doi: 10.1371/journal.pmed.0030208. PubMed DOI PMC

Maguire G. Using a Systems-Based Approach to Overcome Reductionist Strategies in the Development of Diagnostics. Expert Rev. Mol. Diagn. 2013;13:895–905. doi: 10.1586/14737159.2013.846828. PubMed DOI

Mazzocchi F. The Limits of Reductionism in Biology: What Alternatives? E-LOGOS. 2011;2011:1–19. doi: 10.18267/j.e-logos.301. DOI

Marcus K., Rabilloud T. How Do the Different Proteomic Strategies Cope with the Complexity of Biological Regulations in a Multi-Omic World? Critical Appraisal and Suggestions for Improvements. Proteomes. 2020;8:23. doi: 10.3390/proteomes8030023. PubMed DOI PMC

Asad N. Big Data Meets Proteomics: Leveraging Systems Biology for Mining the Proteome. J. Syst. Biol. Proteome Res. 2023;4:146. doi: 10.35841/aasbpr-4.3.146. DOI

Munro V., Kelly V., Messner C.B., Kustatscher G. Cellular Control of Protein Levels: A Systems Biology Perspective. Proteomics. 2024;24:e2200220. doi: 10.1002/pmic.202200220. PubMed DOI

Noben J.-P., Dumont D., Kwasnikowska N., Verhaert P., Somers V., Hupperts R., Stinissen P., Robben J. Lumbar Cerebrospinal Fluid Proteome in Multiple Sclerosis: Characterization by Ultrafiltration, Liquid Chromatography, and Mass Spectrometry. J. Proteome Res. 2006;5:1647–1657. doi: 10.1021/pr0504788. PubMed DOI

Kangas P., Nyman T.A., Metsähonkala L., Burns C., Tempest R., Williams T., Karttunen J., Jokinen T.S. Towards Optimised Extracellular Vesicle Proteomics from Cerebrospinal Fluid. Sci. Rep. 2023;13:9564. doi: 10.1038/s41598-023-36706-z. PubMed DOI PMC

Soto-Sierra L., Nikolov Z.L. Feasibility of Membrane Ultrafiltration as a Single-Step Clarification and Fractionation of Microalgal Protein Hydrolysates. Front. Bioeng. Biotechnol. 2022;10:957268. doi: 10.3389/fbioe.2022.957268. PubMed DOI PMC

Gallagher S.R. One-Dimensional SDS Gel Electrophoresis of Proteins. Curr. Protoc. Toxicol. 2007;32:A.3F.1–A.3F.38. doi: 10.1002/0471140856.txa03fs32. PubMed DOI

topGO. [(accessed on 27 April 2025)]. Available online: http://bioconductor.org/packages/topGO/

PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences|Nucleic Acids Research|Oxford Academic. [(accessed on 18 March 2025)]. Available online: https://academic.oup.com/nar/article/50/D1/D543/6415112. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...