Why catch when you can throw? A framework for tagging animals without capture or restraint
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40727415
PubMed Central
PMC12303111
DOI
10.1098/rsos.250139
PII: rsos250139
Knihovny.cz E-zdroje
- Klíčová slova
- animal capture, animal restraint, biologging, biotelemetry, bur-tagging,
- Publikační typ
- časopisecké články MeSH
The use of electronic tags has significantly advanced our understanding of wild animal behaviour and physiology. However, traditional tagging methods often require capturing and restraining or sedating animals, which causes stress and may potentially affect data quality during acclimatization. Inspired by plant burs, we propose a novel 'bur-tagging' system to attach tags without capture or restraint. We outline a framework for bur-tagging, detailing the design and key considerations for its success. This includes the influence of tagging site location and animal neophobia on the likelihood of tagging over time, strategies to target specific species, and methods to improve tag placement accuracy. The choice of adhesive mechanism and application force are discussed as critical factors for effective attachment. Preliminary trials highlight animal reactions to inactive tagging systems, demonstrating ways to minimize stress and increase tagging efficiency. Field tests on domestic animals and wild canids in Greece suggest that bur-tagging is a viable alternative to conventional methods. While still in development, bur-tagging has the potential to deploy advanced electronic tags on wild animals with reduced stress and greater ethical consideration, offering a promising tool for wildlife research. This innovative approach bridges biology and technology to address challenges in animal tagging.
College of Science Swansea University Swansea UK
Department of Biological Sciences Queen's University Belfast Belfast UK
Department of Biology University of South Eastern Norway Kongsberg Bø Telemark Norway
Department of Biosciences Swansea University Singleton Park Campus Swansea Wales UK
Department of Biosciences Swansea University Swansea UK
Department of Game Management and Wildlife Biology University of Life Sciences Prague Czech Republic
Department of Zoology Aristotle University of Thessaloniki Thessaloniki Greece
ECOSTUDIES P C Environmental Studies Athens Greece
Kolmården Wildlife Park Kolmården Sweden
Research Fundación Oceanogràfic de la Comunitat Valenciana Valencia Area Spain
Swansea University Singleton Park Campus Swansea Wales UK
The Natural Environment and Climate Change Agency Kerkini Branch Kerkini Greece
Zobrazit více v PubMed
Cochran WW, Lord RD. 1963. A radio-tracking system for wild animals. J. Wildl. Manag. 9–24.
Nathan R, et al. 2022. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780. ( 10.1126/science.abg1780) PubMed DOI
Wild TA, Wikelski M, Tyndel S, Alarcón‐Nieto G, Klump BC, Aplin LM, Meboldt M, Williams HJ. 2023. Internet on animals: Wi-Fi-enabled devices provide a solution for big data transmission in biologging. Methods Ecol. Evol. 14, 87–102. ( 10.1111/2041-210x.13798) DOI
Watanabe YY, Papastamatiou YP. 2023. Biologging and biotelemetry: tools for understanding the lives and environments of marine animals. Annu. Rev. Anim. Biosci. 11, 247–267. ( 10.1146/annurev-animal-050322-073657) PubMed DOI
Wilson R, Shepard E, Liebsch N. 2008. Prying into the intimate details of animal lives: use of a daily diary on animals. Endanger. Species Res. 4, 123–137. ( 10.3354/esr00064) DOI
Whitford M, Klimley AP. 2019. An overview of behavioral, physiological, and environmental sensors used in animal biotelemetry and biologging studies. Anim. Biotelemetry 7, 1–24. ( 10.1186/s40317-019-0189-z) DOI
Fahlman A, et al. 2021. The new era of physio-logging and their grand challenges. Front. Physiol. 12, 1–6. ( 10.3389/fphys.2021.669158) PubMed DOI PMC
Kaidarova A, et al. 2023. Wearable sensors for monitoring marine environments and their inhabitants. Nat. Biotechnol. 41, 1208–1220. ( 10.1038/s41587-023-01827-3) PubMed DOI
Hawkes L, Fahlman A, Sato K. 2021. Introduction to the theme issue: measuring physiology in free-living animals. Phil. Trans. R. Soc. B 376, 20200210. ( 10.1098/rstb.2020.0210) PubMed DOI PMC
Wiley DN, Zadra CJ, Friedlaender AS, Parks SE, Pensarosa A, Rogan A, Alex Shorter K, Urbán J, Kerr I. 2023. Deployment of biologging tags on free swimming large whales using uncrewed aerial systems. R. Soc. Open Sci. 10, 221376. ( 10.1098/rsos.221376) PubMed DOI PMC
Reisinger RR, Oosthuizen WC, Péron G, Cory Toussaint D, Andrews RD, de Bruyn PJN. 2014. Satellite tagging and biopsy sampling of killer whales at subantarctic Marion Island: effectiveness, immediate reactions and long-term responses. PLoS One 9, e111835. ( 10.1371/journal.pone.0111835) PubMed DOI PMC
Seber GAF, Schofield MR. 2019. Capture-recapture: parameter estimation for open animal populations. Cham, Switzerland: Springer.
Schemnitz SD, Batcheller GR, Lovallo MJ, White HB, Fall MW. 2009. Capturing and handling wild animals. In The wildlife techniques manual: research (ed. Silvy NJ), pp. 64–117, vol. 1. Baltimore, MD: John Hopkins University Press.
Soulsbury CD, Gray HE, Smith LM, Braithwaite V, Cotter SC, Elwood RW, Wilkinson A, Collins LM. 2020. The welfare and ethics of research involving wild animals: a primer. Methods Ecol. Evol. 11, 1164–1181. ( 10.1111/2041-210x.13435) DOI
Stiegler J, et al. 2024. Mammals show faster recovery from capture and tagging in human-disturbed landscapes. Nat. Commun. 15, 8079. ( 10.1038/s41467-024-52381-8) PubMed DOI PMC
Powell RA, Proulx G. 2003. Trapping and marking terrestrial mammals for research: integrating ethics, performance criteria, techniques, and common sense. ILAR J. 44, 259–276. ( 10.1093/ilar.44.4.259) PubMed DOI
Kukalová M, Gazárková A, Adamík P. 2013. Should I stay or should I go? The influence of handling by researchers on den use in an arboreal nocturnal rodent. Ethology 119, 848–859. ( 10.1111/eth.12126) DOI
Gómez JM, Schupp EW, Jordano P. 2019. Synzoochory: the ecological and evolutionary relevance of a dual interaction. Biol. Rev. 94, 874–902. ( 10.1111/brv.12481) PubMed DOI
Anderson JF. 2002. The natural history of ticks. Med. Clin. 86, 205–218. ( 10.1016/S0025-7125(03)00083-X) PubMed DOI
Qiu Z, Lu Y, Qiu Z. 2022. Review of ultrasonic ranging methods and their current challenges. Micromachines 13, 520. ( 10.3390/mi13040520) PubMed DOI PMC
Sorensen AE. 1986. Seed dispersal by adhesion. Annu. Rev. Ecol. Syst. 17, 443–463. ( 10.1146/annurev.es.17.110186.002303) DOI
Ainley DG, Wilson RP. 2023. The aquatic world of penguins: biology of fish-birds. Cham, Switzerland: Springer.
Crane AL, Brown GE, Chivers DP, Ferrari MCO. 2020. An ecological framework of neophobia: from cells to organisms to populations. Biol. Rev. 95, 218–231. ( 10.1111/brv.12560) PubMed DOI
du Preez BD, Loveridge AJ, Macdonald DW. 2014. To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biol. Conserv. 176, 153–161. ( 10.1016/j.biocon.2014.05.021) DOI
Davis M. 1984. The mammalian startle response. In Neural mechanisms of startle behavior (ed. Eaton RC), pp. 287–351. Boston, MA: Springer US. ( 10.1007/978-1-4899-2286-1_10) DOI
Mizrahy-Rewald O, Winkler N, Amann F, Neugebauer K, Voelkl B, Grogger HA, Ruf T, Fritz J. 2023. The impact of shape and attachment position of biologging devices in northern bald ibises. Anim. Biotelemetry 11, 1–15. ( 10.1186/s40317-023-00322-5) PubMed DOI PMC
Garde B, et al. 2022. Ecological inference using data from accelerometers needs careful protocols. Methods Ecol. Evol. 13, 813–825. ( 10.1111/2041-210x.13804) PubMed DOI PMC
Boyers M, Parrini F, Owen-Smith N, Erasmus BFN, Hetem RS. 2019. How free-ranging ungulates with differing water dependencies cope with seasonal variation in temperature and aridity. Conserv. Physiol. 7, coz064. ( 10.1093/conphys/coz064) PubMed DOI PMC
Montgomery RA, Boudinot LA, Mudumba T, Can ÖE, Droge E, Johnson PJ, Hare D, Hayward MW. 2023. Functionally connecting collaring and conservation to create more actionable telemetry research. Perspect. Ecol. Conserv. 21, 209–215. ( 10.1016/j.pecon.2023.07.004) DOI
Ross TR, et al. 2024. Telemetry without collars: performance of fur-and ear-mounted satellite tags for evaluating the movement and behaviour of polar bears. Anim. Biotelemetry 12, 18. ( 10.1186/s40317-024-00373-2) PubMed DOI PMC
Wilson RP, et al. 2021. Animal lifestyle affects acceptable mass limits for attached tags. Proc. R. Soc. B 288, 20212005. ( 10.1098/rspb.2021.2005) PubMed DOI PMC
Lindenfors P, Gittleman JL, Jones KE. 2007. Sexual size dimorphism in mammals. In Sex, size and gender roles: evolutionary studies of sexual size dimorphism (eds Fairbairn DJ, Blanckenhorn WU, Székely T), pp. 16–26. Oxford, UK: Oxford University Press. ( 10.1093/acprof:oso/9780199208784.003.0003) DOI
Derocher AE, Andersen M, Wiig Ø. 2005. Sexual dimorphism of polar bears. J. Mammal. 86, 895–901. ( 10.1644/1545-1542(2005)86[895:SDOPB]2.0.CO;2) DOI
Krizhevsky A, Sutskever I, Hinton GE. 2017. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90. ( 10.1145/3065386) DOI
Velasco-Montero D, Fernández-Berni J, Carmona-Galán R, Sanglas A, Palomares F. 2024. Reliable and efficient integration of AI into camera traps for smart wildlife monitoring based on continual learning. Ecol. Informatics 83, 102815. ( 10.1016/j.ecoinf.2024.102815) DOI
Valsange P. 2012. Design of helical coil compression spring: a review. Int. J. Eng. Res. Appl. 2, 513–522.
Liehrmann O, Jégoux F, Guilbert M, Isselin‐Nondedeu F, Saïd S, Locatelli Y, Baltzinger C. 2018. Epizoochorous dispersal by ungulates depends on fur, grooming and social interactions. Ecol. Evol. 8, 1582–1594. ( 10.1002/ece3.3768) PubMed DOI PMC
Seale M, Cummins C, Viola IM, Mastropaolo E, Nakayama N. 2018. Design principles of hair-like structures as biological machines. J. R. Soc. Interface 15, 20180206. ( 10.1098/rsif.2018.0206) PubMed DOI PMC
Sato K, Goto Y, Koike S. 2023. Seed attachment by epizoochory depends on animal fur, body height, and plant phenology. Acta Oecologica 119, 103914. ( 10.1016/j.actao.2023.103914) DOI
Mooring MS, Benjamin JE, Harte CR, Herzog NB. 2000. Testing the interspecific body size principle in ungulates: the smaller they come, the harder they groom. Anim. Behav. 60, 35–45. ( 10.1006/anbe.2000.1461) PubMed DOI
Pongrácz P. 2024. Cats are (almost) liquid!—Cats selectively rely on body size awareness when negotiating short openings. iScience 27, 110799. ( 10.1016/j.isci.2024.110799) PubMed DOI PMC
Gorb E, Gorb S. 2002. Contact separation force of the fruit burrs in four plant species adapted to dispersal by mechanical interlocking. Plant Physiol. Biochem. 40, 373–381. ( 10.1016/s0981-9428(02)01381-5) DOI
Russell JE, Tumlison R. 1996. Comparison of microstructure of white winter fur and brown summer fur of some arctic mammals. Acta Zool. 77, 279–282. ( 10.1111/j.1463-6395.1996.tb01272.x) DOI
Tóth M. 2017. Hair and fur atlas of central European mammals. Nagykovácsi, Hungary: Pars Limited.
Riddell EA, Patton JL, Beissinger SR. 2022. Thermal adaptation of pelage in desert rodents balances cooling and insulation. Evolution 76, 3001–3013. ( 10.1111/evo.14643) PubMed DOI PMC
Burger AE. 2005. Dispersal and germination of seeds of Pisonia grandis, an Indo-Pacific tropical tree associated with insular seabird colonies. J. Trop. Ecol. 21, 263–271. ( 10.1017/S0266467404002159) DOI
Marcinko J, Phanopoulos C, Teachey P. 2001. Why does chewing gum stick to hair and what does this have to do with lignocellulosic structural composite adhesion. In Proc. Wood Adhesives 2000, Lake Tahoe, NV, pp. 111–121. Madison, WI: Forest Products Society.
Ling JK. 1970. Pelage and molting in wild mammals with special reference to aquatic forms. Q. Rev. Biol. 45, 16–54. ( 10.1086/406361) PubMed DOI
Zimova M, Hackländer K, Good JM, Melo‐Ferreira J, Alves PC, Mills LS. 2018. Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world? Biol. Rev. 93, 1478–1498. ( 10.1111/brv.12405) PubMed DOI
Pettersson H, Amundin M, Laska M. 2018. Attractant or repellent? Behavioral responses to mammalian blood odor and to a blood odor component in a mesopredator, the meerkat (Suricata suricatta). Front. Behav. Neurosci. 12, 152. ( 10.3389/fnbeh.2018.00152) PubMed DOI PMC
Greggor AL, Berger-Tal O, Blumstein DT. 2020. The rules of attraction: the necessary role of animal cognition in explaining conservation failures and successes. Annu. Rev. Ecol. Evol. Syst. 51, 483–503. ( 10.1146/annurev-ecolsys-011720-103212) DOI
Schlichting PE, et al. 2020. A rapid population assessment method for wild pigs using baited cameras at 3 study sites. Wildl. Soc. Bull. 44, 372–382. ( 10.1002/wsb.1075) DOI
Royle JA, Chandler RB, Yackulic C, Nichols JD. 2012. Likelihood analysis of species occurrence probability from presence‐only data for modelling species distributions. Methods Ecol. Evol. 3, 545–554. ( 10.1111/j.2041-210x.2011.00182.x) DOI
Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT, Bayne E, Boutin S. 2015. Review: wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685. ( 10.1111/1365-2664.12432) DOI
Randler C, Kalb N. 2018. Distance and size matters: a comparison of six wildlife camera traps and their usefulness for wild birds. Ecol. Evol. 8, 7151–7163. ( 10.1002/ece3.4240) PubMed DOI PMC
Holinda D, Burgar JM, Burton AC. 2020. Effects of scent lure on camera trap detections vary across mammalian predator and prey species. PLoS One 15, e0229055. ( 10.1371/journal.pone.0229055) PubMed DOI PMC
Beukes M, Perry T, Parker DM, Mgqatsa N. 2025. Refining camera trap surveys for mammal detection and diversity assessment in the Baviaanskloof catchment, South Africa. Wild 2, 15. ( 10.3390/wild2020015) DOI
Cusack JJ, Dickman AJ, Rowcliffe JM, Carbone C, Macdonald DW, Coulson T. 2015. Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS One 10, e0126373. ( 10.1371/journal.pone.0126373) PubMed DOI PMC
Si X, Kays R, Ding P. 2014. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2, e374. ( 10.7717/peerj.374) PubMed DOI PMC
Yeomans JS, Li L, Scott BW, Frankland PW. 2002. Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci. Biobehav. Rev. 26, 1–11. ( 10.1016/s0149-7634(01)00057-4) PubMed DOI
Brandl HB, Pruessner JC, Farine DR. 2022. The social transmission of stress in animal collectives. Proc. R. Soc. B 289, 20212158. PubMed PMC
Rosell F, Sanda J. 2006. Potential risks of olfactory signaling: the effect of predators on scent marking by beavers. Behav. Ecol. 17, 897–904.
Underwood TJ, Underwood RM. 2013. Bird behaviour on and entanglement in invasive burdock (Arctium spp.) plants in Winnipeg, Manitoba. Can. Field Nat. 127, 164–174. ( 10.22621/cfn.v127i2.1447) DOI
Norquay KJO, Menzies AK, McKibbin CS, Timonin ME, Baloun DE, Willis CKR. 2010. Silver-haired bats (Lasionycteris noctivagans) found ensnared on burdock (Arctium minus). Northwest. Nat. 91, 339–342. ( 10.1898/nwn10-08.1) DOI
Kays R, et al. 2011. Tracking animal location and activity with an automated radio telemetry system in a tropical rainforest. Comput. J. 54, 1931–1948. ( 10.1093/comjnl/bxr072) DOI
Kays R, Wikelski M. 2023. The Internet of Animals: what it is, what it could be. Trends Ecol. Evol. 38, 859–869. ( 10.1016/j.tree.2023.04.007) PubMed DOI
Rafiq K, Appleby RG, Edgar JP, Jordan NR, Dexter CE, Jones DN, Blacker ARF, Cochrane M. 2019. OpenDropOff: an open‐source, low‐cost drop‐off unit for animal‐borne devices. Methods Ecol. Evol. 10, 1517–1522. ( 10.1111/2041-210x.13231) DOI
Painter MS, et al. 2024. Development of a multisensor biologging collar and analytical techniques to describe high‐resolution spatial behavior in free‐ranging terrestrial mammals. Ecol. Evol. 14, e70264. ( 10.1002/ece3.70264) PubMed DOI PMC
Rudd JL, et al. 2024. High-resolution biologging of an Atlantic bluefin tuna captured and eaten by a supposed orca. Sci. Rep. 14, 29352. ( 10.1038/s41598-024-80744-0) PubMed DOI PMC
Clark L, Bryant B, Mezine I. 2000. Bird aversive properties of methyl anthranilate, yucca, xanthoxylum, and their mixtures. J. Chem. Ecol. 26, 1219–1234.
Wilson RP, McMahon CR. 2006. Measuring devices on wild animals: what constitutes acceptable practice? Front. Ecol. Environ. 4, 147–154. ( 10.1890/1540-9295(2006)004[0147:mdowaw]2.0.co;2) DOI
Portugal SJ, White CR. 2018. Miniaturization of biologgers is not alleviating the 5% rule. Methods Ecol. Evol. 9, 1662–1666. ( 10.1111/2041-210x.13013) DOI
Niccolai L, Bassetto M, Quarta AA, Mengali G. 2019. A review of Smart Dust architecture, dynamics, and mission applications. Prog. Aerosp. Sci. 106, 1–14. ( 10.1016/j.paerosci.2019.01.003) DOI
Redcliffe J. 2025. Why catch when you can throw? A framework for tagging animals without capture or restraint. Figshare. https://figshare.com/projects/Why_catch_when_you_can_throw_A_framework_for_tagging_animals_without_capture_or_restraint/171744
Wilson R, Redcliffe J, Holton M, Hopkins P, Thomas V, Rosell FNet al. 2025. Supplementary Material from: Why Catch When You Can Throw? A Framework for Tagging Animals without Capture or Restraint. FigShare ( 10.6084/m9.figshare.c.7915981) DOI
figshare
10.6084/m9.figshare.c.7915981