A Bambusuril Receptor Binds Charge Diffuse Anions in Water at Picomolar Concentrations
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
23-05271S
the Czech Science Foundation
CZ.02.01.01/00/22_010/0008854
OP JAC - Project MSCAfellow7_MUNI
LM2023069
RECETOX Research Infrastructure
857560
the European Union's Horizon 2020 Research and Innovation Programme
CZ.02.01.01/00/23_015/0008175
Czech Infrastructure for Integrative Structural Biology
LM2023052
the National Infrastructure for Chemical Biology
PubMed
40728136
PubMed Central
PMC12416460
DOI
10.1002/anie.202510912
Knihovny.cz E-zdroje
- Klíčová slova
- Bambusurils, Binding in water, Chaotropic effect, Macrocycles, Supramolecular chemistry,
- Publikační typ
- časopisecké články MeSH
Anionic pollutants are widespread in the environment and pose risks to human health. Due to the typically low concentrations of these species, the development of efficient receptors for their detection and removal from aqueous solutions is highly desirable. Here, we report the design and synthesis of a bambusuril receptor with markedly enhanced anion-binding affinity in water, achieved by introducing trifluoromethyl electron-withdrawing groups. The resulting fluorinated receptor is, to date, the most potent known receptor for several charge diffuse anions in aqueous media. The most stable 1:1 host-guest complex in water was observed with iodide, exhibiting a relative dissociation constant of 59 pM. This complex is over three orders of magnitude more stable than any previously reported complex between an artificial receptor and inorganic anion in water.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Langton M. J., Serpell C. J., Beer P. D., Angew. Chem. Int. Ed. 2016, 55, 1974–1987. PubMed PMC
Kubik S., ChemistryOpen 2022. 11, e202200028. PubMed PMC
Patrick S. C., Beer P. D., Davis J. J., Nat. Rev. Chem. 2024, 8, 256–276. PubMed
Park C. H., Simmons H. E., J. Am. Chem. Soc. 1968, 90, 2431–2432.
Graf E., Lehn J. M., J. Am. Chem. Soc. 1976, 98, 6403–6405.
Schmidtchen F. P., Angew. Chem. Int. Ed. Engl. 1977, 16, 720–721.
Schmidtchen F. P., Berger M., Chem. Rev. 1997, 97, 1609–1646. PubMed
Bar Ziv N., Chen C., Da Camara B., Julian R. R., Hooley R. J. iScience 2024, 27, 111348. PubMed PMC
Sudan S., Chen D. W., Berton C., Fadaei‐Tirani F., Severin K., Angew. Chem. Int. Ed. 2023, 62, e202218072. PubMed
Wu Y., Zhang C., Fang S., Zhu D., Chen Y., Ge C., Tang H., Li H., Angew. Chem. Int. Ed. 2022, 61, e202209078. PubMed
Samanta J., Tang M., Zhang M., Hughes R. P., Staples R. J., Ke C., J. Am. Chem. Soc. 2023, 145, 21723–21728. PubMed
Xu C., Tran Q. G., Liu D., Zhai C., Wojtas L., Liu W., Chem. Sci. 2024, 15, 16040–16049. PubMed PMC
He M., Yao Y., Yang Z., Li B., Wang J., Wang Y., Kong Y., Zhou Z., Zhao W., Yang X., Tang J., Wu B., Angew. Chem. Int. Ed. 2024, 63, e202406946. PubMed
Foyle É. M., Goodwin R. J., Cox C. J. T., Smith B. R., Colebatch A. L., White N. G., J. Am. Chem. Soc. 2024, 146, 27127–27137. PubMed
Yawer M. A., Havel V., Sindelar V. A. B., Angew. Chem. Int. Ed. 2015, 54, 276–279. PubMed
Rando C., Vázquez J., Sokolov J., Kokan Z., Nečas M., Šindelář V., Angew. Chem. Int. Ed. 2022, 61, e202210184. PubMed
Havel V., Babiak M., Sindelar V., Chemistry – A European Journal 2017, 23, 8963–8968. PubMed
Lisbjerg M., Nielsen B. E., Milhøj B. O., Sauer S. P. A., Pittelkow M., Org. Biomol. Chem. 2015, 13, 369–373. PubMed
Schaly A., Belda R., García‐España E., Kubik S., Org. Lett. 2013, 15, 6238–6241. PubMed
Borissov A., Marques I., Lim J. Y. C., Félix V., Smith M. D., Beer P. D., J. Am. Chem. Soc. 2019, 141, 4119–4129. PubMed
Langton M. J., Robinson S. W., Marques I., Félix V., Beer P. D., Nature Chem 2014, 6, 1039–1043. PubMed
Biedermann F., Schneider H.‐J., Chem. Rev. 2016, 116, 5216–5300. PubMed
Carnegie R. S., Gibb C. L. D., Gibb B. C., Angew. Chem. 2014, 11498–11500. PubMed PMC
Di Lemma F. G., Colle J. Y., Beneš O., Konings R. J. M., J. Nucl. Mater. 2015, 465, 499–508.
Greer M. A., Goodman G., Pleus R. C., Greer S. E., Environ. Health Perspect. 2002, 110, 927–937. PubMed PMC
Ustynyuk Y. A., Zhokhova N. I., Sizova Z. A., Nenajdenko V. G., Coord. Chem. Rev. 2024, 508, 215759.
Fiala T., Sleziakova K., Marsalek K., Salvadori K., Sindelar V., J. Org. Chem. 2018, 83, 1903–1912. PubMed
Chvojka M., Madea D., Valkenier H., Šindelář V., Angew. Chem. Int. Ed. 2024, 63, e202318261. PubMed
Havel V., Sadilová T., Šindelář V., ACS Omega 2018, 3, 4657–4663. PubMed PMC
De Simone N. A., Chvojka M., Lapešová J., Martínez‐Crespo L., Slávik P., Sokolov J., Butler S. J., Valkenier H., Šindelář V., J. Org. Chem. 2022, 87, 9829–9838. PubMed
Lizal T., Sindelar V., Isr. J. Chem. 2018, 58, 326–333.
Marcus Y., J. Chem. Soc., Faraday Trans. 1991, 87, 2995–2999.
Solvent Extraction Principles and Practice, Revised and Expanded, 2 ed., Rydberg J., Ed., CRC Press, Boca Raton, 2004.