Unraveling bioactive potential and production in Ganoderma lucidum through omics and machine learning modeling
Status PubMed-not-MEDLINE Jazyk angličtina Země Singapur Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40734909
PubMed Central
PMC12301918
DOI
10.1016/j.chmed.2025.05.003
PII: S1674-6384(25)00058-9
Knihovny.cz E-zdroje
- Klíčová slova
- Ganoderma lucidum (Leyss. Ex Fr.) Karst., artificial intelligence, bioactive compounds, computational techniques, herbal medicine, machine learning technologies, omics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ganoderma lucidum, a medicinal mushroom renowned for its production of a diverse array of compounds, accounts for the pharmacological effects including anti-inflammatory, antioxidant, immunomodulatory, and anticancer characteristics. Thus, it is recognized as a valuable species of interest in the pharmaceutical and nutraceutical industries due to its important medicinal properties. Recent advances in omics technologies such as genomes, transcriptomics, proteomics, and metabolomics have considerably increased our understanding of the bioactives in G. lucidum. This review explores the application of molecular breeding techniques to enhance both the yield and quality of G. lucidum across the food, pharmaceutical, and industrial sectors. The article discusses the current state of research on the use of contemporary omics technologies which studies and highlights future research directions that may increase the production of bioactive compounds for their therapeutic potential. Additionally, predictive methods with computational studies have recently emerged as effective tools for investigating bioactive constituents in G. lucidum, providing an organized and cost-effective strategy for understanding their bioactivity, interactions, and possible therapeutic uses. Omics and machine learning techniques can be applied to identify the candidates for pharmaceutical applications and to enhance the production of bioactive compounds in G. lucidum. The quantification and production of the bioactive compounds can be streamlined by the integrating computational study of bioactive compounds with non-destructive predictive machine learning models of the same. Synergistically, these techniques have the potential to be a promising approach for the future prediction of the bioactive constituents, without compromising the integrity of the fungal organism.
Department of Biology University of Mississippi Oxford MS 38655 USA
ICFRE Himalayan Forest Research Institute Shimla 171013 India
School of Advanced Chemical Sciences Shoolini University Solan 173229 India
Zobrazit více v PubMed
Achenbach J.D. Modeling for quantitative non-destructive evaluation. Ultrasonics. 2002;40(1–8):1–10. PubMed
Ahmad M.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomedicine and Pharmacotherapy. 2018;107(April):507–519. PubMed
Azi F., Wang Z., Chen W., Lin D., Xu P. Developing Ganoderma lucidum as a next-generation cell factory for food and nutraceuticals. Trends in Biotechnology. 2023;42(2):1–15. PubMed
Bailly A., Blanc C., Francis É., Guillotin T., Jamal F., Wakim B., et al. Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Computer Methods and Programs in Biomedicine. 2022;213 PubMed
Bao X.F., Wang X.S., Dong Q., Fang J.N., Li X.Y. Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry. 2002;59(2):175–181. PubMed
Benkeblia N. Ganoderma lucidum polysaccharides and terpenoids: Profile and health benefits. Journal of Food Nutrition and Dietetics. 2015;1(1):1–6.
Blundell R., Camilleri E., Baral B., Karpiński T.M., Neza E., Atrooz O.M. The phytochemistry of Ganoderma species and their medicinal potentials. The American Journal of Chinese Medicine. 2023;51(4):859–882. PubMed
Brahmkshatriya P.P., Brahmkshatriya P.S. Springer; Berlin Heidelberg: 2013. Terpenes: Chemistry, Biological Role, and Therapeutic Applications. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; pp. 2665–2691.
Cadar E., Negreanu-Pirjol T., Pascale C., Sirbu R., Prasacu I., Negreanu-Pirjol B.S., et al. Natural bio-compounds from Ganoderma lucidum and their beneficial biological actions for anticancer application: A review. Antioxidants. 2023;12(11):1907. PubMed PMC
Cai M., Liang X., Liu Y., Hu H., Xie Y., Chen S., et al. Transcriptional dynamics of genes purportedly involved in the control of meiosis, carbohydrate, and secondary metabolism during sporulation in Ganoderma lucidum. Genes. 2021;12(4):504. PubMed PMC
Chen S., Xu J., Liu C., Zhu Y., Nelson D.R., Zhou S., et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nature Communications. 2012;3(1):913. PubMed PMC
Choong, Y. K., Sun, S. Q., Zhou, Q., Ismail, Z., Rashid, B. A. A., & Tao, J. X. (2011). Determination of storage stability of the crude extracts of
Cumming J.G., Davis A.M., Muresan S., Haeberlein M., Chen H. Chemical predictive modelling to improve compound quality. Nature Reviews Drug Discovery. 2013;12(12):948–962. PubMed
Dai Y.C., Zhou L.W., Hattori T., Cao Y., Stalpers J.A., Ryvarden L., et al. Ganoderma lingzhi (Polyporales, Basidiomycota): The scientific binomial for the widely cultivated medicinal fungus Lingzhi. Mycological Progress. 2017;16(11–12):1051–1055.
Duronio V. The life of a cell: Apoptosis regulation by the PI3K/PKB pathway. Biochemical Journal. 2008;415(3):333–344. PubMed
Eom H., Choi Y.J., Nandre R., Han H.G., Kim S., Kim M., et al. The Cas9-gRNA ribonucleoprotein complex-mediated editing of pyrG in Ganoderma lucidum and unexpected insertion of contaminated DNA fragments. Scientific Reports. 2023;13(1):11133. PubMed PMC
Ernst P.B., Garrison J.C., Thompson L.F. Much ado about adenosine: Adenosine synthesis and function in regulatory T cell biology. The Journal of Immunology. 2010;185(4):1993–1998. PubMed PMC
Fang Y., Wu D., Gao N., Lv M., Zhou M., Ma C., et al. Whole-genome sequencing and comparative genomic analyses of the medicinal fungus Sanguinoderma infundibulare in Ganodermataceae. Genes, Genomes. Genetics. 2024;14(4):jkae005. PubMed PMC
Fogarasi M., Nemeș S.A., Fărcaș A., Socaciu C., Semeniuc C.A., Socaciu M.I., et al. Bioactive secondary metabolites in mushrooms: A focus on polyphenols, their health benefits and applications. Food Bioscience. 2024;62
Gao X., Homayoonfal M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: A multifaceted approach to combat cancer. Cancer Cell International. 2023;23(1):1–29. PubMed PMC
Gao X., Huo H., Bao H., Wang J., Gao D. Changes of active substances in Ganoderma lucidum during different growth periods and analysis of their molecular mechanism. Molecules. 2024;29(11):2591. PubMed PMC
Gayathiri E., Prakash P., Kumaravel P., Jayaprakash J., Ragunathan M.G., Sankar S., et al. Computational approaches for modeling and structural design of biological systems: A comprehensive review. Progress in Biophysics and Molecular Biology. 2023;185:17–32. PubMed
Gill, B. S., Navgeet, & Kumar, S. (2017). PubMed
Gu L., Zheng Y., Lian D., Zhong X., Liu X. Production of triterpenoids from Ganoderma lucidum: Elicitation strategy and signal transduction. Process Biochemistry. 2018;69:22–32.
Guo J., Liu Y.F., Tang C.H., Zhang J.S., Feng J. The key technologies of Ganoderma lucidum liquid spawn preparation and scale expansion. World Journal of Microbiology and Biotechnology. 2023;39(6):138. PubMed
Hapuarachchi K.K., Cheng C.R., Wen T.C., Jeewon R., Kakumyan P. Mycosphere Essays 20: Therapeutic potential of Ganoderma species: Insights into its use as traditional medicine. Mycosphere. 2017;8(10):1653–1694.
He H., Yao G., Ma Y., Feng N., Zhou S., Huang Q. Experimental and theoretical study of the Raman spectra of ganoderic acid T. Journal of Structural Chemistry. 2019;60(9):1407–1415.
Hsu K.D., Cheng K.C. From nutraceutical to clinical trial: Frontiers in Ganoderma development. Applied Microbiology and Biotechnology. 2018;102(21):9037–9051. PubMed
Hu Y., Li M., Wang S., Yue S., Shi L., Ren A., et al. Ganoderma lucidum phosphoglucomutase is required for hyphal growth, polysaccharide production, and cell wall integrity. Applied Microbiology and Biotechnology. 2018;102(4):1911–1922. PubMed
Huang L., Sun F., Liang C., He Y.X., Bao R., Liu L., et al. Crystal structure of LZ-8 from the medicinal fungus Ganoderma lucidium. Proteins: Structure, Function and Bioinformatics. 2009;75(2):524–527. PubMed
Iyingiala, A. A., Raimi, M. O., Mbong, E. O., Ariyo, A. B., Evans, F. G., Green Ekine, E., et al. (2024). Evaluating the anti-cancer potential of
Jain K.K., Kumar A., Shankar A., Pandey D., Chaudhary B., Sharma K.K. De novo transcriptome assembly and protein profiling of copper-induced lignocellulolytic fungus Ganoderma lucidium MDU-7 reveals genes involved in lignocellulose degradation and terpenoid biosynthetic pathways. Genomics. 2020;112(1):184–198. PubMed
Kang D., Mutakin M., Levita J. Computational study of triterpenoids of Ganoderma lucidum with aspartic protease enzymes for discovering HIV-1 and plasmepsin inhibitors. International Journal of Chemistry. 2015;7(1):62.
Kasahara Y., Hikino H. Central actions of Ganoderma lucidium. Phytotherapy Research. 1987;1(1):17–21.
Khadbaatar S., Bao H., Gao X., Huo H. Study on differences of metabolites among different Ganoderma species with comprehensive metabolomics. Journal of Fungi. 2024;10(8):page?. PubMed PMC
Khalil A.M. The genome editing revolution: Review. Journal of Genetic Engineering and Biotechnology. 2020;18(1):68. PubMed PMC
Khatua, S., & Acharya, K. (2024). Insights into the potential of
Kijpornyongpan T., Aime M.C. Comparative transcriptomics reveal different mechanisms for hyphal growth across four plant-associated dimorphic fungi. Fungal Genetics and Biology. 2021;152 PubMed
Krobthong S., Choowongkomon K., Suphakun P., Kuaprasert B., Samutrtai P., Yingchutrakul Y. The anti-oxidative effect of Lingzhi protein hydrolysates on lipopolysaccharide-stimulated A549 cells. Food Bioscience. 2021;41
Kumar Sethy N., Bhardwaj A., Kumar Singh V., Kishore Sharma R., Deswal R., Bhargava K. Characterization of Ganoderma lucidum: Phytochemical and proteomic approach. Journal of Proteins and Proteomics. 2017;8(1):25–33.
Kumar S., Ali I., Abbas F., Shafiq F., Yadav A.K., Ghate M., et al. In-silico identification and exploration of small molecule coumarin-1,2,3-triazole hybrids as potential EGFR inhibitors for targeting lung cancer. Molecular Diversity. 2024;28:4301–4324. PubMed
Kun R.S., Gomes A.C.S., Hildén K.S., Salazar Cerezo S., Mäkelä M.R., de Vries R.P. Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation. Biotechnology Advances. 2019;37(6) PubMed
Kuo, A., Bushnell, B., & Grigoriev, I. V. (2014). Chapter One - Fungal Genomics: Sequencing and annotation. In F. M. Martin (Ed.), Fungi (Vol. 70, pp. 1–52). Academic Press.
Ladilov, Y., & Appukuttan, A. (2014). Role of soluble adenylyl cyclase in cell death and growth. PubMed
Lai, X., Wang, X., Hu, Y., Su, S., Li, W., & Li, S. (2020). Network pharmacology and traditional medicine. PubMed PMC
Lee Y.H., Dean R.A. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. The Plant Cell. 1993;5(6):693–700. PubMed PMC
L’heureux A., Grolinger K., Elyamany H.F., Capretz M.A.M. Machine learning with big data: Challenges and approaches. IEEE Access. 2017;5:7776–7797.
Li D., Gao L., Li M., Luo Y., Xie Y., Luo T., et al. Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxel-induced intestinal barrier injury: Apoptosis inhibition by reversing microtubule polymerization. Biomedicine & Pharmacotherapy. 2020;130 PubMed
Li G., Jian T., Liu X., Lv Q., Zhang G., Ling J. Application of metabolomics in fungal research. Molecules. 2022;27(21):7365. PubMed PMC
Li J., Wu B., Xu J., Liu C. Genome-wide identification and characterization of long intergenic non-coding RNAs in Ganoderma lucidum. PLoS One. 2014;9(6):1–10. PubMed PMC
Li Y.Q., Fang L., Zhang K.C. Structure and bioactivities of a galactose rich extracellular polysaccharide from submergedly cultured Ganoderma lucidum. Carbohydrate Polymers. 2007;68(2):323–328.
Lim W.Z., Cheng P.G., Abdulrahman A.Y., Teoh T.C. The identification of active compounds in Ganoderma lucidum var. antler extract inhibiting dengue virus serine protease and its computational studies. Journal of Biomolecular Structure and Dynamics. 2020;38(14):4273–4288. PubMed
Liu, D., Zhu, Y., Xiao, Z., Zhou, J., Yu, Z., & Liu, T. (2022a). Overexpression of purine nucleoside phosphorylase increases the adenosine content in
Liu J., Zhang B., Wang L., Li S., Long Q., Xiao X. Bioactive components, pharmacological properties and underlying mechanism of Ganoderma lucidum spore oil: A review. Chinese Herbal Medicines. 2024;16(3):375–391. PubMed PMC
Liu Y., Bastiaan-Net S., Wichers H.J. Current understanding of the structure and function of fungal immunomodulatory proteins. Frontiers in Nutrition. 2020;7(August):1–17. PubMed PMC
Liu Y., Long Y., Liu H., Lan Y., Long T., Kuang R., et al. Polysaccharide prediction in Ganoderma lucidum fruiting body by hyperspectral imaging. Food Chemistry:X. 2022;13 PubMed PMC
Longo L., Brcic M., Cabitza F., Choi J., Confalonieri R., Ser J.D., et al. Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions. Information Fusion. 2024;106
Luo H.J., Lu G.D., Lin Z.X., Lin D.M. Research progress on pharmacological effects and biosynthesis of main active ingredients of Ganoderma. Chinese Traditional and Herbal Drugs. 2025;56(9):3366–3379.
Luo J., Li T., Xie J., Guo H., Liu L., Zhang G., et al. Guar gum different from Ganoderma lucidum polysaccharide in alleviating colorectal cancer based on omics analysis. Food & Function. 2020;11(1):572–584. PubMed
Luo Y., Luo X., Xue Z., Wu M., Chen Q., Jin L. Exploring the anti-lung cancer mechanism of Ganoderma lucidum and its relationship with the level of immune cell infiltration based on network pharmacology and molecular docking. Oncologie. 2024;26(5):831–843.
Lv G., Zhao J., Duan J., Tang Y., Li S. Comparison of sterols and fatty acids in two species of Ganoderma. Chemistry Central Journal. 2012;6(1):10. PubMed PMC
Ma Y., He H., Wu J., Wang C., Chao K., Huang Q. Assessment of polysaccharides from mycelia of genus Ganoderma by mid-infrared and near-infrared spectroscopy. Scientific Reports. 2018;8(1):1–10. PubMed PMC
Ma Y., Zhang Q., Zhang Q., He H., Chen Z., Zhao Y., et al. Improved production of polysaccharides in Ganoderma lingzhi mycelia by plasma mutagenesis and rapid screening of mutated strains through infrared spectroscopy. PLoS One. 2018;13(9) PubMed PMC
Ma, Z., Ye, C., Deng, W., Xu, M., Wang, Q., Liu, G., et al. (2018c). Reconstruction and analysis of a genome-scale metabolic model of PubMed PMC
Martín J.F., van den Berg M.A., Loren V., van Themaat E., Liras P. Sensing and transduction of nutritional and chemical signals in filamentous fungi: Impact on cell development and secondary metabolites biosynthesis. Biotechnology Advances. 2019;37(6) PubMed
Mikołajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem.
Mu D., Li C., Zhang X., Li X., Shi L., Ren A., et al. Functions of the nicotinamide adenine dinucleotide phosphate oxidase family in Ganoderma lucidum: An essential role in ganoderic acid biosynthesis regulation, hyphal branching, fruiting body development, and oxidative-stress resistance. Environmental Microbiology. 2014;16(6):1709–1728. PubMed
Ni H., Fu W., Wei J., Zhang Y., Chen D., Tong J., et al. Non-destructive detection of polysaccharides and moisture in Ganoderma lucidum using near-infrared spectroscopy and machine learning algorithm. LWT. 2023;184(February)
Oh K.K., Adnan M., Cho D.H. A network pharmacology analysis on drug-like compounds from Ganoderma lucidum for alleviation of atherosclerosis. Journal of Food Biochemistry. 2021;45(9) PubMed
Oke M.A., Afolabi F.J., Oyeleke O.O., Kilani T.A., Adeosun A.R., Olanbiwoninu A.A., et al. Ganoderma lucidum: Unutilized natural medicine and promising future solution to emerging diseases in Africa. Frontiers in Pharmacology. 2022;13(August):1–26. PubMed PMC
Panwar V., SenGupta S., Kumar S., Singh P.P., Kumar A., Azizov S., et al. Discovery, lead identification and exploration of potential oxadiazole derivatives in targeting STAT3 as anti-cancer agents. In Silico Pharmacology. 2024;12:83. PubMed PMC
Paullada A., Raji I.D., Bender E.M., Denton E., Hanna A. Data and its (dis)contents: A survey of dataset development and use in machine learning research. Patterns. 2021;2(11) PubMed PMC
Perez R., Luccioni M., Kamakaka R., Clamons S., Gaut N., Stirling F. Enabling community-based metrology for wood-degrading fungi. Fungal Biology and Biotechnology. 2020;7(1):2. PubMed PMC
Picard M., Scott-Boyer M.P., Bodein A., Périn O., Droit A. Integration strategies of multi-omics data for machine learning analysis. Computational and Structural Biotechnology Journal. 2021;19:3735–3746. PubMed PMC
Raman, J., Lakshmanan, H., Hyun-Jae, S., & Jang, K. (2022). The nutritional and pharmacological potential of medicinal mushroom “
Răut I., Călin M., Vuluga Z., Oancea F., Paceagiu J., Radu N., et al. Fungal based biopolymer composites for construction materials. Materials. 2021;14(11):2906. PubMed PMC
Reape T.J., McCabe P.F. Apoptotic-like programmed cell death in plants. New Phytologist. 2008;180(1):13–26. PubMed
Ren, A., Shi, L., Zhu, J., Liu, R., Jiang, A., & Zhao, M. (2021). Proteomic Characterization of Lingzhi, Compendium of Plant Genomes. (pp. 117–129). https://doi.org/10.1007/978-3-030-75710-6_6.
Sabarathinam S., Jayaraman A., Venkatachalapathy R. Computational exploration of Ganoderma lucidum metabolites as potential anti-atherosclerotic agents: Insights from molecular docking and dynamics simulations. Computational Biology and Chemistry. 2024;112 PubMed
Sebastian S., Rohila Y., Meenakshi A.A., Sengupta S., Kumar D., Srivastava N., et al. Anti-quorum sensing activity of α-amidoamides against Agrobacterium tumefaciens NT1: Insights from molecular docking and dynamic investigations to synergistic approach of metronidazole release from gel formulations. Microbial Pathogenesis. 2024;193 PubMed
Shankar, A., & Sharma, K. K. (2022). Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics. PubMed PMC
Singh B.P., Abdel-Azeem A.M., Gautam V., Singh G., Singh S.K. Fungal Biology; Springer, Cham: 2024. Endophytic Fungi: The Hidden Sustainable Jewels for the Pharmaceutical and Agricultural Industries.
Sonets I.V., Dovidchenko N.V., Ulianov S.V., Yarina M.S., Koshechkin S.I., Razin S.V., et al. Unraveling the polysaccharide biosynthesis potential of Ganoderma lucidum: A chromosome-level assembly using Hi-C sequencing. Journal of Fungi. 2023;9(10):1020. PubMed PMC
Su Y., Zhang Y., Wang Y., Sun B., Yang S., Zhou C., et al. Spatial distribution and content determination of ganoderic acid F in tablets using confocal Raman microspectroscopy. Journal of Ambient Intelligence and Humanized Computing. 2021;12(3):3505–3514.
Sun L., Liu L.P., Wang Y.Z., Yang L., Zhang C., Yue M.X., et al. Effect of ultrasonication on the metabolome and transcriptome profile changes in the fermentation of Ganoderma lucidum. Microbiological Research. 2022;254 PubMed
Sun Y.V., Hu Y.J. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Advances in Genetics. 2016;93:147–190. PubMed PMC
Tan Y., Yu X., Zhang Z., Tian J., Feng N., Tang C., et al. An efficient CRISPR/Cas9 genome editing system for a Ganoderma lucidum cultivated strain by ribonucleoprotein method. Journal of Fungi. 2023;9(12):1170. PubMed PMC
Thuy N.H.L., Tu V.L., Thu L.N.A., Giang T.T., Huyen D.T.K., Loc D.H., et al. Pharmacological activities and safety of Ganoderma lucidum spores: A systematic review. Cureus. 2023;15(9) PubMed PMC
Tian S., Wang J., Li Y., Xu X., Hou T. Drug-likeness analysis of traditional Chinese medicines: Prediction of drug-likeness using machine learning approaches. Molecular Pharmaceutics. 2012;9(10):2875–2886. PubMed
Verma V., Srivastava A., Garg S.K., Singh V.P., Arora P.K. Incorporating omics-based tools into endophytic fungal research. Biotechnology Notes. 2024;5:1–7. PubMed PMC
Walther, D. (2023). Specifics of metabolite-protein interactions and their computational analysis and prediction (pp. 179–197). Cell-Wide Identification of Metabolite-Protein Interactions. Springer. PubMed
Wang G., Xu L., Yu H., Gao J., Guo L. Systematic analysis of the lysine succinylome in the model medicinal mushroom Ganoderma lucidum. BMC Genomics. 2019;20(1):585. PubMed PMC
Wang L., Li J.Q., Zhang J., Li Z.M., Liu H.G., Wang Y.Z. Traditional uses, chemical components and pharmacological activities of the genus: Ganoderma P. Karst.: A review. RSC Advances. 2020;10(69):42084–42097. PubMed PMC
Wang Q., Xu M., Zhao L., Chen L., Ding Z. Novel insights into the mechanism underlying high polysaccharide yield in submerged culture of Ganoderma lucidum revealed by transcriptome and proteome analyses. Microorganisms. 2023;11(3):772. PubMed PMC
Wang X.C., Xi R.J., Li Y., Wang D.M., Yao Y.J. The species identity of the widely cultivated ganoderma, “G. lucidum” (ling-zhi), in China. PLoS One. 2012;7(7) PubMed PMC
Wijayawardene N.N., Boonyuen N., Ranaweera C.B., de Zoysa H.K.S., Padmathilake R.E., Nifla F., et al. OMICS and other advanced technologies in mycological applications. Journal of Fungi. 2023;9(6):688. PubMed PMC
Wu S., Zhang S., Peng B., Tan D., Wu M., Wei J., et al. Ganoderma lucidum: A comprehensive review of phytochemistry, efficacy, safety and clinical study. Food Science and Human Wellness. 2024;13(2):568–596.
Wu T., Cai M., Hu H., Jiao C., Zhang Z., Liu Y., et al. Whole-genome sequencing and transcriptome analysis of Ganoderma lucidum Strain Yw-1-5 provides new insights into the enhanced effect of Tween80 on exopolysaccharide production. Journal of Fungi (Basel, Switzerland) 2022;8(10):1081. PubMed PMC
Wu X., Cao J., Li M., Yao P., Li H., Xu W., et al. An integrated microbiome and metabolomic analysis identifies immunoenhancing features of Ganoderma lucidum spores oil in mice. Pharmacological Research. 2020;158 PubMed
Xie C., Yan S., Zhang Z., Gong W., Zhu Z., Zhou Y., et al. Mapping the metabolic signatures of fermentation broth, mycelium, fruiting body and spores powder from Ganoderma lucidum by untargeted metabolomics. LWT-Food Sciience & Technology. 2020;129
Xu J., Wang Y., Zhang Y., Xiong K., Yan X., Ruan S., et al. Identification of a novel metabolic target for bioactive triterpenoids biosynthesis in Ganoderma lucidum. Frontiers in Microbiology. 2022;13 PubMed PMC
Xu J.W., Zhao W., Zhong J.J. Biotechnological production and application of ganoderic acids. Applied Microbiology and Biotechnology. 2010;87(2):457–466. PubMed
Xu X., Zhu F., Zhu Y., Li Y., Zhou H., Chen S., et al. Transcriptome profiling of transcription factors in Ganoderma lucidum in response to methyl jasmonate. Frontiers in Microbiology. 2022;13:3389. PubMed PMC
Yao G., Ma Y., Muhammad M., Huang Q. Understanding the infrared and Raman spectra of ganoderic acid A: An experimental and DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019;210:372–380. PubMed
Ye T., Ge Y., Jiang X., Song H., Peng C., Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chinese Medicine (United Kingdom) 2023;18(1):1–18. PubMed PMC
You B.J., Chang W.T., Chung K.R., Kuo Y.H., Yang C.S., Tien N., et al. Effect of solid-medium coupled with reactive oxygen species on ganoderic acid biosynthesis and MAP kinase phosphorylation in Ganoderma lucidum. Food Research International. 2012;49(2):634–640.
You H., Sun B., Li N., Xu J.W. Efficient expression of heterologous genes by the introduction of the endogenous glyceraldehyde-3-phosphate dehydrogenase gene intron 1 in Ganoderma lucidum. Microbial Cell Factories. 2021;20(1):1–8. PubMed PMC
Yu G.J., Yin Y.L., Yu W.H., Liu W., Jin Y.X., Shrestha A., et al. Proteome exploration to provide a resource for the investigation of Ganoderma lucidum. PLoS One. 2015;10(3) PubMed PMC
Yuan W., Jiang C., Wang Q., Fang Y., Wang J., Wang M., et al. Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast. Nature Communications. 2022;13(1):1–15. PubMed PMC
Zalnezhad S., Adeli-Sardou M., Roostaee M., Barani M., Mirzaei M., Sargazi G. Synergistic anti-cancer and antimicrobial effects of Ganoderma lucidum and Lentinus edodes mushroom extracts-loaded niosomes. Journal of Surfactants and Detergents. 2024;28(1):133–145.
Zhai Y., Liu L., Zhang F., Chen X., Wang H., Zhou J., et al. Network pharmacology: A crucial approach in traditional Chinese medicine research. Chinese Medicine. 2025;20(1):8. PubMed PMC
Zhang P., Zhang D., Zhou W., Wang L., Wang B., Zhang T., et al. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Briefings in Bioinformatics. 2024;25(1) PubMed PMC
Zhang Q., Huang L., Wu Y., Huang L., Xu X., Lin R. Study on quality control of compound Anoectochilus roxburghii (Wall.) Lindl. by liquid chromatography–tandem mass spectrometry. Molecules. 2022;27(13):4130. PubMed PMC
Zhao J., Fujita K., Sakai K. Reactive oxygen species, nitric oxide, and their interactions play different roles in Cupressus lusitanica cell death and phytoalexin biosynthesis. New Phytologist. 2007;175(2):215–229. PubMed
Zhao R., He Y. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. Journal of Ethnopharmacology. 2018;210:287–295. PubMed