Unraveling bioactive potential and production in Ganoderma lucidum through omics and machine learning modeling

. 2025 Jul ; 17 (3) : 414-427. [epub] 20250519

Status PubMed-not-MEDLINE Jazyk angličtina Země Singapur Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40734909
Odkazy

PubMed 40734909
PubMed Central PMC12301918
DOI 10.1016/j.chmed.2025.05.003
PII: S1674-6384(25)00058-9
Knihovny.cz E-zdroje

Ganoderma lucidum, a medicinal mushroom renowned for its production of a diverse array of compounds, accounts for the pharmacological effects including anti-inflammatory, antioxidant, immunomodulatory, and anticancer characteristics. Thus, it is recognized as a valuable species of interest in the pharmaceutical and nutraceutical industries due to its important medicinal properties. Recent advances in omics technologies such as genomes, transcriptomics, proteomics, and metabolomics have considerably increased our understanding of the bioactives in G. lucidum. This review explores the application of molecular breeding techniques to enhance both the yield and quality of G. lucidum across the food, pharmaceutical, and industrial sectors. The article discusses the current state of research on the use of contemporary omics technologies which studies and highlights future research directions that may increase the production of bioactive compounds for their therapeutic potential. Additionally, predictive methods with computational studies have recently emerged as effective tools for investigating bioactive constituents in G. lucidum, providing an organized and cost-effective strategy for understanding their bioactivity, interactions, and possible therapeutic uses. Omics and machine learning techniques can be applied to identify the candidates for pharmaceutical applications and to enhance the production of bioactive compounds in G. lucidum. The quantification and production of the bioactive compounds can be streamlined by the integrating computational study of bioactive compounds with non-destructive predictive machine learning models of the same. Synergistically, these techniques have the potential to be a promising approach for the future prediction of the bioactive constituents, without compromising the integrity of the fungal organism.

Zobrazit více v PubMed

Achenbach J.D. Modeling for quantitative non-destructive evaluation. Ultrasonics. 2002;40(1–8):1–10. PubMed

Ahmad M.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomedicine and Pharmacotherapy. 2018;107(April):507–519. PubMed

Azi F., Wang Z., Chen W., Lin D., Xu P. Developing Ganoderma lucidum as a next-generation cell factory for food and nutraceuticals. Trends in Biotechnology. 2023;42(2):1–15. PubMed

Bailly A., Blanc C., Francis É., Guillotin T., Jamal F., Wakim B., et al. Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Computer Methods and Programs in Biomedicine. 2022;213 PubMed

Bao X.F., Wang X.S., Dong Q., Fang J.N., Li X.Y. Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry. 2002;59(2):175–181. PubMed

Benkeblia N. Ganoderma lucidum polysaccharides and terpenoids: Profile and health benefits. Journal of Food Nutrition and Dietetics. 2015;1(1):1–6.

Blundell R., Camilleri E., Baral B., Karpiński T.M., Neza E., Atrooz O.M. The phytochemistry of Ganoderma species and their medicinal potentials. The American Journal of Chinese Medicine. 2023;51(4):859–882. PubMed

Brahmkshatriya P.P., Brahmkshatriya P.S. Springer; Berlin Heidelberg: 2013. Terpenes: Chemistry, Biological Role, and Therapeutic Applications. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; pp. 2665–2691.

Cadar E., Negreanu-Pirjol T., Pascale C., Sirbu R., Prasacu I., Negreanu-Pirjol B.S., et al. Natural bio-compounds from Ganoderma lucidum and their beneficial biological actions for anticancer application: A review. Antioxidants. 2023;12(11):1907. PubMed PMC

Cai M., Liang X., Liu Y., Hu H., Xie Y., Chen S., et al. Transcriptional dynamics of genes purportedly involved in the control of meiosis, carbohydrate, and secondary metabolism during sporulation in Ganoderma lucidum. Genes. 2021;12(4):504. PubMed PMC

Chen S., Xu J., Liu C., Zhu Y., Nelson D.R., Zhou S., et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nature Communications. 2012;3(1):913. PubMed PMC

Choong, Y. K., Sun, S. Q., Zhou, Q., Ismail, Z., Rashid, B. A. A., & Tao, J. X. (2011). Determination of storage stability of the crude extracts of

Cumming J.G., Davis A.M., Muresan S., Haeberlein M., Chen H. Chemical predictive modelling to improve compound quality. Nature Reviews Drug Discovery. 2013;12(12):948–962. PubMed

Dai Y.C., Zhou L.W., Hattori T., Cao Y., Stalpers J.A., Ryvarden L., et al. Ganoderma lingzhi (Polyporales, Basidiomycota): The scientific binomial for the widely cultivated medicinal fungus Lingzhi. Mycological Progress. 2017;16(11–12):1051–1055.

Duronio V. The life of a cell: Apoptosis regulation by the PI3K/PKB pathway. Biochemical Journal. 2008;415(3):333–344. PubMed

Eom H., Choi Y.J., Nandre R., Han H.G., Kim S., Kim M., et al. The Cas9-gRNA ribonucleoprotein complex-mediated editing of pyrG in Ganoderma lucidum and unexpected insertion of contaminated DNA fragments. Scientific Reports. 2023;13(1):11133. PubMed PMC

Ernst P.B., Garrison J.C., Thompson L.F. Much ado about adenosine: Adenosine synthesis and function in regulatory T cell biology. The Journal of Immunology. 2010;185(4):1993–1998. PubMed PMC

Fang Y., Wu D., Gao N., Lv M., Zhou M., Ma C., et al. Whole-genome sequencing and comparative genomic analyses of the medicinal fungus Sanguinoderma infundibulare in Ganodermataceae. Genes, Genomes. Genetics. 2024;14(4):jkae005. PubMed PMC

Fogarasi M., Nemeș S.A., Fărcaș A., Socaciu C., Semeniuc C.A., Socaciu M.I., et al. Bioactive secondary metabolites in mushrooms: A focus on polyphenols, their health benefits and applications. Food Bioscience. 2024;62

Gao X., Homayoonfal M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: A multifaceted approach to combat cancer. Cancer Cell International. 2023;23(1):1–29. PubMed PMC

Gao X., Huo H., Bao H., Wang J., Gao D. Changes of active substances in Ganoderma lucidum during different growth periods and analysis of their molecular mechanism. Molecules. 2024;29(11):2591. PubMed PMC

Gayathiri E., Prakash P., Kumaravel P., Jayaprakash J., Ragunathan M.G., Sankar S., et al. Computational approaches for modeling and structural design of biological systems: A comprehensive review. Progress in Biophysics and Molecular Biology. 2023;185:17–32. PubMed

Gill, B. S., Navgeet, & Kumar, S. (2017). PubMed

Gu L., Zheng Y., Lian D., Zhong X., Liu X. Production of triterpenoids from Ganoderma lucidum: Elicitation strategy and signal transduction. Process Biochemistry. 2018;69:22–32.

Guo J., Liu Y.F., Tang C.H., Zhang J.S., Feng J. The key technologies of Ganoderma lucidum liquid spawn preparation and scale expansion. World Journal of Microbiology and Biotechnology. 2023;39(6):138. PubMed

Hapuarachchi K.K., Cheng C.R., Wen T.C., Jeewon R., Kakumyan P. Mycosphere Essays 20: Therapeutic potential of Ganoderma species: Insights into its use as traditional medicine. Mycosphere. 2017;8(10):1653–1694.

He H., Yao G., Ma Y., Feng N., Zhou S., Huang Q. Experimental and theoretical study of the Raman spectra of ganoderic acid T. Journal of Structural Chemistry. 2019;60(9):1407–1415.

Hsu K.D., Cheng K.C. From nutraceutical to clinical trial: Frontiers in Ganoderma development. Applied Microbiology and Biotechnology. 2018;102(21):9037–9051. PubMed

Hu Y., Li M., Wang S., Yue S., Shi L., Ren A., et al. Ganoderma lucidum phosphoglucomutase is required for hyphal growth, polysaccharide production, and cell wall integrity. Applied Microbiology and Biotechnology. 2018;102(4):1911–1922. PubMed

Huang L., Sun F., Liang C., He Y.X., Bao R., Liu L., et al. Crystal structure of LZ-8 from the medicinal fungus Ganoderma lucidium. Proteins: Structure, Function and Bioinformatics. 2009;75(2):524–527. PubMed

Iyingiala, A. A., Raimi, M. O., Mbong, E. O., Ariyo, A. B., Evans, F. G., Green Ekine, E., et al. (2024). Evaluating the anti-cancer potential of

Jain K.K., Kumar A., Shankar A., Pandey D., Chaudhary B., Sharma K.K. De novo transcriptome assembly and protein profiling of copper-induced lignocellulolytic fungus Ganoderma lucidium MDU-7 reveals genes involved in lignocellulose degradation and terpenoid biosynthetic pathways. Genomics. 2020;112(1):184–198. PubMed

Kang D., Mutakin M., Levita J. Computational study of triterpenoids of Ganoderma lucidum with aspartic protease enzymes for discovering HIV-1 and plasmepsin inhibitors. International Journal of Chemistry. 2015;7(1):62.

Kasahara Y., Hikino H. Central actions of Ganoderma lucidium. Phytotherapy Research. 1987;1(1):17–21.

Khadbaatar S., Bao H., Gao X., Huo H. Study on differences of metabolites among different Ganoderma species with comprehensive metabolomics. Journal of Fungi. 2024;10(8):page?. PubMed PMC

Khalil A.M. The genome editing revolution: Review. Journal of Genetic Engineering and Biotechnology. 2020;18(1):68. PubMed PMC

Khatua, S., & Acharya, K. (2024). Insights into the potential of

Kijpornyongpan T., Aime M.C. Comparative transcriptomics reveal different mechanisms for hyphal growth across four plant-associated dimorphic fungi. Fungal Genetics and Biology. 2021;152 PubMed

Krobthong S., Choowongkomon K., Suphakun P., Kuaprasert B., Samutrtai P., Yingchutrakul Y. The anti-oxidative effect of Lingzhi protein hydrolysates on lipopolysaccharide-stimulated A549 cells. Food Bioscience. 2021;41

Kumar Sethy N., Bhardwaj A., Kumar Singh V., Kishore Sharma R., Deswal R., Bhargava K. Characterization of Ganoderma lucidum: Phytochemical and proteomic approach. Journal of Proteins and Proteomics. 2017;8(1):25–33.

Kumar S., Ali I., Abbas F., Shafiq F., Yadav A.K., Ghate M., et al. In-silico identification and exploration of small molecule coumarin-1,2,3-triazole hybrids as potential EGFR inhibitors for targeting lung cancer. Molecular Diversity. 2024;28:4301–4324. PubMed

Kun R.S., Gomes A.C.S., Hildén K.S., Salazar Cerezo S., Mäkelä M.R., de Vries R.P. Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation. Biotechnology Advances. 2019;37(6) PubMed

Kuo, A., Bushnell, B., & Grigoriev, I. V. (2014). Chapter One - Fungal Genomics: Sequencing and annotation. In F. M. Martin (Ed.), Fungi (Vol. 70, pp. 1–52). Academic Press.

Ladilov, Y., & Appukuttan, A. (2014). Role of soluble adenylyl cyclase in cell death and growth. PubMed

Lai, X., Wang, X., Hu, Y., Su, S., Li, W., & Li, S. (2020). Network pharmacology and traditional medicine. PubMed PMC

Lee Y.H., Dean R.A. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. The Plant Cell. 1993;5(6):693–700. PubMed PMC

L’heureux A., Grolinger K., Elyamany H.F., Capretz M.A.M. Machine learning with big data: Challenges and approaches. IEEE Access. 2017;5:7776–7797.

Li D., Gao L., Li M., Luo Y., Xie Y., Luo T., et al. Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxel-induced intestinal barrier injury: Apoptosis inhibition by reversing microtubule polymerization. Biomedicine & Pharmacotherapy. 2020;130 PubMed

Li G., Jian T., Liu X., Lv Q., Zhang G., Ling J. Application of metabolomics in fungal research. Molecules. 2022;27(21):7365. PubMed PMC

Li J., Wu B., Xu J., Liu C. Genome-wide identification and characterization of long intergenic non-coding RNAs in Ganoderma lucidum. PLoS One. 2014;9(6):1–10. PubMed PMC

Li Y.Q., Fang L., Zhang K.C. Structure and bioactivities of a galactose rich extracellular polysaccharide from submergedly cultured Ganoderma lucidum. Carbohydrate Polymers. 2007;68(2):323–328.

Lim W.Z., Cheng P.G., Abdulrahman A.Y., Teoh T.C. The identification of active compounds in Ganoderma lucidum var. antler extract inhibiting dengue virus serine protease and its computational studies. Journal of Biomolecular Structure and Dynamics. 2020;38(14):4273–4288. PubMed

Liu, D., Zhu, Y., Xiao, Z., Zhou, J., Yu, Z., & Liu, T. (2022a). Overexpression of purine nucleoside phosphorylase increases the adenosine content in

Liu J., Zhang B., Wang L., Li S., Long Q., Xiao X. Bioactive components, pharmacological properties and underlying mechanism of Ganoderma lucidum spore oil: A review. Chinese Herbal Medicines. 2024;16(3):375–391. PubMed PMC

Liu Y., Bastiaan-Net S., Wichers H.J. Current understanding of the structure and function of fungal immunomodulatory proteins. Frontiers in Nutrition. 2020;7(August):1–17. PubMed PMC

Liu Y., Long Y., Liu H., Lan Y., Long T., Kuang R., et al. Polysaccharide prediction in Ganoderma lucidum fruiting body by hyperspectral imaging. Food Chemistry:X. 2022;13 PubMed PMC

Longo L., Brcic M., Cabitza F., Choi J., Confalonieri R., Ser J.D., et al. Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions. Information Fusion. 2024;106

Luo H.J., Lu G.D., Lin Z.X., Lin D.M. Research progress on pharmacological effects and biosynthesis of main active ingredients of Ganoderma. Chinese Traditional and Herbal Drugs. 2025;56(9):3366–3379.

Luo J., Li T., Xie J., Guo H., Liu L., Zhang G., et al. Guar gum different from Ganoderma lucidum polysaccharide in alleviating colorectal cancer based on omics analysis. Food & Function. 2020;11(1):572–584. PubMed

Luo Y., Luo X., Xue Z., Wu M., Chen Q., Jin L. Exploring the anti-lung cancer mechanism of Ganoderma lucidum and its relationship with the level of immune cell infiltration based on network pharmacology and molecular docking. Oncologie. 2024;26(5):831–843.

Lv G., Zhao J., Duan J., Tang Y., Li S. Comparison of sterols and fatty acids in two species of Ganoderma. Chemistry Central Journal. 2012;6(1):10. PubMed PMC

Ma Y., He H., Wu J., Wang C., Chao K., Huang Q. Assessment of polysaccharides from mycelia of genus Ganoderma by mid-infrared and near-infrared spectroscopy. Scientific Reports. 2018;8(1):1–10. PubMed PMC

Ma Y., Zhang Q., Zhang Q., He H., Chen Z., Zhao Y., et al. Improved production of polysaccharides in Ganoderma lingzhi mycelia by plasma mutagenesis and rapid screening of mutated strains through infrared spectroscopy. PLoS One. 2018;13(9) PubMed PMC

Ma, Z., Ye, C., Deng, W., Xu, M., Wang, Q., Liu, G., et al. (2018c). Reconstruction and analysis of a genome-scale metabolic model of PubMed PMC

Martín J.F., van den Berg M.A., Loren V., van Themaat E., Liras P. Sensing and transduction of nutritional and chemical signals in filamentous fungi: Impact on cell development and secondary metabolites biosynthesis. Biotechnology Advances. 2019;37(6) PubMed

Mikołajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem.

Mu D., Li C., Zhang X., Li X., Shi L., Ren A., et al. Functions of the nicotinamide adenine dinucleotide phosphate oxidase family in Ganoderma lucidum: An essential role in ganoderic acid biosynthesis regulation, hyphal branching, fruiting body development, and oxidative-stress resistance. Environmental Microbiology. 2014;16(6):1709–1728. PubMed

Ni H., Fu W., Wei J., Zhang Y., Chen D., Tong J., et al. Non-destructive detection of polysaccharides and moisture in Ganoderma lucidum using near-infrared spectroscopy and machine learning algorithm. LWT. 2023;184(February)

Oh K.K., Adnan M., Cho D.H. A network pharmacology analysis on drug-like compounds from Ganoderma lucidum for alleviation of atherosclerosis. Journal of Food Biochemistry. 2021;45(9) PubMed

Oke M.A., Afolabi F.J., Oyeleke O.O., Kilani T.A., Adeosun A.R., Olanbiwoninu A.A., et al. Ganoderma lucidum: Unutilized natural medicine and promising future solution to emerging diseases in Africa. Frontiers in Pharmacology. 2022;13(August):1–26. PubMed PMC

Panwar V., SenGupta S., Kumar S., Singh P.P., Kumar A., Azizov S., et al. Discovery, lead identification and exploration of potential oxadiazole derivatives in targeting STAT3 as anti-cancer agents. In Silico Pharmacology. 2024;12:83. PubMed PMC

Paullada A., Raji I.D., Bender E.M., Denton E., Hanna A. Data and its (dis)contents: A survey of dataset development and use in machine learning research. Patterns. 2021;2(11) PubMed PMC

Perez R., Luccioni M., Kamakaka R., Clamons S., Gaut N., Stirling F. Enabling community-based metrology for wood-degrading fungi. Fungal Biology and Biotechnology. 2020;7(1):2. PubMed PMC

Picard M., Scott-Boyer M.P., Bodein A., Périn O., Droit A. Integration strategies of multi-omics data for machine learning analysis. Computational and Structural Biotechnology Journal. 2021;19:3735–3746. PubMed PMC

Raman, J., Lakshmanan, H., Hyun-Jae, S., & Jang, K. (2022). The nutritional and pharmacological potential of medicinal mushroom “

Răut I., Călin M., Vuluga Z., Oancea F., Paceagiu J., Radu N., et al. Fungal based biopolymer composites for construction materials. Materials. 2021;14(11):2906. PubMed PMC

Reape T.J., McCabe P.F. Apoptotic-like programmed cell death in plants. New Phytologist. 2008;180(1):13–26. PubMed

Ren, A., Shi, L., Zhu, J., Liu, R., Jiang, A., & Zhao, M. (2021). Proteomic Characterization of Lingzhi, Compendium of Plant Genomes. (pp. 117–129). https://doi.org/10.1007/978-3-030-75710-6_6.

Sabarathinam S., Jayaraman A., Venkatachalapathy R. Computational exploration of Ganoderma lucidum metabolites as potential anti-atherosclerotic agents: Insights from molecular docking and dynamics simulations. Computational Biology and Chemistry. 2024;112 PubMed

Sebastian S., Rohila Y., Meenakshi A.A., Sengupta S., Kumar D., Srivastava N., et al. Anti-quorum sensing activity of α-amidoamides against Agrobacterium tumefaciens NT1: Insights from molecular docking and dynamic investigations to synergistic approach of metronidazole release from gel formulations. Microbial Pathogenesis. 2024;193 PubMed

Shankar, A., & Sharma, K. K. (2022). Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics. PubMed PMC

Singh B.P., Abdel-Azeem A.M., Gautam V., Singh G., Singh S.K. Fungal Biology; Springer, Cham: 2024. Endophytic Fungi: The Hidden Sustainable Jewels for the Pharmaceutical and Agricultural Industries.

Sonets I.V., Dovidchenko N.V., Ulianov S.V., Yarina M.S., Koshechkin S.I., Razin S.V., et al. Unraveling the polysaccharide biosynthesis potential of Ganoderma lucidum: A chromosome-level assembly using Hi-C sequencing. Journal of Fungi. 2023;9(10):1020. PubMed PMC

Su Y., Zhang Y., Wang Y., Sun B., Yang S., Zhou C., et al. Spatial distribution and content determination of ganoderic acid F in tablets using confocal Raman microspectroscopy. Journal of Ambient Intelligence and Humanized Computing. 2021;12(3):3505–3514.

Sun L., Liu L.P., Wang Y.Z., Yang L., Zhang C., Yue M.X., et al. Effect of ultrasonication on the metabolome and transcriptome profile changes in the fermentation of Ganoderma lucidum. Microbiological Research. 2022;254 PubMed

Sun Y.V., Hu Y.J. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Advances in Genetics. 2016;93:147–190. PubMed PMC

Tan Y., Yu X., Zhang Z., Tian J., Feng N., Tang C., et al. An efficient CRISPR/Cas9 genome editing system for a Ganoderma lucidum cultivated strain by ribonucleoprotein method. Journal of Fungi. 2023;9(12):1170. PubMed PMC

Thuy N.H.L., Tu V.L., Thu L.N.A., Giang T.T., Huyen D.T.K., Loc D.H., et al. Pharmacological activities and safety of Ganoderma lucidum spores: A systematic review. Cureus. 2023;15(9) PubMed PMC

Tian S., Wang J., Li Y., Xu X., Hou T. Drug-likeness analysis of traditional Chinese medicines: Prediction of drug-likeness using machine learning approaches. Molecular Pharmaceutics. 2012;9(10):2875–2886. PubMed

Verma V., Srivastava A., Garg S.K., Singh V.P., Arora P.K. Incorporating omics-based tools into endophytic fungal research. Biotechnology Notes. 2024;5:1–7. PubMed PMC

Walther, D. (2023). Specifics of metabolite-protein interactions and their computational analysis and prediction (pp. 179–197). Cell-Wide Identification of Metabolite-Protein Interactions. Springer. PubMed

Wang G., Xu L., Yu H., Gao J., Guo L. Systematic analysis of the lysine succinylome in the model medicinal mushroom Ganoderma lucidum. BMC Genomics. 2019;20(1):585. PubMed PMC

Wang L., Li J.Q., Zhang J., Li Z.M., Liu H.G., Wang Y.Z. Traditional uses, chemical components and pharmacological activities of the genus: Ganoderma P. Karst.: A review. RSC Advances. 2020;10(69):42084–42097. PubMed PMC

Wang Q., Xu M., Zhao L., Chen L., Ding Z. Novel insights into the mechanism underlying high polysaccharide yield in submerged culture of Ganoderma lucidum revealed by transcriptome and proteome analyses. Microorganisms. 2023;11(3):772. PubMed PMC

Wang X.C., Xi R.J., Li Y., Wang D.M., Yao Y.J. The species identity of the widely cultivated ganoderma, “G. lucidum” (ling-zhi), in China. PLoS One. 2012;7(7) PubMed PMC

Wijayawardene N.N., Boonyuen N., Ranaweera C.B., de Zoysa H.K.S., Padmathilake R.E., Nifla F., et al. OMICS and other advanced technologies in mycological applications. Journal of Fungi. 2023;9(6):688. PubMed PMC

Wu S., Zhang S., Peng B., Tan D., Wu M., Wei J., et al. Ganoderma lucidum: A comprehensive review of phytochemistry, efficacy, safety and clinical study. Food Science and Human Wellness. 2024;13(2):568–596.

Wu T., Cai M., Hu H., Jiao C., Zhang Z., Liu Y., et al. Whole-genome sequencing and transcriptome analysis of Ganoderma lucidum Strain Yw-1-5 provides new insights into the enhanced effect of Tween80 on exopolysaccharide production. Journal of Fungi (Basel, Switzerland) 2022;8(10):1081. PubMed PMC

Wu X., Cao J., Li M., Yao P., Li H., Xu W., et al. An integrated microbiome and metabolomic analysis identifies immunoenhancing features of Ganoderma lucidum spores oil in mice. Pharmacological Research. 2020;158 PubMed

Xie C., Yan S., Zhang Z., Gong W., Zhu Z., Zhou Y., et al. Mapping the metabolic signatures of fermentation broth, mycelium, fruiting body and spores powder from Ganoderma lucidum by untargeted metabolomics. LWT-Food Sciience & Technology. 2020;129

Xu J., Wang Y., Zhang Y., Xiong K., Yan X., Ruan S., et al. Identification of a novel metabolic target for bioactive triterpenoids biosynthesis in Ganoderma lucidum. Frontiers in Microbiology. 2022;13 PubMed PMC

Xu J.W., Zhao W., Zhong J.J. Biotechnological production and application of ganoderic acids. Applied Microbiology and Biotechnology. 2010;87(2):457–466. PubMed

Xu X., Zhu F., Zhu Y., Li Y., Zhou H., Chen S., et al. Transcriptome profiling of transcription factors in Ganoderma lucidum in response to methyl jasmonate. Frontiers in Microbiology. 2022;13:3389. PubMed PMC

Yao G., Ma Y., Muhammad M., Huang Q. Understanding the infrared and Raman spectra of ganoderic acid A: An experimental and DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019;210:372–380. PubMed

Ye T., Ge Y., Jiang X., Song H., Peng C., Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chinese Medicine (United Kingdom) 2023;18(1):1–18. PubMed PMC

You B.J., Chang W.T., Chung K.R., Kuo Y.H., Yang C.S., Tien N., et al. Effect of solid-medium coupled with reactive oxygen species on ganoderic acid biosynthesis and MAP kinase phosphorylation in Ganoderma lucidum. Food Research International. 2012;49(2):634–640.

You H., Sun B., Li N., Xu J.W. Efficient expression of heterologous genes by the introduction of the endogenous glyceraldehyde-3-phosphate dehydrogenase gene intron 1 in Ganoderma lucidum. Microbial Cell Factories. 2021;20(1):1–8. PubMed PMC

Yu G.J., Yin Y.L., Yu W.H., Liu W., Jin Y.X., Shrestha A., et al. Proteome exploration to provide a resource for the investigation of Ganoderma lucidum. PLoS One. 2015;10(3) PubMed PMC

Yuan W., Jiang C., Wang Q., Fang Y., Wang J., Wang M., et al. Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast. Nature Communications. 2022;13(1):1–15. PubMed PMC

Zalnezhad S., Adeli-Sardou M., Roostaee M., Barani M., Mirzaei M., Sargazi G. Synergistic anti-cancer and antimicrobial effects of Ganoderma lucidum and Lentinus edodes mushroom extracts-loaded niosomes. Journal of Surfactants and Detergents. 2024;28(1):133–145.

Zhai Y., Liu L., Zhang F., Chen X., Wang H., Zhou J., et al. Network pharmacology: A crucial approach in traditional Chinese medicine research. Chinese Medicine. 2025;20(1):8. PubMed PMC

Zhang P., Zhang D., Zhou W., Wang L., Wang B., Zhang T., et al. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Briefings in Bioinformatics. 2024;25(1) PubMed PMC

Zhang Q., Huang L., Wu Y., Huang L., Xu X., Lin R. Study on quality control of compound Anoectochilus roxburghii (Wall.) Lindl. by liquid chromatography–tandem mass spectrometry. Molecules. 2022;27(13):4130. PubMed PMC

Zhao J., Fujita K., Sakai K. Reactive oxygen species, nitric oxide, and their interactions play different roles in Cupressus lusitanica cell death and phytoalexin biosynthesis. New Phytologist. 2007;175(2):215–229. PubMed

Zhao R., He Y. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. Journal of Ethnopharmacology. 2018;210:287–295. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...