AI-Driven fetal distress monitoring SDN-IoMT networks
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40743297
PubMed Central
PMC12313076
DOI
10.1371/journal.pone.0328099
PII: PONE-D-24-48368
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- deep learning MeSH
- distres plodu * diagnóza MeSH
- internet věcí * MeSH
- kardiotokografie * metody MeSH
- lidé MeSH
- monitorování plodu * metody MeSH
- neuronové sítě MeSH
- srdeční frekvence plodu fyziologie MeSH
- těhotenství MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The healthcare industry is transforming with the integration of the Internet of Medical Things (IoMT) with AI-powered networks for improved clinical connectivity and advanced monitoring capabilities. However, IoMT devices struggle with traditional network infrastructure due to complexity and eterogeneous. Software-defined networking (SDN) is a powerful solution for efficiently managing and controlling IoMT. Additionally, the integration of artificial intelligence such as Deep Learning (DL) algorithms brings intelligence and decision-making capabilities to SDN-IoMT systems. This study focuses on solving the serious problem of information imbalance in cardiotocography (CTG) characteristics with clinical data of pregnant women, especially fetal heart rate (FHR) and deceleration. To improve the performance of prenatal monitoring, this study proposes a framework using Generative Adversarial Networks (GAN), an advanced DL technique, with an auto-encoder model. FHR and deceleration are important markers in CTG monitoring, which are important for assessing fetal health and preventing complications or death. The proposed framework solves the data imbalance problem using reconstruction error and Wasserstein distance-based GANs. The performance of the model is assessed through simulations performed using Mininet, according to criteria such as accuracy, recall, precision and F1 score. The proposed framework outperforms both the basic and advanced DL models and achieves an effective accuracy of 94.2% and an F1 score of 21.1% in very small classes. Validation using the CTU-UHB dataset confirms the significance compared to state-of-the-art solutions for handling unbalanced CTG data. These findings highlight the potential of AI and SDN-based IoMT to improve prenatal outcomes.
Zobrazit více v PubMed
Chaudhary RK, Kumar R, Aurangzeb K, Bedi J, Anwar MS, Choi A. Enhancing clustered federated learning using artificial bee colony optimization algorithm for consumer IoT devices. IEEE Trans Consum Electron. 2024.
Anwar MS, Alhalabi W, Choi A, Ullah I, Alhudali A. Internet of metaverse things (IoMT): applications, technology challenges and security consideration. Future communication systems using artificial intelligence, internet of things and data science. CRC Press; 2024. p. 133–58.
Lashari MH, Karim S, Alhussein M, Hoshu AA, Aurangzeb K, Anwar MS. Internet of Things-based sustainable environment management for large indoor facilities. PeerJ Comput Sci. 2023;9:e1623. doi: 10.7717/peerj-cs.1623 PubMed DOI PMC
Ahmad HF, Rafique W, Rasool RU, Alhumam A, Anwar Z, Qadir J. Leveraging 6G, extended reality, and IoT big data analytics for healthcare: a review. Comput Sci Rev. 2023;48:100558. doi: 10.1016/j.cosrev.2023.100558 DOI
Elaziz MA, Dahou A, Mabrouk A, Ibrahim RA, Aseeri AO. Medical image classifications for 6G IoT-enabled smart health systems. Diagnostics. 2023;13(5). PubMed PMC
Freithaler M, Chandrasekhar A, Dhamotharan V, Landry C, Shroff SG, Mukkamala R. Smartphone-based blood pressure monitoring via the oscillometric finger pressing method: analysis of oscillation width variations can improve diastolic pressure computation. IEEE Trans Biomed Eng. 2023. PubMed PMC
Chang H, Liu B, Zong Y, Lu C, Wang X. EEG-based Parkinson’s disease recognition via attention-based sparse graph convolutional neural network. IEEE J Biomed Health Inform. 2023. PubMed
Zherebtsov EA, Zharkikh EV, Loktionova YI, Zherebtsova AI, Sidorov VV, Rafailov EU. Wireless dynamic light scattering sensors detect microvascular changes associated with ageing and diabetes. IEEE Trans Biomed Eng. 2023. PubMed
Cappon G, Prendin F, Facchinetti A, Sparacino G, Del Favero S. Individualized models for glucose prediction in type 1 diabetes: comparing black-box approaches to a physiological white-box one. IEEE Trans Biomed Eng. 2023. PubMed
Wang Z, Liu J, Tian Y, Zhou T, Liu Q, Qiu Y. Integrating medical domain knowledge for early diagnosis of fever of unknown origin: an interpretable hierarchical multimodal neural network approach. IEEE J Biomed Health Inform. 2023. PubMed
Khan S, Shah IA, Aurangzeb K, Ahmad S, Khan JA, Anwar MS. Energy-efficient task scheduling using fault tolerance technique for IoT applications in fog computing environment. IEEE Internet Things J. 2024;11(24):39009–19. doi: 10.1109/jiot.2024.3403003 DOI
Qadri YA, Nauman A, Zikria YB, Vasilakos AV, Kim SW. The future of healthcare Internet of Things: a survey of emerging technologies. IEEE Commun Surv Tutorials. 2020;22(2):1121–67. doi: 10.1109/comst.2020.2973314 DOI
Ferrag MA, Friha O, Maglaras L, Janicke H, Shu L. Federated deep learning for cyber security in the Internet of Things: concepts, applications, and experimental analysis. IEEE Access. 2021;9:138509–42. doi: 10.1109/access.2021.3118642 DOI
Rathnayake DJ, Halgamuge M. Computation time estimation of switches and controllers process on 6G-based SDN-cyber security forensics architecture in the blockchain-based IoT environment. In: Dutta Borah M, Singh P, Deka GC, editors. AI and blockchain technology in 6G wireless network. Singapore: Springer Nature; 2022. p. 135–64.
Hussain M, Amin R, Gantassi R, Alshehri AH, Frnda J, Raza SM. Efficient handling of ACL policy change in SDN using reactive and proactive flow rule installation. Sci Rep. 2024;14(1):14976. doi: 10.1038/s41598-024-65721-x PubMed DOI PMC
Hatcher WG, Yu W. A survey of deep learning: platforms, applications and emerging research trends. IEEE Access. 2018;6:24411–32.
Cherian M, Varma SL. Secure SDN–IoT framework for DDoSattack detection using deep learning and counter based approach. J Netw Syst Manage. 2023;31(3). doi: 10.1007/s10922-023-09749-w DOI
Al-Yousif S, Jaenul A, Al-Dayyeni W, Alamoodi A, Jabori I, Md Tahir N, et al. A systematic review of automated pre-processing, feature extraction and classification of cardiotocography. PeerJ Comput Sci. 2021;7:e452. doi: 10.7717/peerj-cs.452 PubMed DOI PMC
Georgieva A, Abry P, Chudáček V, Djurić PM, Frasch MG, Kok R. Computer-based intrapartum fetal monitoring and beyond: a review of the 2nd workshop on signal processing and monitoring in labor (October 2017, Oxford, UK). Acta Obstetricia et Gynecologica Scandinavica. 2019;98(9):1207–17. PubMed PMC
Berthelot D, Schumm T, Metz L. Began: boundary equilibrium generative adversarial networks. arXiv preprint 2017. https://arxiv.org/abs/1703.10717
Puspitasari RDI, Ma’sum MA, Alhamidi MR, Kurnianingsih, Jatmiko W. Generative adversarial networks for unbalanced fetal heart rate signal classification. ICT Express. 2022;8(2):239–43. doi: 10.1016/j.icte.2021.06.007 DOI
Cömert Z, Kocamaz AF, Subha V. Prognostic model based on image-based time-frequency features and genetic algorithm for fetal hypoxia assessment. Comput Biol Med. 2018;99:85–97. doi: 10.1016/j.compbiomed.2018.06.003 PubMed DOI
Ma’sum MA, Riskyana Dewi Intan P, Jatmiko W, Krisnadhi AA, Setiawan NA, Suarjaya IMAD. Improving deep learning classifier for fetus hypoxia detection in cardiotocography signal. In: 2019 International Workshop on Big Data and Information Security (IWBIS). 2019. p. 51–6. 10.1109/iwbis.2019.8935835 DOI
Riskyana Dewi Intan P, Ma’sum MA, Alfiany N, Jatmiko W, Kekalih A, Bustamam A. Ensemble learning versus deep learning for Hypoxia detection in CTG signal. In: 2019 International Workshop on Big Data and Information Security (IWBIS). 2019. p. 57–62. 10.1109/iwbis.2019.8935796 DOI
Mehbodniya A, Lazar AJP, Webber J, Sharma DK, Jayagopalan S, K K. Fetal health classification from cardiotocographic data using machine learning. Exp Syst. 2022;39(6):e12899.
Cao Z, Wang G, Xu L, Li C, Hao Y, Chen Q, et al. Intelligent antepartum fetal monitoring via deep learning and fusion of cardiotocographic signals and clinical data. Health Inf Sci Syst. 2023;11(1):16. doi: 10.1007/s13755-023-00219-w PubMed DOI PMC
Spairani E, Daniele B, Signorini MG, Magenes G. A deep learning mixed-data type approach for the classification of FHR signals. Front Bioeng Biotechnol. 2022;10:887549. doi: 10.3389/fbioe.2022.887549 PubMed DOI PMC
Muhammad Hussain N, Rehman AU, Othman MTB, Zafar J, Zafar H, Hamam H. Accessing artificial intelligence for fetus health status using hybrid deep learning algorithm (AlexNet-SVM) on cardiotocographic data. Sensors (Basel). 2022;22(14):5103. doi: 10.3390/s22145103 PubMed DOI PMC
Chaturvedi M, Agrawal S, Silakari S. Strategic analysis of different classification algorithms on CTG data. Annals Agri-Bio Res. 2022;27(1):97–101.
Islam MM, Rokunojjaman M, Amin A, Akhtar MN, Sarker IH. Diagnosis and classification of fetal health based on CTG data using machine learning techniques. In: International Conference on Machine Intelligence and Emerging Technologies. 2022. p. 3–16.
Bader FA. An optimized single layer perceptron-based approach for cardiotocography data classification. Int J Adv Comput Sci Appl. 2022;13(10).
Fei Y, Chen F, He L, Chen J, Hao Y, Li X, et al. Intelligent classification of antenatal cardiotocography signals via multimodal bidirectional gated recurrent units. Biomed Signal Process Control. 2022;78:104008. doi: 10.1016/j.bspc.2022.104008 DOI
Aditya Y, Devi SS, Prasad BDCN. Areal-time ECG CTG based ensemble feature extraction and unsupervised learning based classification framework for multi-class abnormality prediction. IJACSA. 2023;14(3). doi: 10.14569/ijacsa.2023.0140396 DOI
Singha A, Noel JRS, Adhikrishna R, Suthahar N, Abinesh S, Poorni SJS. Fetal health status prediction during labor and delivery based on cardiotocogram data using machine and deep learning. AI and blockchain in healthcare. Springer; 2023. p. 105–35.
Alkanan M. A study on classifying fetal distress from large-scale cardiotocographic (CTG) data using different machine learning approaches. Tokyo, Japan: Tokyo University of Technology; 2022.
Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint 2014. https://arxiv.org/abs/1411.1784
Gao J, Gan L, Buschendorf F, Zhang L, Liu H, Li P, et al. Omni SCADA intrusion detection using deep learning algorithms. IEEE Internet Things J. 2021;8(2):951–61. doi: 10.1109/jiot.2020.3009180 DOI
De Keersmaeker F, Cao Y, Ndonda GK, Sadre R. A survey of public IoT datasets for network security research. IEEE Commun Surv Tutor. 2023.
Sarica AK, Angin P. A novel sdn dataset for intrusion detection in iot networks. In: 2020 16th International Conference on Network and Service Management (CNSM). 2020. p. 1–5.
Ahmed M, Byreddy S, Nutakki A, Sikos LF, Haskell-Dowland P. ECU-IoHT: a dataset for analyzing cyberattacks in Internet of Health Things. Ad Hoc Netw. 2021;122:102621. doi: 10.1016/j.adhoc.2021.102621 DOI