Computer-based intrapartum fetal monitoring and beyond: A review of the 2nd Workshop on Signal Processing and Monitoring in Labor (October 2017, Oxford, UK)

. 2019 Sep ; 98 (9) : 1207-1217. [epub] 20190618

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu kongresy, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31081113

Grantová podpora
17/601 Health Research Council of New Zealand - International
Canadian Institutes of Health Research (CIHR) - International
R01 HD097188 NICHD NIH HHS - United States
R21 HD080025 NICHD NIH HHS - United States
CDF-2016-09-004 Department of Health - United Kingdom
CDF-2016-09-004 National Institute of Health Research (NIHR) - International
719500 European Union Horizon - International
Institute of Human Development, Child and Youth Health - International

The second Signal Processing and Monitoring in Labor workshop gathered researchers who utilize promising new research strategies and initiatives to tackle the challenges of intrapartum fetal monitoring. The workshop included a series of lectures and discussions focusing on: new algorithms and techniques for cardiotocogoraphy (CTG) and electrocardiogram acquisition and analyses; the results of a CTG evaluation challenge comparing state-of-the-art computerized methods and visual interpretation for the detection of arterial cord pH <7.05 at birth; the lack of consensus about the role of intrapartum acidemia in the etiology of fetal brain injury; the differences between methods for CTG analysis "mimicking" expert clinicians and those derived from "data-driven" analyses; a critical review of the results from two randomized controlled trials testing the former in clinical practice; and relevant insights from modern physiology-based studies. We concluded that the automated algorithms performed comparably to each other and to clinical assessment of the CTG. However, the sensitivity and specificity urgently need to be improved (both computerized and visual assessment). Data-driven CTG evaluation requires further work with large multicenter datasets based on well-defined labor outcomes. And before first tests in the clinic, there are important lessons to be learnt from clinical trials that tested automated algorithms mimicking expert CTG interpretation. In addition, transabdominal fetal electrocardiogram monitoring provides reliable CTG traces and variability estimates; and fetal electrocardiogram waveform analysis is subject to promising new research. There is a clear need for close collaboration between computing and clinical experts. We believe that progress will be possible with multidisciplinary collaborative research.

Zobrazit více v PubMed

Dhillon SK, Lear CA, Galinsky R, et al. The fetus at the tipping point: modifying the outcome of fetal asphyxia. J Physiol. 2018;596(23):5571–5592. PubMed PMC

Schifrin BS. The CTG and the timing and mechanism of fetal neurological injuries. Best Pract Res Clin Obstet Gynaecol. 2004;18(3):437–456. PubMed

Beard RW, Filshie GM, Knight CA, Roberts GM. The significance of the changes in the continuous fetal heart rate in the first stage of labour. J Obstet Gynaecol Br Commonw. 1971;78(10):865–881. PubMed

Cahill AG, Tuuli MG, Stout MJ, Lopez JD, Macones GA. A prospective cohort study of fetal heart rate monitoring: Deceleration area is predictive of fetal acidemia. Am J Obstet Gynecol. 2018;218(5):523.e1–523.e12. PubMed PMC

Georgieva A, Redman CWG, Papageorghiou AT. Computerized data-driven interpretation of the intrapartum cardiotocogram: a cohort study. Acta Obstet Gynecol Scand. 2017;96(7):883–891. PubMed

Clark SL, Hamilton EF, Garite TJ, Timmins A, Warrick PA, Smith S. The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. Am J Obstet Gynecol. 2017;216(2):163.e161–163.e166. PubMed

Chauhan SP, Klauser CK, Woodring TC, Sanderson M, Magann EF, Morrison JC. Intrapartum nonreassuring fetal heart rate tracing and prediction of adverse outcomes: interobserver variability. Am J Obstet Gynecol. 2008;199(6):623.e621–623.e625. PubMed

Ugwumadu A Are we (mis)guided by current guidelines on intrapartum fetal heart rate monitoring? Case for a more physiological approach to interpretation. BJOG. 2014;121(9):1063–1070. PubMed

Bloom SL, Spong CY, Thom E, et al. Fetal pulse oximetry and cesarean delivery. N Engl J Med. 2006;355(21):2195–2202. PubMed

Belfort MA, Saade GR, Thom E, et al. A Randomized Trial of Intrapartum Fetal ECG ST-Segment Analysis. N Engl J Med. 2015;373(7):632–641. PubMed PMC

Group IC. Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial. Lancet (London, England). 2017;389(10080):1719–1729. PubMed PMC

Lopes-Pereira J, Costa A, Ayres-de-Campos D, Costa-Santos C, Amaral J, Bernardes J. Computerized analysis of cardiotocograms and ST signals is associated with significant reductions in hypoxic-ischemic encephalopathy and cesarean delivery: an observational study in 38 466 deliveries. Am J Obstet Gynecol. 2019;220(3):269.e1–269.e8. PubMed

Smith S, Philip L, Zmiri A, Hamilton E, Garite T. HIT and clinical synergy: A decade of decreasing NICU admissions & stabilizing cesarean rates. Becker’s Health IT & CIO Report; 2016, December 20 https://www.beckershospitalreview.com

Ayres-de-Campos D, Rei M, Nunes I, Sousa P, Bernardes J. SisPorto 4.0 - computer analysis following the 2015 FIGO Guidelines for intrapartum fetal monitoring. J Matern Fetal Neonatal Med. 2017;30(1):62–67. PubMed

Georgieva A, Papageorghiou AT, Payne SJ, Moulden M, Redman CWG. Phase-rectified signal averaging for intrapartum electronic fetal heart rate monitoring is related to acidaemia at birth. BJOG. 2014;121(7):889–894. PubMed

Spilka J, Frecon J, Leonarduzzi R, Pustelnik N, Abry P, Doret M. Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification. IEEE J Biomed Health Inform. 2017;21(3):664–671. PubMed

Abry P, Spilka J, Leonarduzzi R, Chudáček V, Pustelnik N, Doret M. Sparse learning for Intrapartum fetal heart rate analysis. Biomed Physics Engineering Express. 2018;4(3):034002.

Granero-Belinchon C, Roux S, Abry P, Doret M, Garnier N. Information Theory to Probe Intrapartum Fetal Heart Rate Dynamics. Entropy. 2017;19(12):640.

Georgieva A, Moulden M, Redman CWG. Umbilical cord gases in relation to the neonatal condition: the EveREst plot. Eur J Obstet Gynecol Reprod Biol. 2013;168(2):155–160. PubMed

Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic–ischaemic encephalopathy. Early Hum Dev. 2010;86(6):329–338. PubMed

Nunes I, Ayres-de-Campos D, Ugwumadu A, et al. Central Fetal Monitoring With and Without Computer Analysis: A Randomized Controlled Trial. Obstet Gynecol. 2017;129(1):83–90. PubMed

Leviton A Why the term neonatal encephalopathy should be preferred over neonatal hypoxic-ischemic encephalopathy. Am J Obstet Gynecol. 2013;208(3):176–180. PubMed

Ayres-de-Campos D, Spong CY, Chandraharan E, Panel FIFMEC. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int J Gynaecol Obstet. 2015;131(1):13–24. PubMed

Hruban L, Spilka J, Chudáček V, et al. Agreement on intrapartum cardiotocogram recordings between expert obstetricians. J Eval Clin Pract. 2015;21(4):694–702. PubMed

Blackwell SC, Grobman WA, Antoniewicz L, Hutchinson M, Gyamfi Bannerman C. Interobserver and intraobserver reliability of the NICHD 3-Tier Fetal Heart Rate Interpretation System. Am J Obstet Gynecol. 2011;205(4):378.e371–375. PubMed

Doret M, Spilka J, Chudáček V, Gonçalves P, Abry P. Fractal Analysis and Hurst Parameter for Intrapartum Fetal Heart Rate Variability Analysis: A Versatile Alternative to Frequency Bands and LF/HF Ratio. PloS One. 2015;10(8):e0136661. PubMed PMC

Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71:021906. PubMed

Chudáček V, Andén J, Mallat S, Abry P, Doret M. Scattering transform for intrapartum fetal heart rate variability fractal analysis: a case-control study. IEEE Trans Biomed Eng. 2014;61(4):1100–1108. PubMed

Frasch MG, Xu Y, Stampalija T, et al. Correlating multidimensional fetal heart rate variability analysis with acid-base balance at birth. Physiol Meas. 2014;35(12):L1–12. PubMed

Warmerdam GJJ, Vullings R, Van Laar JOEH, et al. Detection rate of fetal distress using contraction-dependent fetal heart rate variability analysis. Physiol Meas. 2018;39(2):025008. PubMed

Pinas A, Chandraharan E. Continuous cardiotocography during labour: Analysis, classification and management. Best Pract Res Clin Obstet Gynaecol. 2016;30:33–47. PubMed

Dash S, Quirk JG, Djurić PM. Fetal heart rate classification using generative models. IEEE transactions on bio-medical engineering. 2014;61(11):2796–2805. PubMed

Warrick PA, Hamilton EF, Precup D, Kearney RE. Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography. IEEE Trans Biomed Eng. 2010;57(4):771–779. PubMed

Xu L, Redman CWG, Payne SJ, Georgieva A. Feature selection using genetic algorithms for fetal heart rate analysis. Physiol Meas. 2014;35(7):1357–1371. PubMed

Georgieva A, Payne SJ, Moulden M, Redman CWG. Artificial neural networks applied to fetal monitoring in labour. Neural Comp Applic. 2013;22(1):85–93.

Petrozziello A, Jordanov I, Aris Papageorghiou T, Christopher Redman WG, Georgieva A. Deep Learning for Continuous Electronic Fetal Monitoring in Labor. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:5866–5869. PubMed

Feng G, Quirck J, Djuric P. Supervised and unsupervised learning of fetal heart rate tracings with deep Gaussian processes. Presented at 14th Symposium on Neural Networks and Applications (NEUREL) 2018; DOI:10.1109/NEUREL.2018.8586992 DOI

Keith RD, Greene KR. Development, evaluation and validation of an intelligent system for the management of labour. Baillieres Clin Obstet Gynaecol. 1994;8(3):583–605. PubMed

Keith RD, Beckley S, Garibaldi JM, Westgate JA, Ifeachor EC, Greene KR. A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. BJOG. 1995;102(9):688–700. PubMed

Keith R The INFANT study—a flawed design foreseen. Lancet. 2017;389(10080):1697–1698. PubMed

Hollowell J, Rowe R, Townend J, et al. The Birthplace in England national prospective cohort study: further analyses to enhance policy and service delivery decision-making for planned place of birth. Southampton (UK): NIHR Journals Library; 2015. PubMed

Westerhuis MEMH, Visser GHA, Moons KGM, et al. Cardiotocography plus ST analysis of fetal electrocardiogram compared with cardiotocography only for intrapartum monitoring: a randomized controlled trial. Obstet Gynecol. 2010;115(6):1173–1180. PubMed

Belfort MA, Saade GR, Thom E, et al. A Randomized Trial of Intrapartum Fetal ECG ST-Segment Analysis. New England J Med. 2015;373(7):632–641. PubMed PMC

Vullings R, Verdurmen KMJ, Hulsenboom ADJ, et al. The electrical heart axis and ST events in fetal monitoring: A post-hoc analysis following a multicentre randomised controlled trial. PLOS ONE. 2017;12(4):e0175823. PubMed PMC

Cohen WR, Ommani S, Hassan S, et al. Accuracy and reliability of fetal heart rate monitoring using maternal abdominal surface electrodes: Maternal surface electrode fetal monitoring. Acta Obstet Gynecol Scand. 2012;91(11):1306–1313. PubMed

Clifford G, Sameni R, Ward J, Robinson J, Wolfberg AJ. Clinically accurate fetal ECG parameters acquired from maternal abdominal sensors. Am J Obstet Gynecol. 2011;205(1):47.e41–47.e45. PubMed PMC

Behar J, Andreotti F, Zaunseder S, Oster J, Clifford GD. A practical guide to non-invasive foetal electrocardiogram extraction and analysis. Physiol Meas. 2016;37(5):R1–R35. PubMed

Li R, Frasch MG, Wu H-T. Efficient Fetal-Maternal ECG Signal Separation from Two Channel Maternal Abdominal ECG via Diffusion-Based Channel Selection. Front Physiol. 2017;8:277. PubMed PMC

Spilka J, Chudáček V, Koucký M, et al. Using nonlinear features for fetal heart rate classification. Biomed Signal Process Control. 2012;7(4):350–357.

Elliott C, Warrick PA, Graham E, Hamilton EF. Graded classification of fetal heart rate tracings: association with neonatal metabolic acidosis and neurologic morbidity. Am J Obstet Gynecol. 2010;202(3):258.e251–258.e258. PubMed

Costa MA, Ayres-de-Campos D, Machado AP, Santos CC, Bernardes J. Comparison of a computer system evaluation of intrapartum cardiotocographic events and a consensus of clinicians. J Perinat Med. 2010;38(2):191–5. PubMed

Durosier LD, Green G, Batkin I, et al. Sampling rate of heart rate variability impacts the ability to detect acidemia in ovine fetuses near-term. Fron Pediat. 2014;2:38. PubMed PMC

Frasch MG, Boylan GB, Wu H-T, Devane D. Commentary: Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial. Front Physiol. 2017;8:721. PubMed PMC

Amer-Wahlin I, Kwee A. Combined cardiotocographic and ST event analysis: A review. Best Pract Res Clin Obstet Gynaecol. 2016;30:48–61. PubMed

Greene KR, Dawes GS, Lilja H, Rosén K-G. Changes in the ST waveform of the fetal lamb electrocardiogram with hypoxemia. Am J Obstet Gynecol. 1982;144(8):950–958. PubMed

Clur SAB, Aben D, Sengers MJJM, et al. Prelabour fetal ECG in congenital heart disease - a preliminary comparison with neonatal ECG. Paper presented at: Int Soc Ultrasound Obstet Gynecol; 2016, 2016.

Bakker PCAM, Zikkenheimer M, van Geijn HP The quality of intrapartum uterine activity monitoring. J Perinat Med. 2008;36(3): 197–201. PubMed

Cohen WR, Hayes-Gill B. Influence of maternal body mass index on accuracy and reliability of external fetal monitoring techniques. Acta Obstett Gynecol Scand. 2014;93(6):590–595. PubMed

Euliano T, Skowronski M, Marossero D, Shuster J, Edwards R. Prediction of intrauterine pressure waveform from transabdominal electrohysterography. J Matern Fetal Neonatal Med. 2006;19(12):811–816. PubMed

Rabotti C, Mischi M, van Laar JOEH, Oei GS, Bergmans JWM Estimation of internal uterine pressure by joint amplitude and frequency analysis of electrohysterographic signals. Physiol Meas. 2008;29(7):829–841. PubMed

Vlemminx MWC, Thijssen KMJ, Bajlekov GI, Dieleman JP, Van Der Hout-Van Der Jagt MB, Oei SG Electrohysterography for uterine monitoring during term labour compared to external tocodynamometry and intra-uterine pressure catheter. Eur J Obstet Gynecol Reprod Biol. 2017;215:197–205. PubMed

Hon EH, Quilligan EJ. The classification of fetal heart rate. II. A revised working classification. Conn Med. 1967;31(11):779–784. PubMed

Parer JT, King T, Flanders S, Fox M, Kilpatrick SJ. Fetal acidemia and electronic fetal heart rate patterns: is there evidence of an association? J Matern Fetal Neonatal Med. 2006;19(5):289–294. PubMed

Mendez-Bauer C, Poseiro JJ, Arellano-Hernandez G, Zambrana MA, Caldeyro-Barcia R. Effects of atropine of the heart rate of the human fetus during labor. Am J Obstet Gynecol. 1963;85(8):1033–1053. PubMed

Ball RH, Parer JT. The physiologic mechanisms of variable decelerations. Am J Obstet Gynecol. 1992;166(6 Pt 1):1683–1688. PubMed

Cahill AG, Roehl KA, Odibo AO, Macones GA. Association of atypical decelerations with acidemia. Obstet Gynecol. 2012;120(6):1387–1393. PubMed

Cahill AG, Roehl KA, Odibo AO, Macones GA. Association and prediction of neonatal acidemia. Am J Obstet Gynecol. 2012;207(3):206.e201–208. PubMed

Nunes I, Ayres-de-Campos D, Kwee A, Rosén KG. Prolonged saltatory fetal heart rate pattern leading to newborn metabolic acidosis. Clin Exp Obstet Gynecol. 2014;41(5):507–511. PubMed

Lu K, Holzmann M, Abtahi F, Lindecrantz K, Lindqvist PG, Nordstrom L. Fetal heart rate short term variation during labor in relation to scalp blood lactate concentration. Acta Obstet Gynecol Scand. 2018;97(10):1274–1280. PubMed

Lear CA, Westgate JA, Ugwumadu A, et al. Understanding fetal heart rate patterns that may predict antenatal and intrapartum neural injury. Semin Pediatr Neurol. 2018;28:3–16 PubMed

Lear CA, Galinsky R, Wassink G, et al. The myths and physiology surrounding intrapartum decelerations: the critical role of the peripheral chemoreflex. J Physiol. 2016;594(17):4711–4725. PubMed PMC

Westgate JA, Bennet L, Gunn AJ. Fetal heart rate variability changes during brief repeated umbilical cord occlusion in near term fetal sheep. BJOG. 1999;106(7):664–671. PubMed

Herry CL, Cortes M, Wu H-T, et al. Temporal Patterns in Sheep Fetal Heart Rate Variability Correlate to Systemic Cytokine Inflammatory Response: A Methodological Exploration of Monitoring Potential Using Complex Signals Bioinformatics. PloS One. 2016;11(4):e0153515. PubMed PMC

Liu HL, Garzoni L, Herry C, et al. Can Monitoring Fetal Intestinal Inflammation Using Heart Rate Variability Analysis Signal Incipient Necrotizing Enterocolitis of the Neonate? Pediatr Crit Care Med. 2016;17(4):e165–176. PubMed

Durosier LD, Herry CL, Cortes M, et al. Does heart rate variability reflect the systemic inflammatory response in a fetal sheep model of lipopolysaccharide-induced sepsis? Physiol Meas. 2015;36(10):2089–2102. PubMed PMC

Sokol RJ, Rosen MG, Chik L. Fetal electroencephalographic monitoring related to infant outcome. Am J Obstet Gynecol. 1977;127(3):329–330. PubMed

Frasch MG, Durosier LD, Gold N, et al. Adaptive shut-down of EEG activity predicts critical acidemia in the near-term ovine fetus. Physiol Rep. 2015;3(7). PubMed PMC

Thaler I, Boldes R, Timor-Tritsch I. Real-time spectral analysis of the fetal EEG: a new approach to monitoring sleep states and fetal condition during labor. Pediatr Res. 2000;48(3):340–345. PubMed

Wilson PC, Philpott RH, Spies S, Ahmed Y, Kadichza M. The effect of fetal head compression and fetal acidaemia during labour on human fetal cerebral function as measured by the fetal electroencephalogram. BJOG. 1979;86(4):269–277. PubMed

Rosen MG, Scibetta J, Chik L, Borgstedt AD. An approach to the study of brain damage. The principles of fetal electroencephalography. Am J Obstet Gynecol. 1973;115(1):37–47. PubMed

Eswaran H, Wilson JD, Lowery CL, et al. Brain stem auditory evoked potentials in the human fetus during labor. Am J Obstet Gynecol. 1999;180(6 Pt 1):1422–1426. PubMed

Wang X, Durosier LD, Ross MG, Richardson BS, Frasch MG. Online detection of fetal acidemia during labour by testing synchronization of EEG and heart rate: a prospective study in fetal sheep. PloS One. 2014;9(9):e108119. PubMed PMC

Frasch MG, Keen AE, Gagnon R, Ross MG, Richardson BS. Monitoring fetal electrocortical activity during labour for predicting worsening acidemia: a prospective study in the ovine fetus near term. PloS One. 2011;6(7):e22100. PubMed PMC

Gawande A Slow ideas Some innovations spread fast. How do you speed the ones that don’t? The New Yorker; 2013, July 22 https://www.newyorker.com

Moorman JR. The modern age of Physiological Measurement. Physioll Meas. 2014;35(2):93–95. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...