Computer-based intrapartum fetal monitoring and beyond: A review of the 2nd Workshop on Signal Processing and Monitoring in Labor (October 2017, Oxford, UK)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu kongresy, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
17/601
Health Research Council of New Zealand - International
Canadian Institutes of Health Research (CIHR) - International
R01 HD097188
NICHD NIH HHS - United States
R21 HD080025
NICHD NIH HHS - United States
CDF-2016-09-004
Department of Health - United Kingdom
CDF-2016-09-004
National Institute of Health Research (NIHR) - International
719500
European Union Horizon - International
Institute of Human Development, Child and Youth Health - International
PubMed
31081113
PubMed Central
PMC7135636
DOI
10.1111/aogs.13639
Knihovny.cz E-zdroje
- Klíčová slova
- artificial intelligence, cardiotocography, electronic fetal monitoring, health data, hypoxic-ischemic encephalopathy, intrapartum care, sensitivity, specificity,
- MeSH
- acidóza diagnóza MeSH
- algoritmy * MeSH
- elektrokardiografie metody MeSH
- kardiotokografie metody MeSH
- lidé MeSH
- monitorování plodu metody MeSH
- počítačové zpracování signálu MeSH
- prenatální diagnóza MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- kongresy MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Spojené království MeSH
The second Signal Processing and Monitoring in Labor workshop gathered researchers who utilize promising new research strategies and initiatives to tackle the challenges of intrapartum fetal monitoring. The workshop included a series of lectures and discussions focusing on: new algorithms and techniques for cardiotocogoraphy (CTG) and electrocardiogram acquisition and analyses; the results of a CTG evaluation challenge comparing state-of-the-art computerized methods and visual interpretation for the detection of arterial cord pH <7.05 at birth; the lack of consensus about the role of intrapartum acidemia in the etiology of fetal brain injury; the differences between methods for CTG analysis "mimicking" expert clinicians and those derived from "data-driven" analyses; a critical review of the results from two randomized controlled trials testing the former in clinical practice; and relevant insights from modern physiology-based studies. We concluded that the automated algorithms performed comparably to each other and to clinical assessment of the CTG. However, the sensitivity and specificity urgently need to be improved (both computerized and visual assessment). Data-driven CTG evaluation requires further work with large multicenter datasets based on well-defined labor outcomes. And before first tests in the clinic, there are important lessons to be learnt from clinical trials that tested automated algorithms mimicking expert CTG interpretation. In addition, transabdominal fetal electrocardiogram monitoring provides reliable CTG traces and variability estimates; and fetal electrocardiogram waveform analysis is subject to promising new research. There is a clear need for close collaboration between computing and clinical experts. We believe that progress will be possible with multidisciplinary collaborative research.
CIIRC Czech Technical University Prague Prague Czech Republic
Department of Electrical Engineering Eindhoven University of Technology Eindhoven the Netherlands
Department of Obstetrics and Gynecology at Stony Brook University Medical Center Stony Brook NY USA
Department of Obstetrics and Gynecology St George's University of London London UK
Department of Obstetrics and Gynecology University of Washington Seattle WA USA
Department of Physiology University of Auckland Auckland New Zealand
Electrical and Computer Engineering Stony Brook University Stony Brook NY USA
Nemo Healthcare Veldhoven the Netherlands
Nuffield Department of Women's and Reproductive Health University of Oxford Oxford UK
University of Lyon Ens de Lyon University Claude Bernard CNRS Laboratoire de Physique Lyon France
Zobrazit více v PubMed
Dhillon SK, Lear CA, Galinsky R, et al. The fetus at the tipping point: modifying the outcome of fetal asphyxia. J Physiol. 2018;596(23):5571–5592. PubMed PMC
Schifrin BS. The CTG and the timing and mechanism of fetal neurological injuries. Best Pract Res Clin Obstet Gynaecol. 2004;18(3):437–456. PubMed
Beard RW, Filshie GM, Knight CA, Roberts GM. The significance of the changes in the continuous fetal heart rate in the first stage of labour. J Obstet Gynaecol Br Commonw. 1971;78(10):865–881. PubMed
Cahill AG, Tuuli MG, Stout MJ, Lopez JD, Macones GA. A prospective cohort study of fetal heart rate monitoring: Deceleration area is predictive of fetal acidemia. Am J Obstet Gynecol. 2018;218(5):523.e1–523.e12. PubMed PMC
Georgieva A, Redman CWG, Papageorghiou AT. Computerized data-driven interpretation of the intrapartum cardiotocogram: a cohort study. Acta Obstet Gynecol Scand. 2017;96(7):883–891. PubMed
Clark SL, Hamilton EF, Garite TJ, Timmins A, Warrick PA, Smith S. The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. Am J Obstet Gynecol. 2017;216(2):163.e161–163.e166. PubMed
Chauhan SP, Klauser CK, Woodring TC, Sanderson M, Magann EF, Morrison JC. Intrapartum nonreassuring fetal heart rate tracing and prediction of adverse outcomes: interobserver variability. Am J Obstet Gynecol. 2008;199(6):623.e621–623.e625. PubMed
Ugwumadu A Are we (mis)guided by current guidelines on intrapartum fetal heart rate monitoring? Case for a more physiological approach to interpretation. BJOG. 2014;121(9):1063–1070. PubMed
Bloom SL, Spong CY, Thom E, et al. Fetal pulse oximetry and cesarean delivery. N Engl J Med. 2006;355(21):2195–2202. PubMed
Belfort MA, Saade GR, Thom E, et al. A Randomized Trial of Intrapartum Fetal ECG ST-Segment Analysis. N Engl J Med. 2015;373(7):632–641. PubMed PMC
Group IC. Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial. Lancet (London, England). 2017;389(10080):1719–1729. PubMed PMC
Lopes-Pereira J, Costa A, Ayres-de-Campos D, Costa-Santos C, Amaral J, Bernardes J. Computerized analysis of cardiotocograms and ST signals is associated with significant reductions in hypoxic-ischemic encephalopathy and cesarean delivery: an observational study in 38 466 deliveries. Am J Obstet Gynecol. 2019;220(3):269.e1–269.e8. PubMed
Smith S, Philip L, Zmiri A, Hamilton E, Garite T. HIT and clinical synergy: A decade of decreasing NICU admissions & stabilizing cesarean rates. Becker’s Health IT & CIO Report; 2016, December 20 https://www.beckershospitalreview.com
Ayres-de-Campos D, Rei M, Nunes I, Sousa P, Bernardes J. SisPorto 4.0 - computer analysis following the 2015 FIGO Guidelines for intrapartum fetal monitoring. J Matern Fetal Neonatal Med. 2017;30(1):62–67. PubMed
Georgieva A, Papageorghiou AT, Payne SJ, Moulden M, Redman CWG. Phase-rectified signal averaging for intrapartum electronic fetal heart rate monitoring is related to acidaemia at birth. BJOG. 2014;121(7):889–894. PubMed
Spilka J, Frecon J, Leonarduzzi R, Pustelnik N, Abry P, Doret M. Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification. IEEE J Biomed Health Inform. 2017;21(3):664–671. PubMed
Abry P, Spilka J, Leonarduzzi R, Chudáček V, Pustelnik N, Doret M. Sparse learning for Intrapartum fetal heart rate analysis. Biomed Physics Engineering Express. 2018;4(3):034002.
Granero-Belinchon C, Roux S, Abry P, Doret M, Garnier N. Information Theory to Probe Intrapartum Fetal Heart Rate Dynamics. Entropy. 2017;19(12):640.
Georgieva A, Moulden M, Redman CWG. Umbilical cord gases in relation to the neonatal condition: the EveREst plot. Eur J Obstet Gynecol Reprod Biol. 2013;168(2):155–160. PubMed
Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic–ischaemic encephalopathy. Early Hum Dev. 2010;86(6):329–338. PubMed
Nunes I, Ayres-de-Campos D, Ugwumadu A, et al. Central Fetal Monitoring With and Without Computer Analysis: A Randomized Controlled Trial. Obstet Gynecol. 2017;129(1):83–90. PubMed
Leviton A Why the term neonatal encephalopathy should be preferred over neonatal hypoxic-ischemic encephalopathy. Am J Obstet Gynecol. 2013;208(3):176–180. PubMed
Ayres-de-Campos D, Spong CY, Chandraharan E, Panel FIFMEC. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int J Gynaecol Obstet. 2015;131(1):13–24. PubMed
Hruban L, Spilka J, Chudáček V, et al. Agreement on intrapartum cardiotocogram recordings between expert obstetricians. J Eval Clin Pract. 2015;21(4):694–702. PubMed
Blackwell SC, Grobman WA, Antoniewicz L, Hutchinson M, Gyamfi Bannerman C. Interobserver and intraobserver reliability of the NICHD 3-Tier Fetal Heart Rate Interpretation System. Am J Obstet Gynecol. 2011;205(4):378.e371–375. PubMed
Doret M, Spilka J, Chudáček V, Gonçalves P, Abry P. Fractal Analysis and Hurst Parameter for Intrapartum Fetal Heart Rate Variability Analysis: A Versatile Alternative to Frequency Bands and LF/HF Ratio. PloS One. 2015;10(8):e0136661. PubMed PMC
Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71:021906. PubMed
Chudáček V, Andén J, Mallat S, Abry P, Doret M. Scattering transform for intrapartum fetal heart rate variability fractal analysis: a case-control study. IEEE Trans Biomed Eng. 2014;61(4):1100–1108. PubMed
Frasch MG, Xu Y, Stampalija T, et al. Correlating multidimensional fetal heart rate variability analysis with acid-base balance at birth. Physiol Meas. 2014;35(12):L1–12. PubMed
Warmerdam GJJ, Vullings R, Van Laar JOEH, et al. Detection rate of fetal distress using contraction-dependent fetal heart rate variability analysis. Physiol Meas. 2018;39(2):025008. PubMed
Pinas A, Chandraharan E. Continuous cardiotocography during labour: Analysis, classification and management. Best Pract Res Clin Obstet Gynaecol. 2016;30:33–47. PubMed
Dash S, Quirk JG, Djurić PM. Fetal heart rate classification using generative models. IEEE transactions on bio-medical engineering. 2014;61(11):2796–2805. PubMed
Warrick PA, Hamilton EF, Precup D, Kearney RE. Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography. IEEE Trans Biomed Eng. 2010;57(4):771–779. PubMed
Xu L, Redman CWG, Payne SJ, Georgieva A. Feature selection using genetic algorithms for fetal heart rate analysis. Physiol Meas. 2014;35(7):1357–1371. PubMed
Georgieva A, Payne SJ, Moulden M, Redman CWG. Artificial neural networks applied to fetal monitoring in labour. Neural Comp Applic. 2013;22(1):85–93.
Petrozziello A, Jordanov I, Aris Papageorghiou T, Christopher Redman WG, Georgieva A. Deep Learning for Continuous Electronic Fetal Monitoring in Labor. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:5866–5869. PubMed
Feng G, Quirck J, Djuric P. Supervised and unsupervised learning of fetal heart rate tracings with deep Gaussian processes. Presented at 14th Symposium on Neural Networks and Applications (NEUREL) 2018; DOI:10.1109/NEUREL.2018.8586992 DOI
Keith RD, Greene KR. Development, evaluation and validation of an intelligent system for the management of labour. Baillieres Clin Obstet Gynaecol. 1994;8(3):583–605. PubMed
Keith RD, Beckley S, Garibaldi JM, Westgate JA, Ifeachor EC, Greene KR. A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. BJOG. 1995;102(9):688–700. PubMed
Keith R The INFANT study—a flawed design foreseen. Lancet. 2017;389(10080):1697–1698. PubMed
Hollowell J, Rowe R, Townend J, et al. The Birthplace in England national prospective cohort study: further analyses to enhance policy and service delivery decision-making for planned place of birth. Southampton (UK): NIHR Journals Library; 2015. PubMed
Westerhuis MEMH, Visser GHA, Moons KGM, et al. Cardiotocography plus ST analysis of fetal electrocardiogram compared with cardiotocography only for intrapartum monitoring: a randomized controlled trial. Obstet Gynecol. 2010;115(6):1173–1180. PubMed
Belfort MA, Saade GR, Thom E, et al. A Randomized Trial of Intrapartum Fetal ECG ST-Segment Analysis. New England J Med. 2015;373(7):632–641. PubMed PMC
Vullings R, Verdurmen KMJ, Hulsenboom ADJ, et al. The electrical heart axis and ST events in fetal monitoring: A post-hoc analysis following a multicentre randomised controlled trial. PLOS ONE. 2017;12(4):e0175823. PubMed PMC
Cohen WR, Ommani S, Hassan S, et al. Accuracy and reliability of fetal heart rate monitoring using maternal abdominal surface electrodes: Maternal surface electrode fetal monitoring. Acta Obstet Gynecol Scand. 2012;91(11):1306–1313. PubMed
Clifford G, Sameni R, Ward J, Robinson J, Wolfberg AJ. Clinically accurate fetal ECG parameters acquired from maternal abdominal sensors. Am J Obstet Gynecol. 2011;205(1):47.e41–47.e45. PubMed PMC
Behar J, Andreotti F, Zaunseder S, Oster J, Clifford GD. A practical guide to non-invasive foetal electrocardiogram extraction and analysis. Physiol Meas. 2016;37(5):R1–R35. PubMed
Li R, Frasch MG, Wu H-T. Efficient Fetal-Maternal ECG Signal Separation from Two Channel Maternal Abdominal ECG via Diffusion-Based Channel Selection. Front Physiol. 2017;8:277. PubMed PMC
Spilka J, Chudáček V, Koucký M, et al. Using nonlinear features for fetal heart rate classification. Biomed Signal Process Control. 2012;7(4):350–357.
Elliott C, Warrick PA, Graham E, Hamilton EF. Graded classification of fetal heart rate tracings: association with neonatal metabolic acidosis and neurologic morbidity. Am J Obstet Gynecol. 2010;202(3):258.e251–258.e258. PubMed
Costa MA, Ayres-de-Campos D, Machado AP, Santos CC, Bernardes J. Comparison of a computer system evaluation of intrapartum cardiotocographic events and a consensus of clinicians. J Perinat Med. 2010;38(2):191–5. PubMed
Durosier LD, Green G, Batkin I, et al. Sampling rate of heart rate variability impacts the ability to detect acidemia in ovine fetuses near-term. Fron Pediat. 2014;2:38. PubMed PMC
Frasch MG, Boylan GB, Wu H-T, Devane D. Commentary: Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial. Front Physiol. 2017;8:721. PubMed PMC
Amer-Wahlin I, Kwee A. Combined cardiotocographic and ST event analysis: A review. Best Pract Res Clin Obstet Gynaecol. 2016;30:48–61. PubMed
Greene KR, Dawes GS, Lilja H, Rosén K-G. Changes in the ST waveform of the fetal lamb electrocardiogram with hypoxemia. Am J Obstet Gynecol. 1982;144(8):950–958. PubMed
Clur SAB, Aben D, Sengers MJJM, et al. Prelabour fetal ECG in congenital heart disease - a preliminary comparison with neonatal ECG. Paper presented at: Int Soc Ultrasound Obstet Gynecol; 2016, 2016.
Bakker PCAM, Zikkenheimer M, van Geijn HP The quality of intrapartum uterine activity monitoring. J Perinat Med. 2008;36(3): 197–201. PubMed
Cohen WR, Hayes-Gill B. Influence of maternal body mass index on accuracy and reliability of external fetal monitoring techniques. Acta Obstett Gynecol Scand. 2014;93(6):590–595. PubMed
Euliano T, Skowronski M, Marossero D, Shuster J, Edwards R. Prediction of intrauterine pressure waveform from transabdominal electrohysterography. J Matern Fetal Neonatal Med. 2006;19(12):811–816. PubMed
Rabotti C, Mischi M, van Laar JOEH, Oei GS, Bergmans JWM Estimation of internal uterine pressure by joint amplitude and frequency analysis of electrohysterographic signals. Physiol Meas. 2008;29(7):829–841. PubMed
Vlemminx MWC, Thijssen KMJ, Bajlekov GI, Dieleman JP, Van Der Hout-Van Der Jagt MB, Oei SG Electrohysterography for uterine monitoring during term labour compared to external tocodynamometry and intra-uterine pressure catheter. Eur J Obstet Gynecol Reprod Biol. 2017;215:197–205. PubMed
Hon EH, Quilligan EJ. The classification of fetal heart rate. II. A revised working classification. Conn Med. 1967;31(11):779–784. PubMed
Parer JT, King T, Flanders S, Fox M, Kilpatrick SJ. Fetal acidemia and electronic fetal heart rate patterns: is there evidence of an association? J Matern Fetal Neonatal Med. 2006;19(5):289–294. PubMed
Mendez-Bauer C, Poseiro JJ, Arellano-Hernandez G, Zambrana MA, Caldeyro-Barcia R. Effects of atropine of the heart rate of the human fetus during labor. Am J Obstet Gynecol. 1963;85(8):1033–1053. PubMed
Ball RH, Parer JT. The physiologic mechanisms of variable decelerations. Am J Obstet Gynecol. 1992;166(6 Pt 1):1683–1688. PubMed
Cahill AG, Roehl KA, Odibo AO, Macones GA. Association of atypical decelerations with acidemia. Obstet Gynecol. 2012;120(6):1387–1393. PubMed
Cahill AG, Roehl KA, Odibo AO, Macones GA. Association and prediction of neonatal acidemia. Am J Obstet Gynecol. 2012;207(3):206.e201–208. PubMed
Nunes I, Ayres-de-Campos D, Kwee A, Rosén KG. Prolonged saltatory fetal heart rate pattern leading to newborn metabolic acidosis. Clin Exp Obstet Gynecol. 2014;41(5):507–511. PubMed
Lu K, Holzmann M, Abtahi F, Lindecrantz K, Lindqvist PG, Nordstrom L. Fetal heart rate short term variation during labor in relation to scalp blood lactate concentration. Acta Obstet Gynecol Scand. 2018;97(10):1274–1280. PubMed
Lear CA, Westgate JA, Ugwumadu A, et al. Understanding fetal heart rate patterns that may predict antenatal and intrapartum neural injury. Semin Pediatr Neurol. 2018;28:3–16 PubMed
Lear CA, Galinsky R, Wassink G, et al. The myths and physiology surrounding intrapartum decelerations: the critical role of the peripheral chemoreflex. J Physiol. 2016;594(17):4711–4725. PubMed PMC
Westgate JA, Bennet L, Gunn AJ. Fetal heart rate variability changes during brief repeated umbilical cord occlusion in near term fetal sheep. BJOG. 1999;106(7):664–671. PubMed
Herry CL, Cortes M, Wu H-T, et al. Temporal Patterns in Sheep Fetal Heart Rate Variability Correlate to Systemic Cytokine Inflammatory Response: A Methodological Exploration of Monitoring Potential Using Complex Signals Bioinformatics. PloS One. 2016;11(4):e0153515. PubMed PMC
Liu HL, Garzoni L, Herry C, et al. Can Monitoring Fetal Intestinal Inflammation Using Heart Rate Variability Analysis Signal Incipient Necrotizing Enterocolitis of the Neonate? Pediatr Crit Care Med. 2016;17(4):e165–176. PubMed
Durosier LD, Herry CL, Cortes M, et al. Does heart rate variability reflect the systemic inflammatory response in a fetal sheep model of lipopolysaccharide-induced sepsis? Physiol Meas. 2015;36(10):2089–2102. PubMed PMC
Sokol RJ, Rosen MG, Chik L. Fetal electroencephalographic monitoring related to infant outcome. Am J Obstet Gynecol. 1977;127(3):329–330. PubMed
Frasch MG, Durosier LD, Gold N, et al. Adaptive shut-down of EEG activity predicts critical acidemia in the near-term ovine fetus. Physiol Rep. 2015;3(7). PubMed PMC
Thaler I, Boldes R, Timor-Tritsch I. Real-time spectral analysis of the fetal EEG: a new approach to monitoring sleep states and fetal condition during labor. Pediatr Res. 2000;48(3):340–345. PubMed
Wilson PC, Philpott RH, Spies S, Ahmed Y, Kadichza M. The effect of fetal head compression and fetal acidaemia during labour on human fetal cerebral function as measured by the fetal electroencephalogram. BJOG. 1979;86(4):269–277. PubMed
Rosen MG, Scibetta J, Chik L, Borgstedt AD. An approach to the study of brain damage. The principles of fetal electroencephalography. Am J Obstet Gynecol. 1973;115(1):37–47. PubMed
Eswaran H, Wilson JD, Lowery CL, et al. Brain stem auditory evoked potentials in the human fetus during labor. Am J Obstet Gynecol. 1999;180(6 Pt 1):1422–1426. PubMed
Wang X, Durosier LD, Ross MG, Richardson BS, Frasch MG. Online detection of fetal acidemia during labour by testing synchronization of EEG and heart rate: a prospective study in fetal sheep. PloS One. 2014;9(9):e108119. PubMed PMC
Frasch MG, Keen AE, Gagnon R, Ross MG, Richardson BS. Monitoring fetal electrocortical activity during labour for predicting worsening acidemia: a prospective study in the ovine fetus near term. PloS One. 2011;6(7):e22100. PubMed PMC
Gawande A Slow ideas Some innovations spread fast. How do you speed the ones that don’t? The New Yorker; 2013, July 22 https://www.newyorker.com
Moorman JR. The modern age of Physiological Measurement. Physioll Meas. 2014;35(2):93–95. PubMed