Fractal Analysis and Hurst Parameter for Intrapartum Fetal Heart Rate Variability Analysis: A Versatile Alternative to Frequency Bands and LF/HF Ratio
Language English Country United States Media electronic-ecollection
Document type Journal Article, Observational Study, Research Support, Non-U.S. Gov't
PubMed
26322889
PubMed Central
PMC4556442
DOI
10.1371/journal.pone.0136661
PII: PONE-D-15-06028
Knihovny.cz E-resources
- MeSH
- Acidosis blood MeSH
- Asphyxia Neonatorum diagnosis MeSH
- Fetal Blood physiology MeSH
- Fractals MeSH
- Humans MeSH
- Fetal Monitoring * MeSH
- Infant, Newborn MeSH
- Labor, Obstetric MeSH
- Heart Rate, Fetal physiology MeSH
- Case-Control Studies MeSH
- Pregnancy MeSH
- Check Tag
- Humans MeSH
- Infant, Newborn MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Observational Study MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: The fetal heart rate (FHR) is commonly monitored during labor to detect early fetal acidosis. FHR variability is traditionally investigated using Fourier transform, often with adult predefined frequency band powers and the corresponding LF/HF ratio. However, fetal conditions differ from adults and modify spectrum repartition along frequencies. AIMS: This study questions the arbitrariness definition and relevance of the frequency band splitting procedure, and thus of the calculation of the underlying LF/HF ratio, as efficient tools for characterizing intrapartum FHR variability. STUDY DESIGN: The last 30 minutes before delivery of the intrapartum FHR were analyzed. SUBJECTS: Case-control study. A total of 45 singletons divided into two groups based on umbilical cord arterial pH: the Index group with pH ≤ 7.05 (n = 15) and Control group with pH > 7.05 (n = 30). OUTCOME MEASURES: Frequency band-based LF/HF ratio and Hurst parameter. RESULTS: This study shows that the intrapartum FHR is characterized by fractal temporal dynamics and promotes the Hurst parameter as a potential marker of fetal acidosis. This parameter preserves the intuition of a power frequency balance, while avoiding the frequency band splitting procedure and thus the arbitrary choice of a frequency separating bands. The study also shows that extending the frequency range covered by the adult-based bands to higher and lower frequencies permits the Hurst parameter to achieve better performance for identifying fetal acidosis. CONCLUSIONS: The Hurst parameter provides a robust and versatile tool for quantifying FHR variability, yields better acidosis detection performance compared to the LF/HF ratio, and avoids arbitrariness in spectral band splitting and definitions.
See more in PubMed
Chandraharan E, Arulkumaran S. Prevention of birth asphyxia: responding approprietly to cardiotocograph (CTG) traces. Best Pract Res Clin Obstet Gynaecol. 2007;21:609–624. 10.1016/j.bpobgyn.2007.02.008 PubMed DOI
Macones GA, Hankins GD, Spong CY, Hauth J, Moore T. The 2008 National Institute of Child Health and Human Development workshop report on electronic fetal monitoring: update on definitions, interpretation, and research guidelines. Obstet Gynecol. 2008;112(3):661–666. 10.1097/AOG.0b013e3181841395 PubMed DOI
Alfirevic Z, Devane D, Gyte GML. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst Rev. 2006;3(3):CD006066 PubMed
Larma JD, Silva AM, Holcroft CJ, Thompson RE, Donohue PK, Graham EM. Intrapartum electronic fetal heart rate monitoring and the identification of metabolic acidosis and hypoxic-ischemic encephalopathy. Am J Obstet Gynecol. 2007. September;197(3):301.e1–301.e8. 10.1016/j.ajog.2007.06.053 PubMed DOI
Dawes GS, Moulden M, Redman CW. Short-term fetal heart rate variation, decelerations, and umbilical flow velocity waveforms before labor. Obstet Gynecol. 1992. October;80(4):673–678. PubMed
Low JA, Victory R, Derrick EJ. Predictive value of electronic fetal monitoring for intrapartum fetal asphyxia with metabolic acidosis. Obstet Gynecol. 1999. February;93(2):285–291. 10.1016/S0029-7844(98)00441-4 PubMed DOI
Figueras F, Albela S, Bonino S, Palacio M, Barrau E, Hernandez S, et al. Visual analysis of antepartum fetal heart rate tracings: inter- and intra-observer agreement and impact of knowledge of neonatal outcome. J Perinat Med. 2005;33(3):241–245. PubMed
Chauhan SP, Klauser CK, Woodring TC, Sanderson M, Magann EF, Morrison JC. Intrapartum nonreassuring fetal heart rate tracing and prediction of adverse outcomes: interobserver variability. Am J Obstet Gynecol. 2008. December;199(6):623.e1–623.e5. 10.1016/j.ajog.2008.06.027 PubMed DOI
Vayssiere C, Tsatsaris V, Pirrello O, Cristini C, Arnaud C, Goffinet F. Inter-observer agreement in clinical decision-making for abnormal cardiotocogram (CTG) during labour: a comparison between CTG and CTG plus STAN. BJOG. 2009. July;116(8):1081–7; discussion 1087–8. 10.1111/j.1471-0528.2009.02204.x PubMed DOI
Rantonen T, Ekholm E, Siira S, Metsälä T, Leino R, Ekblad U, et al. Periodic spectral components of fetal heart rate variability reflect the changes in cord arterial base deficit values: a preliminary report. Early Hum Dev. 2001. January;60(3):233–238. 10.1016/S0378-3782(00)00124-9 PubMed DOI
Chung DY, Sim YB, Park KT, Yi SH, Shin JC, Kim SP. Spectral analysis of fetal heart rate variability as a predictor of intrapartum fetal distress. Int J Gynaecol Obstet. 2001. May;73(2):109–116. 10.1016/S0020-7292(01)00348-4 PubMed DOI
Siira SM, Ojala TH, Vahlberg TJ, Jalonen JO, Välimäki IA, Rosén KG, et al. Marked fetal acidosis and specific changes in power spectrum analysis of fetal heart rate variability recorded during the last hour of labour. BJOG. 2005. April;112(4):418–423. 10.1111/j.1471-0528.2004.00454.x PubMed DOI
Salamalekis E, Hintipas E, Salloum I, Vasios G, Loghis C, Vitoratos N, et al. Computerized analysis of fetal heart rate variability using the matching pursuit technique as an indicator of fetal hypoxia during labor. J Matern Fetal Neonatal Med. 2006. March;19(3):165–169. 10.1080/14767050500233290 PubMed DOI
Van Laar J, Porath M, Peters C, Oei S. Spectral analysis of fetal heart rate variability for fetal surveillance: Review of the literature. Acta Obstetricia et Gynecologica Scandinavica. 2008;87(3):300–306. 10.1080/00016340801898950 PubMed DOI
Van Laar J, Peters C, Vullings R, Houterman S, Bergmans JWM, Oei SG. Fetal autonomic response to severe acidaemia during labour. BJOG. 2010. March;117(4):429–437. 10.1111/j.1471-0528.2009.02456.x PubMed DOI
Siira S, Ojala T, Vahlberg T, Rosén KG, Ekholm E. Do spectral bands of fetal heart rate variability associate with concomitant fetal scalp pH? Early Hum Dev. 2013. September;89(9):739–742. 10.1016/j.earlhumdev.2013.05.007 PubMed DOI
Kwon JY, Park IY, Shin JC, Song J, Tafreshi R, Lim J. Specific change in spectral power of fetal heart rate variability related to fetal acidemia during labor: comparison between preterm and term fetuses. Early Hum Dev. 2012. April;88(4):203–207. 10.1016/j.earlhumdev.2011.08.007 PubMed DOI
Huikuri HV, Stein PK. Heart rate variability in risk stratification of cardiac patients. Prog Cardiovasc Dis. 2013;56(2):153–159. 10.1016/j.pcad.2013.07.003 PubMed DOI
Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220–222. 10.1126/science.6166045 PubMed DOI
Task-Force. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996. March;17(3):354–381. PubMed
Anwar A, Allen S, Virag N, Richard Sutton P, de Mellis M, Cooper P, et al. Sympatho-Vagal Balance Derived from Heart Rate Variability During External and Implantable ECG Monitoring May “Reveal” the Underlying Cause of Blackouts. Heart. 2014. June;100 Suppl 3:A1 10.1136/heartjnl-2014-306118.2 PubMed DOI
Van Leeuwen P, Geue D, Lange S, Hatzmann W, Grönemeyer D. Changes in the frequency power spectrum of fetal heart rate in the course of pregnancy. Prenat Diagn. 2003. November;23(11):909–916. 10.1002/pd.723 PubMed DOI
Fortrat JO. Inaccurate normal values of heart rate variability spectral analysis in newborn infants. Am J Cardiol. 2002. August;90(3):346 10.1016/S0002-9149(02)02399-8 PubMed DOI
Koome ME, Bennet L, Booth LC, Davidson JO, Wassink G, Gunn AJ. Ontogeny and control of the heart rate power spectrum in the last third of gestation in fetal sheep. Experimental Physiology. 2014;99(1):80–88. 10.1113/expphysiol.2013.074567 PubMed DOI
Francis DP, Willson K, Georgiadou P, Wensel R, Davies LC, Coats A, et al. Physiological basis of fractal complexity properties of heart rate variability in man. J Physiol. 2002. July;542(Pt 2):619–629. 10.1113/jphysiol.2001.013389 PubMed DOI PMC
Ivanov PC. Scale-Invariant Aspects of Cardiac Dynamics. IEEE Eng In Med And Biol Mag. 2007;26(6):33–37. 10.1109/EMB.2007.907093 PubMed DOI
Nakamura T, Horio H, Chiba Y. Local Hölder exponent analysis of heart rate variability in preterm infants. IEEE Trans Biomed Eng. 2006;53(1):83–88. 10.1109/TBME.2005.859796 PubMed DOI
Tan CO, Cohen MA, Eckberg DL, Taylor JA. Fractal properties of human heart period variability: physiological and methodological implications. J Physiol. 2009. August;587(Pt 15):3929–3941. 10.1113/jphysiol.2009.169219 PubMed DOI PMC
Doret M, Helgason H, Abry P, Gonçalvès P, Gharib C, Gaucherand P. Multifractal analysis of fetal heart rate variability in fetuses with and without severe acidosis during labor. American Journal of Perinatology. 2011;28(4):259–266. 10.1055/s-0030-1268713 PubMed DOI
Abry P, Roux S, Chudáček V, Borgnat P, Gonçalvès P, Doret M. Hurst Exponent and IntraPartum Fetal Heart Rate: Impact of Decelerations In: 26th International Symposium on Computer-Based Medical Systems (CBMS); 2013. p. 1–6.
Abry P, Gonçalvès P, Flandrin P. Wavelets, spectrum estimation and 1/f processes In: Wavelets and Statistics, Lecture Notes in Statistics, Antoniadis A. and Oppenheim G., Eds. vol. 103 New-York: Springer-Verlag; 1995.
Veitch D, Abry P. A Wavelet Based Joint Estimator of the Parameters of Long-Range Dependence. IEEE Transactions on Information Theory special issue on “Multiscale Statistical Signal Analysis and its Applications”. 1999. April;45(3):878–897.
Doret M, Massoud M, Constans A, Gaucherand P. Use of peripartum ST analysis of fetal electrocardiogram without blood sampling: a large prospective cohort study. Eur J Obstet Gynecol Reprod Biol. 2011. May;156(1):35–40. 10.1016/j.ejogrb.2010.12.042 PubMed DOI
Amer-Wåhlin I, Hellsten C, Norén H, Hagberg H, Herbst A, Kjellmer I, et al. Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: a Swedish randomised controlled trial. Lancet. 2001. August;358(9281):534–538. 10.1016/S0140-6736(01)05703-8 PubMed DOI
Victory R, Penava D, Silva OD, Natale R, Richardson B. Umbilical cord pH and base excess values in relation to adverse outcome events for infants delivering at term. Am J Obstet Gynecol. 2004. December;191(6):2021–2028. 10.1016/j.ajog.2004.04.026 PubMed DOI
Prabhakar NR. Sensing hypoxia: physiology, genetics and epigenetics. The Journal of physiology. 2013;591(9):2245–2257. 10.1113/jphysiol.2012.247759 PubMed DOI PMC
Pardey J, Moulden M, Redman CWG. A computer system for the numerical analysis of nonstress tests. Am J Obstet Gynecol. 2002. May;186(5):1095–1103. 10.1067/mob.2002.122447 PubMed DOI
Costa MD, Schnettler WT, Amorim-Costa C, Bernardes J, Costa A, Goldberger AL, et al. Complexity-loss in fetal heart rate dynamics during labor as a potential biomarker of acidemia. Early Human Development. 2014;90(1):67–71. 10.1016/j.earlhumdev.2013.10.002 PubMed DOI PMC
Chudáek V, Spilka J, Janků P, Koucký M, Lhotská L, Huptych M. Automatic evaluation of intrapartum fetal heart rate recordings: A comprehensive analysis of useful features. Physiological Measurement. 2011;32:1347–1360. 10.1088/0967-3334/32/8/022 PubMed DOI
Kwon JY, Park IY, Lim J, Shin JC. Changes in spectral power of fetal heart rate variability in small-for-gestational-age fetuses are associated with fetal sex. Early Human Development. 2014;90(1):9–13. 10.1016/j.earlhumdev.2013.11.005 PubMed DOI
Leonarduzzi RF, Torres ME, Abry P. Scaling range automated selection for wavelet leader multifractal analysis. Signal Processing. 2014;105(0):243–257. 10.1016/j.sigpro.2014.06.002 DOI
Ohta T, Okamura K, Kimura Y, Suzuki T, Watanabe T, Yasui T, et al. Alteration in the low-frequency domain in power spectral analysis of fetal heart beat fluctuations. Fetal Diagn Ther. 1999;14(2):92–97. Available from: http://dx.doi.org/20896. 10.1159/000020896 PubMed DOI
Signorini MG, Magenes G, Cerutti S, Arduini D. Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings. IEEE Trans Biomed Eng. 2003. March;50(3):365–374. 10.1109/TBME.2003.808824 PubMed DOI
Oppenheimer LW, Lewinsky RM. Power spectral analysis of fetal heart rate. Baillieres Clin Obstet Gynaecol. 1994. September;8(3):643–661. 10.1016/S0950-3552(05)80203-2 PubMed DOI
Cohen MA, Taylor JA. Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J Physiol. 2002. August;542(Pt 3):669–683. 10.1113/jphysiol.2002.017483 PubMed DOI PMC
Goldstein DS, Bentho O, Park MY, Sharabi Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental physiology. 2011;96(12):1255–1261. 10.1113/expphysiol.2010.056259 PubMed DOI PMC
Schneider U, Schleussner E, Fiedler A, Jaekel S, Liehr M, Haueisen J, et al. Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system. Physiol Meas. 2009. February;30(2):215–226. 10.1088/0967-3334/30/2/008 PubMed DOI
Gustafson KM, Allen JJB, Yeh HW, May LE. Characterization of the fetal diaphragmatic magnetomyogram and the effect of breathing movements on cardiac metrics of rate and variability. Early Hum Dev. 2011. July;87(7):467–475. 10.1016/j.earlhumdev.2011.03.012 PubMed DOI PMC
Ribbert LS, Visser GH, Mulder EJ, Zonneveld MF, Morssink LP. Changes with time in fetal heart rate variation, movement incidences and haemodynamics in intrauterine growth retarded fetuses: a longitudinal approach to the assessment of fetal well being. Early Hum Dev. 1993. January;31(3):195–208. 10.1016/0378-3782(93)90195-Z PubMed DOI
Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications. 2002;316(1):87–114. 10.1016/S0378-4371(02)01383-3 DOI
Gonçalves H, Bernardes J, Rocha AP, de Campos DA. Linear and nonlinear analysis of heart rate patterns associated with fetal behavioral states in the antepartum period. Early Hum Dev. 2007. September;83(9):585–591. 10.1016/j.earlhumdev.2006.12.006 PubMed DOI
David M, Hirsch M, Karin J, Toledo E, Akselrod S. An estimate of fetal autonomic state by time-frequency analysis of fetal heart rate variability. J Appl Physiol (1985). 2007 March;102(3):1057–1064. 10.1152/japplphysiol.00114.2006 PubMed DOI
Chudáček V, Anden J, Mallat S, Abry P, Doret M. Scattering Transform for Intrapartum Fetal Heart Rate Variability Fractal Analysis: A Case-Control Study. Biomedical Engineering, IEEE Transactions on. 2014. April;61(4):1100–1108. 10.1109/TBME.2013.2294324 PubMed DOI