Effect of Extraction Methods on Aroma Profile, Antioxidant Activity and Sensory Acceptability of Specialty Coffee Brews
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_PRF_2023_024
Palacký University, Olomouc
IGA/FT/2023/007
Tomas Bata University in Zlín
PubMed
38002183
PubMed Central
PMC10669957
DOI
10.3390/foods12224125
PII: foods12224125
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant activity, aroma profile, coffee brew, roasting degree, sensory analysis, specialty coffee,
- Publikační typ
- časopisecké články MeSH
Specialty coffees from various geographical origins were processed using different extraction methods. Four extraction techniques were employed: cold brew (CB), espresso (ES), French press (FR), and aeropress (AE). The potential health benefits of coffee brews were linked to their antioxidant activity, as determined by the DPPH assay, and total polyphenol content (TPC) measured through the Folin-Ciocalteu reducing-capacity assay. The Columbia (C) espresso coffee type (omni-roasting) exhibited the highest antioxidant activity (86.31 ± 0.70) μmol/100 mL, with a TPC value of (44.41 ± 0.35) mg GAE/g. Quantitative analyses of caffeine and chlorogenic acid were conducted using high-performance liquid chromatography (HPLC). The evaluation of coffee aroma profiles involved the application of headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) and was complemented by sensory analysis following the Specialty Coffee Association (SCA) standard protocol. The predominant volatile compounds found in all samples included furans, phenols, pyrazines, and terpenes. The EY espresso type (medium dark roasting) had the highest levels of most coffee volatiles. The C cold brew type (omni-roasting) was rated as the preferred coffee in terms of its sensory characteristics and flavour. In summary, ES and CB were found to be more effective extraction methods for the parameters assessed.
Zobrazit více v PubMed
Parenti A., Guerrini L., Masella P., Spinelli S., Calamai L., Spugnoli P. Comparison of Espresso Coffee Brewing Techniques. J. Food Eng. 2014;121:112–117. doi: 10.1016/j.jfoodeng.2013.08.031. DOI
Zhai X., Yang M., Zhang J., Zhang L., Tian Y., Li C.Y., Bao L., Ma C., Abd El-Aty A.M. Feasibility of Ultrasound-Assisted Extraction for Accelerated Cold Brew Coffee Processing: Characterization and Comparison with Conventional Brewing Methods. Front. Nutr. 2022;9:849811. doi: 10.3389/fnut.2022.849811. PubMed DOI PMC
Claassen L., Rinderknecht M., Porth T., Röhnisch J., Seren H.Y., Scharinger A., Gottstein V., Noack D., Schwarz S., Winkler G., et al. Cold Brew Coffee—Pilot Studies on Definition, Extraction, Consumer Preference, Chemical Characterization and Microbiological Hazards. Foods. 2021;10:865. doi: 10.3390/foods10040865. PubMed DOI PMC
Kwok R., Lee Wee Ting K., Schwarz S., Claassen L., Lachenmeier D.W. Current Challenges of Cold Brew Coffee—Roasting, Extraction, Flavor Profile, Contamination, and Food Safety. Challenges. 2020;11:26. doi: 10.3390/challe11020026. DOI
Rao N.Z., Fuller M., Grim M.D. Physiochemical Characteristics of Hot and Cold Brew Coffee Chemistry: The Effects of Roast Level and Brewing Temperature on Compound Extraction. Foods. 2020;9:902. doi: 10.3390/foods9070902. PubMed DOI PMC
Nosal B.M., Sakaki J.R., Kim D., Chun O.K. Impact of Coffee Preparation on Total Phenolic Content in Brewed Coffee Extracts and their Contribution to the Body’s Antioxidant Status. Food Sci. Biotechnol. 2022;31:1081–1088. doi: 10.1007/s10068-022-01100-4. PubMed DOI PMC
Janda K., Jakubczyk K., Baranowska-Bosiacka I., Kapczuk P., Kochman J., Rębacz-Maron E., Gutowska I. Mineral Composition and Antioxidant Potential of Coffee Beverages Depending on the Brewing Method. Foods. 2020;9:121. doi: 10.3390/foods9020121. PubMed DOI PMC
Gloess A.N., Schönbächler B., Klopprogge B., D’Ambrosio L., Chatelain K., Bongartz A., Strittmatter A., Rast M., Yeretzian C. Comparison of Nine Common Coffee Extraction Methods: Instrumental and Sensory Analysis. Eur. Food Res. Technol. 2013;236:607–627. doi: 10.1007/s00217-013-1917-x. DOI
Klikarová J., Řeháková B., Česlová L. Evaluation of Regular and Decaffeinated (Un)Roasted Coffee Beans using HPLC and Multivariate Statistical Methods. J. Food Compos. Anal. 2022;114:104841. doi: 10.1016/j.jfca.2022.104841. DOI
Zhang K., Cheng J., Hong Q., Dong W., Chen X., Wu G., Zhang Z. Identification of Changes in the Volatile Compounds of Robusta Coffee Beans during Drying Based on HS-SPME/GC-MS and E-Nose Analyses with the Aid of Chemometrics. LWT. 2022;161:113317. doi: 10.1016/j.lwt.2022.113317. DOI
Lopes G.R., Petronilho S., Ferreira A.S., Pinto M., Passos C.P., Coelho E., Rodrigues C., Figueira C., Rocha S.M., Coimbra M.A. Insights on Single-Dose Espresso Coffee Capsules’ Volatile Profile: From Ground Powder Volatiles to Prediction of Espresso Brew Aroma Properties. Foods. 2021;10:2508. doi: 10.3390/foods10102508. PubMed DOI PMC
Gancarz M., Dobrzański B., Jr., Oniszczuk T., Combrzyński M., Ćwikła D., Rusinek R. Detection and Differentiation of Volatile Compound Profiles in Roasted Coffee Arabica Beans from Different Countries using an Electronic Nose and GC-MS. Sensors. 2020;20:2124. doi: 10.3390/s20072124. PubMed DOI PMC
Rahman N.A.A., Muharram S.H., Abiola O. Antibacterial Activity of NESCAFÉ Instant Coffee Beverages and Pharyngitis-Causing Streptococcus Species. Brunei Darussalam J. Health. 2014;5:70–79.
Ruiz-Diaz C.P., Verle Rodrigues J.C., Miro-Rivera E., Diaz-Vazquez L.M. Impact of the Coffee Berry Borer on the Volatile and Semi-Volatile Compounds; Qualitative Profile of Coffea Arabica Berries. Food Chem. Adv. 2023;2:100154. doi: 10.1016/j.focha.2022.100154. DOI
Kussmann M., Abe Cunha D.H., Berciano S. Bioactive Compounds for Human and Planetary Health. Front. Nutr. 2023;10:1193848. doi: 10.3389/fnut.2023.1193848. PubMed DOI PMC
Bastian F., Hutabarat O.S., Dirpan A., Nainu F., Harapan H., Emran T.B., Simal-Gandara J. From Plantation to Cup: Changes in Bioactive Compounds during Coffee Processing. Foods. 2021;10:2827. doi: 10.3390/foods10112827. PubMed DOI PMC
Kučera L., Papoušek R., Kurka O., Barták P., Bednář P. Study of Composition of Espresso Coffee Prepared from various Roast Degrees of Coffea arabica L. Coffee Beans. Food Chem. 2016;199:727–735. doi: 10.1016/j.foodchem.2015.12.080. PubMed DOI
Gancarz M., Dobrzański B., Malaga-Toboła U., Tabor S., Combrzyński M., Ćwikła D., Strobel W.R., Oniszczuk A., Karami H., Darvishi Y., et al. Impact of Coffee Bean Roasting on the Content of Pyridines Determined by Analysis of Volatile Organic Compounds. Molecules. 2022;27:1559. doi: 10.3390/molecules27051559. PubMed DOI PMC
Freitas V.V., Rodrigues Borges L.L., Dias Castro G.A., Henrique dos Santos M., Teixeira Ribeiro Vidigal M.C., Fernandes S.A., Stringheta P.C. Impact of Different Roasting Conditions on the Chemical Composition, Antioxidant Activities, and Color of Coffea canephora and Coffea arabica L. Samples. Heliyon. 2023;9:e19580. doi: 10.1016/j.heliyon.2023.e19580. PubMed DOI PMC
Wachter I., Rantuch P., Drienovský M., Martinka J., Ház A., Štefko T. Determining the Activation Energy of Spent Coffee Grounds by the Thermogravimetric Analysis. J. Chem. Technol. Metall. 2022;57:1006–1018.
Esquivel P., Jiménez V.M. Functional Properties of Coffee and Coffee by-Products. Food Res. Int. 2012;46:488–495. doi: 10.1016/j.foodres.2011.05.028. DOI
Lee W.T., Smith A., Arshad A. Uneven Extraction in Coffee Brewing. Phys. Fluids. 2023;35:054110. doi: 10.1063/5.0138998. DOI
Bhumiratana N., Adhikari K., Chambers E. Evolution of Sensory Aroma Attributes from Coffee Beans to Brewed Coffee. LWT. 2011;44:2185–2192. doi: 10.1016/j.lwt.2011.07.001. DOI
Khamitova G., Angeloni S., Fioretti L., Ricciutelli M., Sagratini G., Torregiani E., Vittori S., Caprioli G. The Impact of Different Filter Baskets, Heights of Perforated Disc and Amount of Ground Coffee on the Extraction of Organics Acids and the Main Bioactive Compounds in Espresso Coffee. Food Res. Int. 2020;133:109220. doi: 10.1016/j.foodres.2020.109220. PubMed DOI
Council E.U. Council Directive 98/83 about Water Quality Intended for Human Consumption. OJEC L. 1998;330:32–54.
Lapčík L., Lapčíkova B., Gautam S., Vašina M., Valenta T., Řepka D., Čépe K., Rudolf O. Acoustic and Mechanical Testing of Commercial Cocoa Powders. Int. J. Food Prop. 2022;25:2184–2197. doi: 10.1080/10942912.2022.2127760. DOI
Masek A., Chrzescijanska E., Latos M., Zaborski M., Podsedek A. Antioxidant and Antiradical Properties of Green Tea Extract Compounds. Int. J. Electrochem. Sci. 2017;12:6600–6610. doi: 10.20964/2017.07.06. DOI
Shahidi F., Zhong Y. Measurement of Antioxidant Activity. J. Funct. Foods. 2015;18:757–781. doi: 10.1016/j.jff.2015.01.047. DOI
Somporn C., Kamtuo A., Theerakulpisut P., Siriamornpun S. Effects of Roasting Degree on Radical Scavenging Activity, Phenolics and Volatile Compounds of Arabica Coffee Beans (Coffea Arabica L. Cv. Catimor) Int. J. Food Sci. Tech. 2011;46:2287–2296. doi: 10.1111/j.1365-2621.2011.02748.x. DOI
Febrina L., Happyana N., Syah Y.M. Metabolite Profiles and Antidiabetic Activity of the Green Beans of Luwak (Civet) Coffees. Food Chem. 2021;355:129496. doi: 10.1016/j.foodchem.2021.129496. PubMed DOI
Chen L., Cheng C., Liang J. Effect of Esterification Condensation on the Folin–Ciocalteu Method for the Quantitative Measurement of Total Phenols. Food Chem. 2015;170:10–15. doi: 10.1016/j.foodchem.2014.08.038. PubMed DOI
Plaza M., Domínguez-Rodríguez G., Castro-Puyana M., Marina M.L. Polyphenols analysis and related challenges. In: Galanakis C.M., editor. Polyphenols: Properties, Recovery, and Applications. Woodhead Publishing; Cambridge, UK: 2018. pp. 177–232. DOI
Samsonowicz M., Regulska E., Karpowicz D., Leśniewska B. Antioxidant Properties of Coffee Substitutes Rich in Polyphenols and Minerals. Food Chem. 2019;278:101–109. doi: 10.1016/j.foodchem.2018.11.057. PubMed DOI
Yamagata K. Do Coffee Polyphenols have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence. Antioxidants. 2018;7:26. doi: 10.3390/antiox7020026. PubMed DOI PMC
Opustilová K., Lapčíková B., Lapčík L., Gautam S., Valenta T., Li P. Physico-Chemical Study of Curcumin and its Application in O/W/O Multiple Emulsion. Foods. 2023;12:1394. doi: 10.3390/foods12071394. PubMed DOI PMC
SCA Protocols . Cupping Specialty Coffee. Specialty Coffee Association; Santa Ana, CA, USA: 2015. 16DEC2015.
Chapko M.J., Seo H. Characterizing Product Temperature-Dependent Sensory Perception of Brewed Coffee Beverages: Descriptive Sensory Analysis. Food Res. Int. 2019;121:612–621. doi: 10.1016/j.foodres.2018.12.026. PubMed DOI
Di Donfrancesco B., Gutierrez Guzman N., Chambers IV E. Comparison of Results from Cupping and Descriptive Sensory Analysis of Colombian Brewed Coffee. J. Sens. Stud. 2014;29:301–311. doi: 10.1111/joss.12104. DOI
Kulapichitr F., Borompichaichartkul C., Fang M., Suppavorasatit I., Cadwallader K.R. Effect of Post-Harvest Drying Process on Chlorogenic Acids, Antioxidant Activities and CIE-Lab Color of Thai Arabica Green Coffee Beans. Food Chem. 2022;366:130504. doi: 10.1016/j.foodchem.2021.130504. PubMed DOI
Seow L., Shamlan S., Seow E. Influence of Roasting Degrees on the Antioxidant and Anti-Angiogenic Effects of Coffea liberica. J. Food Meas. Charact. 2021;15:4030–4036. doi: 10.1007/s11694-021-00987-7. DOI
Sacchetti G., Di Mattia C., Pittia P., Mastrocola D. Effect of Roasting Degree, Equivalent Thermal Effect and Coffee Type on the Radical Scavenging Activity of Coffee Brews and their Phenolic Fraction. J. Food Eng. 2009;90:74–80. doi: 10.1016/j.jfoodeng.2008.06.005. DOI
Kameya H. Evaluation of Hydroxyl Radical and Alkyl-Oxy Radical Scavenging Activity of Coffee by ESR Spin Trapping Method. J. Food Sci. Eng. 2017;7:305–311. doi: 10.17265/2159-5828/2017.06.003. DOI
Laukaleja I., Kruma Z. Influence of the Roasting Process on Bioactive Compounds and Aroma Profile in Specialty Coffee: A Review; Proceedings of the 13th Baltic Conference on Food Science and Technology and 5th North and East European Congress on Food; Jelgava, Latvia. 2–3 May 2019; pp. 2–3.
Le-Thi A., Le N., Nguyen C., Nguyen T. Variability of Total Polyphenol Contents in Ground Coffee Products and their Antioxidant Capacities through Different Reaction Mechanisms. Biointerface Res. Appl. Chem. 2022;12:4857–4870. doi: 10.33263/BRIAC124.48574870. DOI
Fărcaş A., Socaci S., Bocăniciu I., Pop A., Tofana M., Muste S., Feier D. Evaluation of Biofunctional Compounds Content from Brewed Coffee. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2014;71:114–118. doi: 10.15835/buasvmcn-fst:10474. PubMed DOI
Bekedam E.K., Schols H.A., Cämmerer B., Kroh L.W., van Boekel M.A., Smit G. Electron Spin Resonance (ESR) Studies on the Formation of Roasting-Induced Antioxidative Structures in Coffee Brews at Different Degrees of Roast. J. Agric. Food Chem. 2008;56:4597–4604. doi: 10.1021/jf8004004. PubMed DOI
Derossi A., Ricci I., Caporizzi R., Fiore A., Severini C. How Grinding Level and Brewing Method (Espresso, American, Turkish) could affect the Antioxidant Activity and Bioactive Compounds in a Coffee Cup. J. Sci. Food Agric. 2018;98:3198–3207. doi: 10.1002/jsfa.8826. PubMed DOI
Belitz H., Grosch W., Schieberle P. Food Chemistry. 4th ed. Springer; Berlin/Heidelberg, Germany: 2009. p. 1114. DOI
Bressanello D., Liberto E., Cordero C., Rubiolo P., Pellegrino G., Ruosi M.R., Bicchi C. Coffee Aroma: Chemometric Comparison of the Chemical Information Provided by Three Different Samplings Combined with GC–MS to Describe the Sensory Properties in Cup. Food Chem. 2017;214:218–226. doi: 10.1016/j.foodchem.2016.07.088. PubMed DOI
Dong W., Hu R., Long Y., Li H., Zhang Y., Zhu K., Chu Z. Comparative Evaluation of the Volatile Profiles and Taste Properties of Roasted Coffee Beans as Affected by Drying Method and Detected by Electronic Nose, Electronic Tongue, and HS-SPME-GC-MS. Food Chem. 2019;272:723–731. doi: 10.1016/j.foodchem.2018.08.068. PubMed DOI
Mestdagh F., Davidek T., Chaumonteuil M., Folmer B., Blank I. The Kinetics of Coffee Aroma Extraction. Food Res. Int. 2014;63:271–274. doi: 10.1016/j.foodres.2014.03.011. DOI
Córdoba N., Moreno F.L., Osorio C., Velásquez S., Ruiz Y. Chemical and Sensory Evaluation of Cold Brew Coffees using Different Roasting Profiles and Brewing Methods. Food Res. Int. 2021;141:110141. doi: 10.1016/j.foodres.2021.110141. PubMed DOI
De Vivo A., Genovese A., Tricarico M.C., Aprea A., Sacchi R., Sarghini F. Volatile Compounds in Espresso Resulting from a Refined Selection of Particle Size of Coffee Powder. J. Food Compos. Anal. 2022;114:104779. doi: 10.1016/j.jfca.2022.104779. DOI