Exploring the effects of topoisomerase II inhibitor XK469 on anthracycline cardiotoxicity and DNA damage
Language English Country United States Media print
Document type Journal Article
Grant support
21-16195S
Czech Science Foundation
GAUK 1674119
Charles University
European Regional Development
PubMed
38290791
PubMed Central
PMC10964739
DOI
10.1093/toxsci/kfae008
PII: 7593765
Knihovny.cz E-resources
- Keywords
- XK469, anthracyclines, cardiotoxicity, dexrazoxane, topoisomerase II,
- MeSH
- Anthracyclines * toxicity therapeutic use MeSH
- Quinoxalines * MeSH
- Daunorubicin toxicity therapeutic use MeSH
- DNA Topoisomerases, Type II metabolism therapeutic use MeSH
- Doxorubicin toxicity MeSH
- Topoisomerase II Inhibitors * toxicity therapeutic use MeSH
- Cardiotoxicity MeSH
- Rabbits MeSH
- Rats MeSH
- DNA Damage MeSH
- Antibiotics, Antineoplastic toxicity MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anthracyclines * MeSH
- Quinoxalines * MeSH
- Daunorubicin MeSH
- DNA Topoisomerases, Type II MeSH
- Doxorubicin MeSH
- Topoisomerase II Inhibitors * MeSH
- Antibiotics, Antineoplastic MeSH
- XK 469 MeSH Browser
Anthracyclines, such as doxorubicin (adriamycin), daunorubicin, or epirubicin, rank among the most effective agents in classical anticancer chemotherapy. However, cardiotoxicity remains the main limitation of their clinical use. Topoisomerase IIβ has recently been identified as a plausible target of anthracyclines in cardiomyocytes. We examined the putative topoisomerase IIβ selective agent XK469 as a potential cardioprotective and designed several new analogs. In our experiments, XK469 inhibited both topoisomerase isoforms (α and β) and did not induce topoisomerase II covalent complexes in isolated cardiomyocytes and HL-60, but induced proteasomal degradation of topoisomerase II in these cell types. The cardioprotective potential of XK469 was studied on rat neonatal cardiomyocytes, where dexrazoxane (ICRF-187), the only clinically approved cardioprotective, was effective. Initially, XK469 prevented daunorubicin-induced toxicity and p53 phosphorylation in cardiomyocytes. However, it only partially prevented the phosphorylation of H2AX and did not affect DNA damage measured by Comet Assay. It also did not compromise the daunorubicin antiproliferative effect in HL-60 leukemic cells. When administered to rabbits to evaluate its cardioprotective potential in vivo, XK469 failed to prevent the daunorubicin-induced cardiac toxicity in either acute or chronic settings. In the following in vitro analysis, we found that prolonged and continuous exposure of rat neonatal cardiomyocytes to XK469 led to significant toxicity. In conclusion, this study provides important evidence on the effects of XK469 and its combination with daunorubicin in clinically relevant doses in cardiomyocytes. Despite its promising characteristics, long-term treatments and in vivo experiments have not confirmed its cardioprotective potential.
See more in PubMed
Alousi A. M., Boinpally R., Wiegand R., Parchment R., Gadgeel S., Heilbrun L. K., Wozniak A. J., DeLuca P., LoRusso P. M. (2007). A phase 1 trial of XK469: Toxicity profile of a selective topoisomerase II beta inhibitor. Invest. New Drugs. 25, 147–154. PubMed
Austin C. A., Cowell I. G., Khazeem M. M., Lok D., Ng H. T. (2021). TOP2B’s contributions to transcription. Biochem. Soc. Trans. 49, 2483–2493. PubMed
Azarova A. M., Lin R. K., Tsai Y. C., Liu L. F., Lin C. P., Lyu Y. L. (2010). Genistein induces topoisomerase IIbeta- and proteasome-mediated DNA sequence rearrangements: Implications in infant leukemia. Biochem. Biophys. Res. Commun. 399, 66–71. PubMed PMC
Castrogiovanni C., Waterschoot B., De Backer O., Dumont P. (2018). Serine 392 phosphorylation modulates p53 mitochondrial translocation and transcription-independent apoptosis. Cell Death Differ. 25, 190–203. PubMed PMC
Chou T. C., Talalay P. (1984). Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55. PubMed
Corremans R., Adao R., De Keulenaer G. W., Leite-Moreira A. F., Bras-Silva C. (2019). Update on pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity. Clin. Exp. Pharmacol. Physiol. 46, 204–215. PubMed
Cowell I. G., Tilby M. J., Austin C. A. (2011). An overview of the visualisation and quantitation of low and high MW DNA adducts using the trapped in agarose DNA immunostaining (TARDIS) assay. Mutagenesis 26, 253–260. PubMed
Deng S., Yan T., Nikolova T., Fuhrmann D., Nemecek A., Godtel-Armbrust U., Kaina B., Wojnowski L. (2015). The catalytic topoisomerase II inhibitor dexrazoxane induces DNA breaks, ATF3 and the DNA damage response in cancer cells. Br. J. Pharmacol. 172, 2246–2257. PubMed PMC
Dewilde S., Carroll K., Nivelle E., Sawyer J. (2020). Evaluation of the cost-effectiveness of dexrazoxane for the prevention of anthracycline-related cardiotoxicity in children with sarcoma and haematologic malignancies: A European perspective. Cost Eff. Resour. Alloc. 18, 7. PubMed PMC
Earhart R. H., Tutsch K. D., Koeller J. M., Rodriguez R., Robins H. I., Vogel C. L., Davis H. L., Tormey D. C. (1982). Pharmacokinetics of (+)-1,2-di(3,5-dioxopiperazin-1-yl)propane intravenous infusions in adult cancer patients. Cancer Res. 42, 5255–5261. PubMed
European Medicines Agency. (2017). Questions and Answers on Cardioxane (Dexrazoxane, Powder for Solution for Injection, 500 mg). Available at: https://www.ema.europa.eu/en/medicines/human/referrals/dexrazoxane. Accessed January 30, 2024.
Gao H., Huang K. C., Yamasaki E. F., Chan K. K., Chohan L., Snapka R. M. (1999). XK469, a selective topoisomerase IIbeta poison. Proc. Nat. Acad. Sci. U.S.A. 96, 12168–12173. PubMed PMC
Getz K. D., Sung L., Alonzo T. A., Leger K. J., Gerbing R. B., Pollard J. A., Cooper T., Kolb E. A., Gamis A. S., Ky B., et al. (2020). Effect of dexrazoxane on left ventricular systolic function and treatment outcomes in patients with acute myeloid leukemia: A report from the children’s oncology group. J. Clin. Oncol. 38, 2398–2406. PubMed PMC
Gewirtz D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57, 727–741. PubMed
Hasinoff B. B. (2002). Dexrazoxane (ICRF-187) protects cardiac myocytes against hypoxia-reoxygenation damage. Cardiovasc. Toxicol. 2, 111–118. PubMed
Hazeldine S. T., Polin L., Kushner J., Paluch J., White K., Edelstein M., Palomino E., Corbett T. H., Horwitz J. P. (2001). Design, synthesis, and biological evaluation of analogues of the antitumor agent, 2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid (XK469). J. Med. Chem. 44, 1758–1776. PubMed
Hazeldine S. T., Polin L., Kushner J., White K., Bouregeois N. M., Crantz B., Palomino E., Corbett T. H., Horwitz J. P. (2002). Synthesis and biological evaluation of some bioisosteres and congeners of the antitumor agent, 2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid (XK469). J. Med. Chem. 45, 3130–3137. PubMed
Henriksen P. A. (2018). Anthracycline cardiotoxicity: An update on mechanisms, monitoring and prevention. Heart 104, 971–977. PubMed
Herman E. H., Hasinoff B. B., Steiner R., Lipshultz S. E. (2014). A review of the preclinical development of dexrazoxane. Prog. Pediat. Cardiol. 36, 33–38.
Jasra S., Anampa J. (2018). Anthracycline use for early stage breast cancer in the modern era: A review. Curr. Treat. Options Oncol. 19, 30. PubMed
Jirkovská-Vávrová A., Roh J., Lenčová-Popelová O., Jirkovský E., Hrušková K., Potůčková-Macková E., Jansová H., Hašková P., Martinková P., Eisner T., et al. (2015). Synthesis and analysis of novel analogues of dexrazoxane and its open-ring hydrolysis product for protection against anthracycline cardiotoxicity in vitro and in vivo. Toxicol. Res. 4, 1098–1114.
Jirkovska A., Karabanovich G., Kubes J., Skalicka V., Melnikova I., Korabecny J., Kucera T., Jirkovsky E., Novakova L., Piskackova H. B., et al. (2021). Structure-activity relationship study of dexrazoxane analogues reveals ICRF-193 as the most potent bisdioxopiperazine against anthracycline toxicity to cardiomyocytes due to its strong topoisomerase II beta interactions. J. Med. Chem. 64, 3997–4019. PubMed
Jirkovsky E., Jirkovska A., Bavlovic-Piskackova H., Skalicka V., Pokorna Z., Karabanovich G., Kollarova-Brazdova P., Kubes J., Lencova-Popelova O., Mazurova Y., et al. (2021). Clinically translatable prevention of anthracycline cardiotoxicity by dexrazoxane is mediated by topoisomerase II beta and not metal chelation. Circ. Heart Fail. 14, e008209. PubMed
Jirkovský E., Lenčová-Popelová O., Hroch M., Adamcová M., Mazurová Y., Vávrová J., Mičuda S., Šimůnek T., Geršl V., Štěrba M. (2013). Early and delayed cardioprotective intervention with dexrazoxane each show different potential for prevention of chronic anthracycline cardiotoxicity in rabbits. Toxicology 311, 191–204. PubMed
Khazeem M. M., Casement J. W., Schlossmacher G., Kenneth N. S., Sumbung N. K., Chan J. Y. T., McGow J. F., Cowell I. G., Austin C. A. (2022). TOP2B is required to maintain the adrenergic neural phenotype and for ATRA-induced differentiation of SH-SY5Y neuroblastoma cells. Mol. Neurobiol. 59, 5987–6008. PubMed PMC
Khazeem M. M., Cowell I. G., Harkin L. F., Casement J. W., Austin C. A. (2020). Transcription of carbonyl reductase 1 is regulated by DNA topoisomerase II beta. FEBS Lett. 594, 3395–3405. PubMed
Kim H., Kang H. J., Park K. D., Koh K.-N., Im H. J., Seo J. J., Lee J. W., Chung N.-G., Cho B., Kim H. K., et al. (2019). Risk factor analysis for secondary malignancy in dexrazoxane-treated pediatric cancer patients. Cancer Res. Treat. 51, 357–367. PubMed PMC
Kollarova-Brazdova P., Jirkovska A., Karabanovich G., Pokorna Z., Piskackova H. B., Jirkovsky E., Kubes J., Lencova-Popelova O., Mazurova Y., Adamcova M., et al. (2020). Investigation of structure-activity relationships of dexrazoxane analogs reveals topoisomerase II beta interaction as a prerequisite for effective protection against anthracycline cardiotoxicity. J. Pharmacol. Exp. Ther. 373, 402–415. PubMed
Kollarova-Brazdova P., Lencova-Popelova O., Karabanovich G., Kocurova-Lengvarska J., Kubes J., Vanova N., Mazurova Y., Adamcova M., Jirkovska A., Holeckova M., et al. (2021). Prodrug of ICRF-193 provides promising protective effects against chronic anthracycline cardiotoxicity in a rabbit model in vivo. Clin. Sci. (Lond) 135, 1897–1914. PubMed
Leger K., Slone T., Lemler M., Leonard D., Cochran C., Bowman W. P., Bashore L., Winick N. (2015). Subclinical cardiotoxicity in childhood cancer survivors exposed to very low dose anthracycline therapy. Pediatr. Blood Cancer. 62, 123–127. PubMed
Lu Y., Xu D., Zhou J., Ma Y., Jiang Y., Zeng W., Dai W. (2013). Differential responses to genotoxic agents between induced pluripotent stem cells and tumor cell lines. J. Hematol. Oncol. 6, 71. PubMed PMC
Lyu Y. L., Kerrigan J. E., Lin C. P., Azarova A. M., Tsai Y. C., Ban Y., Liu L. F. (2007). Topoisomerase IIbeta mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 67, 8839–8846. PubMed
Macleod K. F., Sherry N., Hannon G., Beach D., Tokino T., Kinzler K., Vogelstein B., Jacks T. (1995). P53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 9, 935–944. PubMed
Mensah-Osman E. J., Al-Katib A. M., Dandashi M. H., Mohammad R. M. (2002). 2-[4-(7-chloro-2-quinoxalinyloxy)phenoxy]-propionic acid (XK469) inhibition of topoisomerase II beta is not sufficient for therapeutic response in human Waldenstrom’s macroglobulinemia xenograft model. Mol. Cancer Ther. 1, 1315–1320. PubMed
Millan-Zambrano G., Burton A., Bannister A. J., Schneider R. (2022). Histone post-translational modifications—Cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580. PubMed
Nitiss J. L. (2009). Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338–350. PubMed PMC
Olive P. L., Banath J. P. (2006). The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29. PubMed
Pommier Y., Nussenzweig A., Takeda S., Austin C. (2022). Human topoisomerases and their roles in genome stability and organization. Nat. Rev. Mol. Cell Biol. 23, 407–427. PubMed PMC
Reichardt P., Tabone M. D., Mora J., Morland B., Jones R. L. (2018). Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: Re-evaluating the European labeling. Future Oncol. 14, 2663–2676. PubMed
Roca J., Ishida R., Berger J. M., Andoh T., Wang J. C. (1994). Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc. Nat. Acad. Sci. U.S.A. 91, 1781–1785. PubMed PMC
Shapiro T. A., Klein V. A., Englund P. T. (1999). Isolation of kinetoplast DNA. Methods Mol. Biol. 94, 61–67. PubMed
Shatzkes K., Teferedegne B., Murata H. (2014). A simple, inexpensive method for preparing cell lysates suitable for downstream reverse transcription quantitative PCR. Sci. Rep. 4, 4659. PubMed PMC
Schroeder P. E., Jensen P. B., Sehested M., Hofland K. F., Langer S. W., Hasinoff B. B. (2003). Metabolism of dexrazoxane (ICRF-187) used as a rescue agent in cancer patients treated with high-dose etoposide. Cancer Chemother. Pharmacol. 52, 167–174. PubMed
Simůnek T., Klimtová I., Kaplanová J., Mazurová Y., Adamcová M., Sterba M., Hrdina R., Gersl V. (2004). Rabbit model for in vivo study of anthracycline-induced heart failure and for the evaluation of protective agents. Eur. J. Heart Fail. 6, 377–387. PubMed
Snapka R. M., Gao H., Grabowski D. R., Brill D., Chan K. K., Li L., Li G. C., Ganapathi R. (2001). Cytotoxic mechanism of XK469: Resistance of topoisomerase IIbeta knockout cells and inhibition of topoisomerase I. Biochem. Biophys. Res. Commun. 280, 1155–1160. PubMed
Stock W., Undevia S. D., Bivins C., Ravandi F., Odenike O., Faderl S., Rich E., Borthakur G., Godley L., Verstovsek S., et al. (2008). A phase I and pharmacokinetic study of XK469R (NSC 698215), a quinoxaline phenoxypropionic acid derivative, in patients with refractory acute leukemia. Invest. New Drugs. 26, 331–338. PubMed PMC
Subramanian B., Nakeff A., Media J., Wentland M., Valeriote F. (2002). Cellular drug action profile paradigm applied to XK469. J. Exp. Ther. Oncol. 2, 253–263. PubMed
Sung H., Ferlay J., Siegel R. L., Laversanne M., Soerjomataram I., Jemal A., Bray F. (2021). Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249. PubMed
Tebbi C. K., London W. B., Friedman D., Villaluna D., De Alarcon P. A., Constine L. S., Mendenhall N. P., Sposto R., Chauvenet A., Schwartz C. L. (2007). Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J. Clin. Oncol. 25, 493–500. PubMed
Teuffel O., Leibundgut K., Lehrnbecher T., Alonzo T. A., Beyene J., Sung L. (2013). Anthracyclines during induction therapy in acute myeloid leukaemia: A systematic review and meta-analysis. Br. J. Haematol. 161, 192–203. PubMed
Uhlen M., Fagerberg L., Hallstrom B. M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson A., Kampf C., Sjostedt E., Asplund A., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science 347, 1260419. PubMed
Undevia S. D., Innocenti F., Ramirez J., House L., Desai A. A., Skoog L. A., Singh D. A., Karrison T., Kindler H. L., Ratain M. J. (2008). A phase I and pharmacokinetic study of the quinoxaline antitumour agent R(+)XK469 in patients with advanced solid tumours. Eur. J. Cancer 44, 1684–1692. PubMed PMC
Vogel C. L., Gorowski E., Davila E., Eisenberger M., Kosinski J., Agarwal R. P., Savaraj N. (1987). Phase I clinical trial and pharmacokinetics of weekly ICRF-187 (NSC 169780) infusion in patients with solid tumors. Invest. New Drugs. 5, 187–198. PubMed
Wolf D., Rotter V. (1985). Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc. Natl. Acad. Sci. U.S.A. 82, 790–794. PubMed PMC
Zhang A., Lyu Y. L., Lin C. P., Zhou N., Azarova A. M., Wood L. M., Liu L. F. (2006). A protease pathway for the repair of topoisomerase II-DNA covalent complexes. J. Biol. Chem. 281, 35997–36003. PubMed
Zhang S., Liu X., Bawa-Khalfe T., Lu L. S., Lyu Y. L., Liu L. F., Yeh E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 18, 1639–1642. PubMed