Metabolic Consequences of Advanced Chronic Heart Failure and its Modification by Implantation of a Durable Left Ventricular Assist Device
Status PubMed-not-MEDLINE Jazyk angličtina Země Singapur Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39618874
PubMed Central
PMC11607500
DOI
10.31083/j.rcm2511388
PII: S1530-6550(24)01558-8
Knihovny.cz E-zdroje
- Klíčová slova
- cachexia, diabetes, gliflozins, heart failure, left ventricular assist device, mechanical circulatory support, metabolism, obesity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Heart failure (HF) is a clinical syndrome characterized by the inability of the heart to provide adequate perfusion to tissues and organs, resulting in typical symptoms such as fatigue, dyspnea, dyspepsia, or swelling due to decreased cardiac output. With its increasing prevalence, heart failure has become one of the leading causes of morbidity and mortality worldwide, imposing a significant burden on the population by reducing long-term life expectancy and raising hospital costs. Indeed, over 20 million people worldwide suffer from heart failure, with a 5-year mortality rate of 60-70%. As heart failure progresses, various structural and metabolic changes occur within the myocardium and organ systems. In the past two decades, therapeutic options for heart failure patients have significantly expanded. In addition to novel pharmacological treatment, advanced surgical methods such as heart transplantation (HTx) and the implantation of durable left ventricular assist devices (LVADs) are available for patients with end-stage heart failure. This review discusses the pathophysiological aspects and metabolic consequences of heart failure and metabolic changes, as well as the benefits and challenges of implanting a left ventricular assist device. Furthermore, future targets for heart failure diagnostics and therapy will be highlighted.
1st Faculty of Medicine Charles University Prague 121 08 Prague Czech Republic
Department of Diabetes Institute for Clinical and Experimental Medicine 140 21 Prague Czech Republic
Department of Physiology 3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Zobrazit více v PubMed
Schwinger RHG. Pathophysiology of heart failure. Cardiovascular Diagnosis and Therapy . 2021;11:263–276. PubMed PMC
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal . 2023;44:3627–3639. PubMed
Y Birati E, Jessup M. Left Ventricular Assist Devices in the Management of Heart Failure. Cardiac Failure Review . 2015;1:25–30. PubMed PMC
Masarone D, Kittleson MM, Falco L, Martucci ML, Catapano D, Brescia B, et al. The ABC of Heart Transplantation-Part 1: Indication, Eligibility, Donor Selection, and Surgical Technique. Journal of Clinical Medicine . 2023;12:5217. PubMed PMC
Galeone A, Buccoliero C, Barile B, Nicchia GP, Onorati F, Luciani GB, et al. Cellular and Molecular Mechanisms Activated by a Left Ventricular Assist Device. International Journal of Molecular Sciences . 2023;25:288. PubMed PMC
Bedi KC, Jr, Snyder NW, Brandimarto J, Aziz M, Mesaros C, Worth AJ, et al. Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure. Circulation . 2016;133:706–716. PubMed PMC
Rame JE. Chronic heart failure: a reversible metabolic syndrome? Circulation . 2012;125:2809–2811. PubMed
Neubauer S. The failing heart–an engine out of fuel. The New England Journal of Medicine . 2007;356:1140–1151. PubMed
Ng SM, Neubauer S, Rider OJ. Myocardial Metabolism in Heart Failure. Current Heart Failure Reports . 2023;20:63–75. PubMed PMC
Tsutsui H, Albert NM, Coats AJS, Anker SD, Bayes-Genis A, Butler J, et al. Natriuretic Peptides: Role in the Diagnosis and Management of Heart Failure: A Scientific Statement From the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. Journal of Cardiac Failure . 2023;29:787–804. PubMed
Ayton SL, Gulsin GS, McCann GP, Moss AJ. Epicardial adipose tissue in obesity-related cardiac dysfunction. Heart (British Cardiac Society) . 2022;108:339–344. PubMed
Christensen RH, von Scholten BJ, Lehrskov LL, Rossing P, Jørgensen PG. Epicardial adipose tissue: an emerging biomarker of cardiovascular complications in type 2 diabetes? Therapeutic Advances in Endocrinology and Metabolism . 2020;11:2042018820928824. PubMed PMC
Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nature Reviews. Cardiology . 2022;19:593–606. PubMed PMC
Matloch Z, Kotulák T, Haluzík M. The role of epicardial adipose tissue in heart disease. Physiological Research . 2016;65:23–32. PubMed
Tadic M, Cuspidi C. Obesity and heart failure with preserved ejection fraction: a paradox or something else? Heart Failure Reviews . 2019;24:379–385. PubMed
Zahr F, Genovese E, Mathier M, Shullo M, Lockard K, Zomak R, et al. Obese patients and mechanical circulatory support: weight loss, adverse events, and outcomes. The Annals of Thoracic Surgery . 2011;92:1420–1426. PubMed
Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Woo MA, Tillisch JH. The relationship between obesity and mortality in patients with heart failure. Journal of the American College of Cardiology . 2001;38:789–795. PubMed
Swan JW, Anker SD, Walton C, Godsland IF, Clark AL, Leyva F, et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. Journal of the American College of Cardiology . 1997;30:527–532. PubMed
Carbone S, Lavie CJ, Elagizi A, Arena R, Ventura HO. The Impact of Obesity in Heart Failure. Heart Failure Clinics . 2020;16:71–80. PubMed
Kenchaiah S, Evans JC, Levy D, Wilson PWF, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. The New England Journal of Medicine . 2002;347:305–313. PubMed
Lavie CJ, Alpert MA, Arena R, Mehra MR, Milani RV, Ventura HO. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC. Heart Failure . 2013;1:93–102. PubMed
Alebna PL, Mehta A, Yehya A, daSilva-deAbreu A, Lavie CJ, Carbone S. Update on obesity, the obesity paradox, and obesity management in heart failure. Progress in Cardiovascular Diseases . 2024;82:34–42. PubMed
Rahman A, Jafry S, Jeejeebhoy K, Nagpal AD, Pisani B, Agarwala R. Malnutrition and Cachexia in Heart Failure. JPEN. Journal of Parenteral and Enteral Nutrition . 2016;40:475–486. PubMed
Aziz EF, Javed F, Pratap B, Musat D, Nader A, Pulimi S, et al. Malnutrition as assessed by nutritional risk index is associated with worse outcome in patients admitted with acute decompensated heart failure: an ACAP-HF data analysis. Heart International . 2011;6:e2. PubMed PMC
Holdy K, Dembitsky W, Eaton LL, Chillcott S, Stahovich M, Rasmusson B, et al. Nutrition assessment and management of left ventricular assist device patients. The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation . 2005;24:1690–1696. PubMed
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal . 2021;42:3599–3726. PubMed
Packer M, Poole-Wilson PA, Armstrong PW, Cleland JG, Horowitz JD, Massie BM, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation . 1999;100:2312–2318. PubMed
McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. The New England Journal of Medicine . 2014;371:993–1004. PubMed
Velazquez EJ, Morrow DA, DeVore AD, Duffy CI, Ambrosy AP, McCague K, et al. Angiotensin-Neprilysin Inhibition in Acute Decompensated Heart Failure. The New England Journal of Medicine . 2019;380:539–548. PubMed
Straburzynska-Migaj E, Senni M, Wachter R, Fonseca C, Witte KK, Mueller C, et al. Early Initiation of Sacubitril/Valsartan in Patients With Acute Heart Failure and Renal Dysfunction: An Analysis of the TRANSITION Study. Journal of Cardiac Failure . 2024;30:425–435. PubMed
Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. The New England Journal of Medicine . 1999;341:709–717. PubMed
Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. The New England Journal of Medicine . 2003;348:1309–1321. PubMed
Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. New England Journal of Medicine . 2011;364:11–21. PubMed
Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. The New England Journal of Medicine . 2001;344:1651–1658. PubMed
Hjalmarson A, Goldstein S, Fagerberg B, Wedel H, Waagstein F, Kjekshus J, et al. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. JAMA . 2000;283:1295–1302. PubMed
The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet (London, England) . 1999;353:9–13. PubMed
Flather MD, Shibata MC, Coats AJS, Van Veldhuisen DJ, Parkhomenko A, Borbola J, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS) European Heart Journal . 2005;26:215–225. PubMed
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology . 2022;79:e263–e421. PubMed
Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. The New England Journal of Medicine . 2020;383:1413–1424. PubMed
McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. The New England Journal of Medicine . 2019;381:1995–2008. PubMed
Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet (London, England) . 2010;376:875–885. PubMed
Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. The New England Journal of Medicine . 2020;382:1883–1893. PubMed
Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. The New England Journal of Medicine . 2021;385:1451–1461. PubMed
Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. New England Journal of Medicine . 2022;387:1089–1098. PubMed
Sapna F, Raveena F, Chandio M, Bai K, Sayyar M, Varrassi G, et al. Advancements in Heart Failure Management: A Comprehensive Narrative Review of Emerging Therapies. Cureus . 2023;15:e46486. PubMed PMC
Chiorescu RM, Lazar RD, Ruda A, Buda AP, Chiorescu S, Mocan M, et al. Current Insights and Future Directions in the Treatment of Heart Failure with Preserved Ejection Fraction. International Journal of Molecular Sciences . 2023;25:440. PubMed PMC
Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, et al. 2023 ESC Guidelines for the management of cardiomyopathies. European Heart Journal . 2023;44:3503–3626. PubMed
Brinkley DM, Jr, Wang L, Yu C, Grandin EW, Kiernan MS. Impact of renin-angiotensin-aldosterone system inhibition on morbidity and mortality during long-term continuous-flow left ventricular assist device support: An IMACS report. The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation . 2021;40:1605–1613. PubMed PMC
McCullough M, Caraballo C, Ravindra NG, Miller PE, Mezzacappa C, Levin A, et al. Neurohormonal Blockade and Clinical Outcomes in Patients With Heart Failure Supported by Left Ventricular Assist Devices. JAMA Cardiology . 2020;5:175–182. PubMed PMC
Saeed D, Feldman D, Banayosy AE, Birks E, Blume E, Cowger J, et al. The 2023 International Society for Heart and Lung Transplantation Guidelines for Mechanical Circulatory Support: A 10- Year Update. The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation . 2023;42:e1–e222. PubMed
Mehra MR, Netuka I, Uriel N, Katz JN, Pagani FD, Jorde UP, et al. Aspirin and Hemocompatibility Events With a Left Ventricular Assist Device in Advanced Heart Failure: The ARIES-HM3 Randomized Clinical Trial. JAMA . 2023;330:2171–2181. PubMed PMC
Netuka I, Tucanova Z, Ivak P, Gregor S, Kolesar DM, Marek T, et al. A Prospective Randomized Trial of Direct Oral Anticoagulant Therapy With a Fully Magnetically Levitated LVAD: The DOT-HM3 Study. Circulation . 2024;150:509–511. PubMed
Mallidi HR, Anand J, Cohn WE. State of the art of mechanical circulatory support. Texas Heart Institute Journal . 2014;41:115–120. PubMed PMC
Kanwar MK, Selzman CH, Ton VK, Miera O, Cornwell WK, 3rd, Antaki J, et al. Clinical myocardial recovery in advanced heart failure with long term left ventricular assist device support. The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation . 2022;41:1324–1334. PubMed PMC
Lok SI, Winkens B, Goldschmeding R, van Geffen AJP, Nous FMA, van Kuik J, et al. Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. European Journal of Heart Failure . 2012;14:1249–1256. PubMed
Tseng CCS, Huibers MMH, Gaykema LH, Siera-de Koning E, Ramjankhan FZ, Maisel AS, et al. Soluble ST2 in end-stage heart failure, before and after support with a left ventricular assist device. European Journal of Clinical Investigation . 2018;48:e12886. PubMed PMC
Goetz ME, Charnigo R, Guglin M. Implantation of Left Ventricular Assist Device Results in Immediate Improvement of Glucose Metabolism in Patients With and Without Diabetes Mellitus. Heart, Lung & Circulation . 2020;29:931–935. PubMed
Choudhary N, Chen L, Kotyra L, Wittlin SD, Alexis JD. Improvement in glycemic control after left ventricular assist device implantation in advanced heart failure patients with diabetes mellitus. ASAIO Journal (American Society for Artificial Internal Organs: 1992) . 2014;60:675–680. PubMed
Holzhauser L, Kim G, Sayer G, Uriel N. The Effect of Left Ventricular Assist Device Therapy on Cardiac Biomarkers: Implications for the Identification of Myocardial Recovery. Current Heart Failure Reports . 2018;15:250–259. PubMed
Tabit CE, Coplan MJ, Chen P, Jeevanandam V, Uriel N, Liao JK. Tumor necrosis factor-α levels and non-surgical bleeding in continuous-flow left ventricular assist devices. The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation . 2018;37:107–115. PubMed PMC
Caruso R, Trunfio S, Milazzo F, Campolo J, De Maria R, Colombo T, et al. Early expression of pro- and anti-inflammatory cytokines in left ventricular assist device recipients with multiple organ failure syndrome. ASAIO Journal (American Society for Artificial Internal Organs: 1992) . 2010;56:313–318. PubMed
Gallo M, Tarzia V, Iop L, Bejko J, Bortolussi G, Bianco R, et al. Cellular, molecular, genomic changes occurring in the heart under mechanical circulatory support. Annals of Cardiothoracic Surgery . 2014;3:496–504. PubMed PMC
Mehra MR, Uriel N, Naka Y, Cleveland JC, Jr, Yuzefpolskaya M, Salerno CT, et al. A Fully Magnetically Levitated Left Ventricular Assist Device - Final Report. The New England Journal of Medicine . 2019;380:1618–1627. PubMed
Netuka I, Ivák P, Tučanová Z, Gregor S, Szárszoi O, Sood P, et al. Evaluation of low-intensity anti-coagulation with a fully magnetically levitated centrifugal-flow circulatory pump-the MAGENTUM 1 study. The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation . 2018;37:579–586. PubMed
Cornwell WK, 3rd, Ambardekar AV, Tran T, Pal JD, Cava L, Lawley J, et al. Stroke Incidence and Impact of Continuous-Flow Left Ventricular Assist Devices on Cerebrovascular Physiology. Stroke . 2019;50:542–548. PubMed PMC
Proudfoot AG, Davidson SJ, Strueber M. von Willebrand factor disruption and continuous-flow circulatory devices. The Journal of Heart and Lung Transplantation: the Official Publication of the International Society for Heart Transplantation . 2017;36:1155–1163. PubMed
Harvey L, Holley C, Roy SS, Eckman P, Cogswell R, Liao K, et al. Stroke After Left Ventricular Assist Device Implantation: Outcomes in the Continuous-Flow Era. The Annals of Thoracic Surgery . 2015;100:535–541. PubMed
Vedachalam S, Balasubramanian G, Haas GJ, Krishna SG. Treatment of gastrointestinal bleeding in left ventricular assist devices: A comprehensive review. World Journal of Gastroenterology . 2020;26:2550–2558. PubMed PMC
Kushnir VM, Sharma S, Ewald GA, Seccombe J, Novak E, Wang IW, et al. Evaluation of GI bleeding after implantation of left ventricular assist device. Gastrointestinal Endoscopy . 2012;75:973–979. PubMed PMC
Long B, Robertson J, Koyfman A, Brady W. Left ventricular assist devices and their complications: A review for emergency clinicians. The American Journal of Emergency Medicine . 2019;37:1562–1570. PubMed
Grupper A, Mazin I, Faierstein K, Kurnick A, Maor E, Elian D, et al. Hemodynamic Changes After Left Ventricular Assist Device Implantation Among Heart Failure Patients With and Without Elevated Pulmonary Vascular Resistance. Frontiers in Cardiovascular Medicine . 2022;9:875204. PubMed PMC
Salem M, Al-Saffar F, Hall S. Management of Pulmonary Hypertension in Patients on Left Ventricular Assist Device Support. Reviews in Cardiovascular Medicine . 2022;23:308. PubMed PMC
Moayedifar R, Zuckermann A, Aliabadi-Zuckermann A, Riebandt J, Angleitner P, Dimitrov K, et al. Long-term heart transplant outcomes after lowering fixed pulmonary hypertension using left ventricular assist devices. European Journal of Cardio-thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery . 2018;54:1116–1121. PubMed
Rajapreyar I, Soliman O, Brailovsky Y, Tedford RJ, Gibson G, Mohacsi P, et al. Late Right Heart Failure After Left Ventricular Assist Device Implantation: Contemporary Insights and Future Perspectives. JACC. Heart Failure . 2023;11:865–878. PubMed
Zimpfer D, Zrunek P, Roethy W, Czerny M, Schima H, Huber L, et al. Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. The Journal of Thoracic and Cardiovascular Surgery . 2007;133:689–695. PubMed
El Nihum LI, Manian N, Arunachalam P, Al Abri Q, Guha A. Renal Dysfunction in Patients with Left Ventricular Assist Device. Methodist DeBakey Cardiovascular Journal . 2022;18:19–26. PubMed PMC
O’Neal JB, Shaw AD, Billings FT., 4th Acute kidney injury following cardiac surgery: current understanding and future directions. Critical Care (London, England) . 2016;20:187. PubMed PMC
Kagawa H, Aranda-Michel E, Kormos RL, Keebler M, Hickey G, Wang Y, et al. Aortic Insufficiency After Left Ventricular Assist Device Implantation: Predictors and Outcomes. The Annals of Thoracic Surgery . 2020;110:836–843. PubMed
Acharya D, Kazui T, Al Rameni D, Acharya T, Betterton E, Juneman E, et al. Aortic valve disorders and left ventricular assist devices. Frontiers in Cardiovascular Medicine . 2023;10:1098348. PubMed PMC
Musci M, Loforte A, Potapov EV, Krabatsch T, Weng Y, Pasic M, et al. Body mass index and outcome after ventricular assist device placement. The Annals of Thoracic Surgery . 2008;86:1236–1242. PubMed
Khan MS, Yuzefpolskaya M, Memon MM, Usman MS, Yamani N, Garan AR, et al. Outcomes Associated with Obesity in Patients Undergoing Left Ventricular Assist Device Implantation: A Systematic Review and Meta-Analysis. ASAIO Journal (American Society for Artificial Internal Organs: 1992) . 2020;66:401–408. PubMed
Volkovicher N, Kurihara C, Critsinelis A, Kawabori M, Sugiura T, Manon M, 2nd, et al. Effect of obesity on outcomes in patients undergoing implantation of continuous-flow left ventricular assist devices. Journal of Artificial Organs: the Official Journal of the Japanese Society for Artificial Organs . 2018;21:180–187. PubMed
Coyle LA, Ising MS, Gallagher C, Bhat G, Kurien S, Sobieski MA, et al. Destination therapy: one-year outcomes in patients with a body mass index greater than 30. Artificial Organs . 2010;34:93–97. PubMed
Butler J, Howser R, Portner PM, Pierson RN., 3rd Body mass index and outcomes after left ventricular assist device placement. The Annals of Thoracic Surgery . 2005;79:66–73. PubMed