Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
DP2 OD008514
NIH HHS - United States
PubMed
25005472
PubMed Central
PMC6517831
DOI
10.1242/dev.108910
PII: 141/14/2770
Knihovny.cz E-resources
- Keywords
- Gene expression heterogeneity, Lineage priming, Nanog, Pluripotency, Stem cells,
- MeSH
- Principal Component Analysis MeSH
- Clone Cells MeSH
- Cell Line MeSH
- Cell Lineage genetics MeSH
- Time-Lapse Imaging MeSH
- Embryonic Stem Cells cytology metabolism MeSH
- Transcription, Genetic MeSH
- Homeodomain Proteins genetics metabolism MeSH
- Kinetics MeSH
- RNA, Messenger genetics metabolism MeSH
- Mice MeSH
- Nanog Homeobox Protein MeSH
- Pluripotent Stem Cells cytology metabolism MeSH
- Cell Proliferation MeSH
- Flow Cytometry MeSH
- Gene Expression Profiling MeSH
- Stochastic Processes MeSH
- Gene Expression Regulation, Developmental MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Homeodomain Proteins MeSH
- RNA, Messenger MeSH
- Nanog protein, mouse MeSH Browser
- Nanog Homeobox Protein MeSH
Heterogeneous expression of the transcription factor NANOG has been linked to the existence of various functional states in pluripotent stem cells. This heterogeneity seems to arise from fluctuations of Nanog expression in individual cells, but a thorough characterization of these fluctuations and their impact on the pluripotent state is still lacking. Here, we have used a novel fluorescent reporter to investigate the temporal dynamics of NANOG expression in mouse embryonic stem cells (mESCs), and to dissect the lineage potential of mESCs at different NANOG states. Our results show that stochastic NANOG fluctuations are widespread in mESCs, with essentially all expressing cells showing fluctuations in NANOG levels, even when cultured in ground-state conditions (2i media). We further show that fluctuations have similar kinetics when mESCs are cultured in standard conditions (serum plus leukemia inhibitory factor) or ground-state conditions, implying that NANOG fluctuations are inherent to the pluripotent state. We have then compared the developmental potential of low-NANOG and high-NANOG mESCs, grown in different conditions, and confirm that mESCs are more susceptible to enter differentiation at the low-NANOG state. Further analysis by gene expression profiling reveals that low-NANOG cells have marked expression of lineage-affiliated genes, with variable profiles according to the signalling environment. By contrast, high-NANOG cells show a more stable expression profile in different environments, with minimal expression of lineage markers. Altogether, our data support a model in which stochastic NANOG fluctuations provide opportunities for mESCs to explore multiple lineage options, modulating their probability to change functional state.
See more in PubMed
Abranches E., Bekman E., Henrique D. (2013). Generation and characterization of a novel mouse embryonic stem cell line with a dynamic reporter of nanog expression. PLoS ONE 8, e59928 10.1371/journal.pone.0059928 PubMed DOI PMC
Adachi K., Niwa H. (2013). A liaison between intrinsic and extrinsic regulators of pluripotency. EMBO J. 32, 2531-2532. 10.1038/emboj.2013.196 PubMed DOI PMC
Chambers I., Silva J., Colby D., Nichols J., Nijmeijer B., Robertson M., Vrana J., Jones K., Grotewold L., Smith A. (2007). Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230-1234. 10.1038/nature06403 PubMed DOI
Chickarmane V., Troein C., Nuber U. A., Sauro H. M., Peterson C. (2006). Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput. Biol. 2, e123 10.1371/journal.pcbi.0020123 PubMed DOI PMC
Choi S.-C., Choi J.-H., Park C.-Y., Ahn C.-M., Hong S.-J., Lim D.-S. (2012). Nanog regulates molecules involved in stemness and cell cycle-signaling pathway for maintenance of pluripotency of P19 embryonal carcinoma stem cells. J. Cell Physiol. 227, 3678-3692. 10.1002/jcp.24076 PubMed DOI
Deng Q., Ramskold D., Reinius B., Sandberg R. (2014). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193-196. 10.1126/science.1245316 PubMed DOI
Dietrich J. E., Hiiragi T. (2008). Stochastic processes during mouse blastocyst patterning. Cells Tissues Organs 188, 46-51. 10.1159/000118783 PubMed DOI
Faddah D. A., Wang H., Cheng A. W., Katz Y., Buganim Y., Jaenisch R. (2013). Single-cell analysis reveals that expression of nanog is biallelic and equally variable as that of other pluripotency factors in mouse ESCs. Cell Stem Cell 13, 23-29. 10.1016/j.stem.2013.04.019 PubMed DOI PMC
Filipczyk A., Gkatzis K., Fu J., Hoppe P. S., Lickert H., Anastassiadis K., Schroeder T. (2013). Biallelic expression of nanog protein in mouse embryonic stem cells. Cell Stem Cell 13, 12-13. 10.1016/j.stem.2013.04.025 PubMed DOI
Gaspar-Maia A., Alajem A., Meshorer E., Ramalho-Santos M. (2011). Open chromatin in pluripotency and reprogramming. Nat. Rev. Mol. Cell Biol. 12, 36-47. 10.1038/nrm3036 PubMed DOI PMC
Glauche I., Herberg M., Roeder I. (2010). Nanog variability and pluripotency regulation of embryonic stem cells--insights from a mathematical model analysis. PLoS ONE 5, e11238 10.1371/journal.pone.0011238 PubMed DOI PMC
Guantes R., Poyatos J. F. (2008). Multistable decision switches for flexible control of epigenetic differentiation. PLoS Comput. Biol. 4, e1000235 10.1371/journal.pcbi.1000235 PubMed DOI PMC
Hansen C. H., van Oudenaarden A. (2013). Allele-specific detection of single mRNA molecules in situ. Nat. Methods 10, 869-871. 10.1038/nmeth.2601 PubMed DOI PMC
Herberg M., Kalkan T., Glauche I., Smith A., Roeder I. (2014). A model-based analysis of culture-dependent phenotypes of mESCs. PLoS ONE 9, e92496 10.1371/journal.pone.0092496 PubMed DOI PMC
Huang S. (2009). Non-genetic heterogeneity of cells in development: more than just noise. Development 136, 3853-3862. 10.1242/dev.035139 PubMed DOI PMC
Kalmar T., Lim C., Hayward P., Muñoz-Descalzo S., Nichols J., Garcia-Ojalvo J., Martinez Arias A. (2009). Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7, e1000149 10.1371/journal.pbio.1000149 PubMed DOI PMC
Lanner F., Rossant J. (2010). The role of FGF/Erk signaling in pluripotent cells. Development 137, 3351-3360. 10.1242/dev.050146 PubMed DOI
MacArthur B. D., Lemischka I. R. (2013). Statistical mechanics of pluripotency. Cell 154, 484-489. 10.1016/j.cell.2013.07.024 PubMed DOI
MacArthur B. D., Please C. P., Oreffo R. O. C. (2008). Stochasticity and the molecular mechanisms of induced pluripotency. PLoS ONE 3, e3086 10.1371/journal.pone.0003086 PubMed DOI PMC
MacArthur B. D., Sevilla A., Lenz M., Müller F.-J., Schuldt B. M., Schuppert A. A., Ridden S. J., Stumpf P. S., Fidalgo M., Ma'ayan A., et al. (2012). Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nat. Cell Biol. 14, 1139-1147. 10.1038/ncb2603 PubMed DOI PMC
Miyanari Y., Torres-Padilla M.-E. (2012). Control of ground-state pluripotency by allelic regulation of Nanog. Nature 483, 470-473. 10.1038/nature10807 PubMed DOI
Morgani S. M., Canham M. A., Nichols J., Sharov A. A., Migueles R. P., Ko M. S. H., Brickman J. M. (2013). Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep. 3, 1945-1957. 10.1016/j.celrep.2013.04.034 PubMed DOI PMC
Muñoz Descalzo S., Rué P., Faunes F., Hayward P., Jakt L. M., Balayo T., Garcia-Ojalvo J., Martinez Arias A. (2013). A competitive protein interaction network buffers Oct4-mediated differentiation to promote pluripotency in embryonic stem cells. Mol. Syst. Biol. 9, 694 10.1038/msb.2013.49 PubMed DOI PMC
Navarro P., Festuccia N., Colby D., Gagliardi A., Mullin N. P., Zhang W., Karwacki-Neisius V., Osorno R., Kelly D., Robertson M., et al. (2012). OCT4/SOX2-independent Nanog autorepression modulates heterogeneous Nanog gene expression in mouse ES cells. EMBO J. 31, 4547-4562. 10.1038/emboj.2012.321 PubMed DOI PMC
Nichols J., Smith A. (2009). Naive and primed pluripotent states. Cell Stem Cell 4, 487-492. 10.1016/j.stem.2009.05.015 PubMed DOI
Nichols J., Silva J., Roode M., Smith A. (2009). Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136, 3215-3222. 10.1242/dev.038893 PubMed DOI PMC
Niwa H., Ogawa K., Shimosato D., Adachi K. (2009). A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460, 118-122. 10.1038/nature08113 PubMed DOI
Ohnishi Y., Huber W., Tsumura A., Kang M., Xenopoulos P., Kurimoto K., Oleś A. K., Araúzo-Bravo M. J., Saitou M., Hadjantonakis A.-K., et al. (2014). Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16, 27-37. 10.1038/ncb2881 PubMed DOI PMC
Pina C., Fugazza C., Tipping A. J., Brown J., Soneji S., Teles J., Peterson C., Enver T. (2012). Inferring rules of lineage commitment in haematopoiesis. Nat. Cell Biol. 14, 287-294. 10.1038/ncb2442 PubMed DOI
Posfai E., Tam O. H., Rossant J. (2014). Mechanisms of pluripotency in vivo and in vitro. Curr. Top. Dev. Biol. 107, 1-37. 10.1016/B978-0-12-416022-4.00001-9 PubMed DOI
Raj A., van Oudenaarden A. (2009). Single-molecule approaches to stochastic gene expression. Annu. Rev. Biophys. 38, 255-270. 10.1146/annurev.biophys.37.032807.125928 PubMed DOI PMC
Raj A., van den Bogaard P., Rifkin S. A., van Oudenaarden A., Tyagi S. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877-879. 10.1038/nmeth.1253 PubMed DOI PMC
Silva J., Smith A. (2008). Capturing pluripotency. Cell 132, 532-536. PubMed PMC
Silva J., Barrandon O., Nichols J., Kawaguchi J., Theunissen T. W., Smith A. (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 6, e253 10.1371/journal.pbio.0060253 PubMed DOI PMC
Silva J., Nichols J., Theunissen T. W., Guo G., van Oosten A. L., Barrandon O., Wray J., Yamanaka S., Chambers I., Smith A. (2009). Nanog is the gateway to the pluripotent ground state. Cell 138, 722-737. 10.1016/j.cell.2009.07.039 PubMed DOI PMC
Singh A. M., Hamazaki T., Hankowski K. E., Terada N. (2007). A heterogeneous expression pattern for nanog in embryonic stem cells. Stem Cells 25, 2534-2542. 10.1634/stemcells.2007-0126 PubMed DOI
Teles J., Pina C., Edén P., Ohlsson M., Enver T., Peterson C. (2013). Transcriptional regulation of lineage commitment--a stochastic model of cell fate decisions. PLoS Comput. Biol. 9, e1003197 10.1371/journal.pcbi.1003197 PubMed DOI PMC
Toyooka Y., Shimosato D., Murakami K., Takahashi K., Niwa H. (2008). Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909-918. 10.1242/dev.017400 PubMed DOI
Trott J., Hayashi K., Surani A., Babu M. M., Martinez-Arias A. (2012). Dissecting ensemble networks in ES cell populations reveals micro-heterogeneity underlying pluripotency. Mol. Biosyst. 8, 744-752. 10.1039/c1mb05398a PubMed DOI
Wray J., Kalkan T., Smith A. G. (2010). The ground state of pluripotency. Biochem. Soc. Trans. 38, 1027-1032. 10.1042/BST0381027 PubMed DOI
Yamanaka Y., Lanner F., Rossant J. (2010). FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137, 715-724. 10.1242/dev.043471 PubMed DOI
Ying Q.-L., Nichols J., Chambers I., Smith A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281-292. 10.1016/S0092-8674(03)00847-X PubMed DOI
Ying Q.-L., Wray J., Nichols J., Batlle-Morera L., Doble B., Woodgett J., Cohen P., Smith A. (2008). The ground state of embryonic stem cell self-renewal. Nature 453, 519-523. 10.1038/nature06968 PubMed DOI PMC
Young R. A. (2011). Control of the embryonic stem cell state. Cell 144, 940-954. 10.1016/j.cell.2011.01.032 PubMed DOI PMC