From spectrum to yield: advances in crop photosynthesis with hyperspectral imaging
Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40766744
PubMed Central
PMC12319944
DOI
10.32615/ps.2025.012
PII: PS63196
Knihovny.cz E-zdroje
- Klíčová slova
- Calvin cycle, chlorophyll fluorescence, crop productivity, hyperspectral imaging, photosynthesis,
- MeSH
- fotosyntéza * fyziologie MeSH
- hyperspektrální zobrazování * metody MeSH
- zemědělské plodiny * fyziologie růst a vývoj MeSH
- zemědělství metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ensuring global food security requires noninvasive techniques for optimizing resource use and monitoring crop health. Hyperspectral imaging (HSI) enables the precise analysis of plant physiology by capturing spectral data across narrow bands. This review explores HSI's role in agriculture, particularly its integration with unmanned aerial vehicles, AI-driven analytics, and machine learning. These advancements allow real-time monitoring of photosynthesis, chlorophyll fluorescence, and carbon assimilation, linking spectral data to plant health and agronomic decisions. Key indicators such as solar-induced fluorescence and vegetation indices enhance crop stress detection. This work compares HSI-derived metrics in differentiating nutrient deficiencies, drought, and disease. Despite its potential, challenges remain in data standardization and spectral interpretation. This review discusses solutions such as molecular phenotyping and predictive modeling, for AI-driven precision agriculture. Addressing these gaps, HSI is poised to revolutionize farming, improve climate resilience, and ensure food security.
Zobrazit více v PubMed
Aasen H., Honkavaara E., Lucieer A., Zarco-Tejada P.J.: Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction workflows. – Remote Sens. 10: 1091, 2018. 10.3390/rs10071091 DOI
Abdullah H.M., Mohana N.T., Khan B.M. et al. : Present and future scopes and challenges of plant pest and disease (P&D) monitoring: remote sensing, image processing, and artificial intelligence perspectives. – Remote Sens. Appl. Soc. Environ. 32: 100996, 2023. 10.1016/j.rsase.2023.100996 DOI
Adão T., Hruška J., Pádua L. et al. : Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. – Remote Sens. 9: 1110, 2017. 10.3390/rs9111110 DOI
Adetutu A.E., Bayo Y.F., Emmanuel A.A. et al. : A review of hyperspectral imaging analysis techniques for onset crop disease detection, identification and classification. – J. For. Environ. Sci. 40: 1-8, 2024. 10.7747/JFES.2024.40.1.1 DOI
Ali A., Imran M.: Evaluating the potential of red edge position (REP) of hyperspectral remote sensing data for real time estimation of LAI & chlorophyll content of kinnow mandarin ( DOI
Ali F., Razzaq A., Tariq W. et al. : Spectral intelligence: AI-driven hyperspectral imaging for agricultural and ecosystem applications. – Agronomy 14: 2260, 2024. 10.3390/agronomy14102260 DOI
Antony M.M., Sandeep C.S.S., Matham M.V.: Hyperspectral vision beyond 3D: a review. – Opt. Laser. Eng. 178: 108238, 2024. 10.1016/j.optlaseng.2024.108238 DOI
Arroyo-Mora J.P., Kalacska M., Inamdar D. et al. : Implementation of a UAV–hyperspectral pushbroom imager for ecological monitoring. – Drones 3: 12, 2019. 10.3390/drones3010012 DOI
Asner G.P., Martin R.E.: Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. – Remote Sens. Environ. 112: 3958-3970, 2008. 10.3390/drones3010012 DOI
Atencia Payares L.K., Gomez-del-Campo M., Tarquis A.M., García M.: Thermal imaging from UAS for estimating crop water status in a Merlot vineyard in semi-arid conditions. – Irrigation Sci. 43: 87-103, 2025. 10.1007/s00271-024-00955-1 DOI
Bandopadhyay S., Rastogi A., Juszczak R.: Review of top-of-canopy sun-induced fluorescence (SIF) studies from ground, UAV, airborne to space borne observations. – Sensors 20: 1144, 2020. 10.3390/s20041144 PubMed DOI PMC
Banerjee B.P., Raval S., Cullen P.J.: UAV-hyperspectral imaging of spectrally complex environments. – Int. J. Remote Sens. 41: 4136-4159, 2020. 10.3390/s20041144 DOI
Bannari A., Khurshid K.S., Staenz K., Schwarz J.W.: A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements. – IEEE T. Geosci. Remote 45: 3063-3074, 2007. 10.1109/TGRS.2007.897429 DOI
Baret F., Houlès V., Guérif M.: Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. – J. Exp. Bot. 58: 869-880, 2007. 10.1093/jxb/erl231 PubMed DOI
Barnes E.M., Clarke T.R., Richards S.E. et al. : Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. – In: Proceedings of the Fifth International Conference on Precision Agriculture. ASA-CSSA-SSSA, Madison: 2000. https://www.researchgate.net/publication/43256762_Coincident_detection_of_crop_water_stress_nitrogen_status_and_canopy_density_using_ground_based_multispectral_data
Barriga J.A., Blanco-Cipollone F., Trigo-Córdoba E. et al. : Crop-water assessment in citrus ( DOI
Bartold M., Kluczek M.: Estimating of chlorophyll fluorescence parameter F
Bauriegel E., Giebel A., Herppich W.B.: Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of PubMed DOI PMC
Behmann J., Acebron K., Emin D. et al. : Specim IQ: evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. – Sensors 18: 441, 2018. 10.3390/s18020441 PubMed DOI PMC
Belwalkar A., Poblete T., Hornero A. et al. : Improving the accuracy of SIF quantified from moderate spectral resolution airborne hyperspectral imager using SCOPE: assessment with sub-nanometer imagery. – Int. J. Appl. Earth Obs. Geoinf. 134: 104198, 2024. 10.1016/j.jag.2024.104198 DOI
Benelli A., Cevoli C., Fabbri A.: In-field hyperspectral imaging: an overview on the ground-based applications in agriculture. – J. Agr. Eng. 51: 129-139, 2020. 10.4081/jae.2020.1030 DOI
Benos L., Tagarakis A.C., Dolias G. et al. : Machine learning in agriculture: a comprehensive updated review. – Sensors 21: 3758, 2021. 10.3390/s21113758 PubMed DOI PMC
Bethge H.L., Weisheit I., Dortmund M.S. et al. : Automated image registration of RGB, hyperspectral and chlorophyll fluorescence imaging data. – Plant Methods 20: 175, 2024. 10.1186/s13007-024-01296-y PubMed DOI PMC
Bhargava P., Yadav P., Barik A.: Computational insights into intrinsically disordered regions in protein-nucleic acid complexes. – Int. J. Biol. Macromol. 277: 134021, 2024. 10.1016/j.ijbiomac.2024.134021 PubMed DOI
Bian L., Wang Z., Zhang Y. et al. : A broadband hyperspectral image sensor with high spatio-temporal resolution. – Nature 635: 73-81, 2024. 10.1038/s41586-024-08109-1 PubMed DOI PMC
Bilotta G., Genovese E., Citroni R. et al. : Integration of an innovative atmospheric forecasting simulator and remote sensing data into a geographical information system in the frame of Agriculture 4.0 concept. – AgriEngineering 5: 1280-1301, 2023. 10.3390/agriengineering5030081 DOI
Bioucas-Dias J.M., Plaza A.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. – Proc. SPIE 7830: 79-93, 2010. 10.1117/12.870780 DOI
Blackburn G.A.: Hyperspectral remote sensing of plant pigments. – J. Exp. Bot. 58: 855-867, 2007. 10.1093/jxb/erl123 PubMed DOI
Bréda N.J.J.: Ground-based measurements of leaf area index: a review of methods, instruments, and current controversies. – J. Exp. Bot. 54: 2403-2417, 2003. 10.1093/jxb/erg263 PubMed DOI
Bukhamsin A., Kosel J., McCabe M.F. et al. : Early and high-throughput plant diagnostics: strategies for disease detection. – Trends Plant Sci. 30: 324-337, 2025. 10.1016/j.tplants.2024.10.003 PubMed DOI
Camino González C.L.: Detection of water and nutritional stress through chlorophyll fluorescence and radiative transfer models from hyperspectral and thermal imagery. PhD Thesis. Pp. 191. UCOPress, Córdoba: 2019. http://hdl.handle.net/10396/18749
Carter G.A., Knapp A.K.: Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. – Am. J. Bot. 88: 677-684, 2001. 10.2307/2657068 PubMed DOI
Chakhvashvili E., Machwitz M., Antala M. et al. : Crop stress detection from UAVs: best practices and lessons learned for exploiting sensor synergies. – Precis. Agric. 25: 2614-2642, 2024. 10.1007/s11119-024-10168-3 DOI
Chang C.Y., Zhou R., Kira O. et al. : An Unmanned Aerial System (UAS) for concurrent measurements of solar-induced chlorophyll fluorescence and hyperspectral reflectance toward improving crop monitoring. – Agr. Forest Meteorol. 294: 108145, 2020. 10.1016/j.agrformet.2020.108145 DOI
Cheekhooree G.: Canopy height assessment in South Australian
Chen Q., Wang H., Gu M. et al. : Reasonable design pentamerous artificial photosynthesis system for efficient overall CO DOI
Chou S., Chen J.M., Yu H. et al. : Canopy-level photochemical reflectance index from hyperspectral remote sensing and leaf-level non-photochemical quenching as early indicators of water stress in maize. – Remote Sens. 9: 794, 2017. 10.3390/rs9080794 DOI
Clevers J.G.P.W., Kooistra L.: Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. – IEEE J. Sel. Top. Appl. 5: 574-583, 2012. 10.1109/JSTARS.2011.2176468 DOI
da Silva B.C., de Mello Prado R., Baio F.H.R. et al. : New approach for predicting nitrogen and pigments in maize from hyperspectral data and machine learning models. – Remote Sens. Appl. Soc. Environ. 33: 101110, 2024. 10.1016/j.rsase.2023.101110 DOI
Dai Q., Cheng J.H., Sun D.W., Zeng X.A.: Advances in feature selection methods for hyperspectral image processing in food industry applications: a review. – Crit. Rev. Food Sci. Nutr. 55: 1368-1382, 2015. 10.1080/10408398.2013.871692 PubMed DOI
Dale L.M., Thewis A., Boudry C. et al. : Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review. – Appl. Spectrosc. Rev. 48: 142-159, 2013. 10.1080/05704928.2012.705800 DOI
Darvishzadeh R., Atzberger C., Skidmore A., Schlerf M.: Mapping grassland leaf area index with airborne hyperspectral imagery: a comparison study of statistical approaches and inversion of radiative transfer models. – ISPRS J. Photogramm. 66: 894-906, 2011. 10.1016/j.isprsjprs.2011.09.013 DOI
Dasari K., Yadav S.A., Kansal L. et al. : Fusion of hyperspectral imaging and convolutional neural networks for early detection of crop diseases in precision agriculture. – In: 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE), Gautam Buddha Nagar, India, 2024. Pp. 1172-1177. IEEE, 2024. 10.1109/IC3SE62002.2024.10593368 DOI
Daughtry C.S.T., Walthall C.L., Kim M.S. et al. : Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. – Remote Sens. Environ. 74: 229-239, 2000. 10.1016/S0034-4257(00)00113-9 DOI
Doughty C.E., Asner G.P., Martin R.E.: Predicting tropical plant physiology from leaf and canopy spectroscopy. – Oecologia 165: 289-299, 2011. 10.1007/s00442-010-1800-4 PubMed DOI
Du L., Luo S.: Spectral-frequency conversion derived from hyperspectral data combined with deep learning for estimating chlorophyll content in rice. – Agriculture 14: 1186, 2024. 10.3390/agriculture14071186 DOI
Durojaiye A.I., Olorunsogo S.T., Adejumo B.A. et al. : Deep learning techniques for the exploration of hyperspectral imagery potentials in food and agricultural products. – Food Humanity 3: 100365, 2024. 10.1016/j.foohum.2024.100365 DOI
Egesa A.O., Vallejos C.E., Begcy K.: Cell size differences affect photosynthetic capacity in a Mesoamerican and an Andean genotype of PubMed DOI PMC
Falcioni R., Antunes W.C., de Oliveira R.B. et al. : Comparative insights into photosynthetic, biochemical, and ultrastructural mechanisms in PubMed DOI PMC
Falcioni R., dos Santos G.L.A.A., Crusiol L.G.T. et al. : Non-invasive assessment, classification, and prediction of biophysical parameters using reflectance hyperspectroscopy. – Plants-Basel 12: 2526, 2023. 10.3390/plants12132526 PubMed DOI PMC
Feng H., Chen G., Xiong L. et al. : Accurate digitization of the chlorophyll distribution of individual rice leaves using hyperspectral imaging and an integrated image analysis pipeline. – Front. Plant Sci. 8: 1238, 2017. 10.3389/fpls.2017.01238 PubMed DOI PMC
Feng H., Tao H., Li Z. et al. : Comparison of UAV RGB imagery and hyperspectral remote-sensing data for monitoring winter wheat growth. – Remote Sens. 14: 3811, 2022. 10.3390/rs14153811 DOI
Finn A., Peters S., Kumar P., OꞌHehir J.: Automated georectification, mosaicking and 3D point cloud generation using UAV-based hyperspectral imagery observed by line scanner imaging sensors. – Remote Sens. 15: 4624, 2023. 10.3390/rs15184624 DOI
Fitzgerald G., Rodriguez D., OꞌLeary G.: Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index – the canopy chlorophyll content index (CCCI). – Field Crop. Res. 116: 318-324, 2010. 10.1016/j.fcr.2010.01.010 DOI
Frankenberg C., OꞌDell C., Berry J. et al. : Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. – Remote Sens. Environ. 147: 1-12, 2014. 10.1016/j.rse.2014.02.007 DOI
Fu P., Meacham-Hensold K., Guan K. et al. : Estimating photosynthetic traits from reflectance spectra: a synthesis of spectral indices, numerical inversion, and partial least square regression. – Plant Cell Environ. 43: 1241-1258, 2020. 10.1111/pce.13718 PubMed DOI PMC
Fuentes-Peñailillo F., Gutter K., Vega R., Silva G.C.: Transformative technologies in digital agriculture: leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. – J. Sens. Actuator Netw. 13: 39, 2024. 10.3390/jsan13040039 DOI
Gamon J., Serrano L., Surfus J.S.: The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. – Oecologia 112: 492-501, 1997. 10.1007/s004420050337 PubMed DOI
Gamon J.A., Huemmrich K.F., Wong C.Y.S. et al. : A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. – PNAS 113: 13087-13092, 2016. 10.1073/pnas.1606162113 PubMed DOI PMC
Gao B.C., Davis C., Goetz A.: A review of atmospheric correction techniques for hyperspectral remote sensing of land surfaces and ocean color. – In: 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA. Pp. 1979-1981. IEEE, 2006. 10.1109/IGARSS.2006.512 DOI
Gao B.-C.: A practical method for simulating AVHRR-consistent NDVI data series using narrow MODIS channels in the 0.5-1.0/spl mu/m spectral range. – IEEE T. Geosci. Remote 38: 1969-1975, 2000. 10.1109/36.851778 DOI
Gao D., Qiao L., Song D. et al. : In-field chlorophyll estimation based on hyperspectral images segmentation and pixel-wise spectra clustering of wheat canopy. – Biosyst. Eng. 217: 41-55, 2022. 10.1016/j.biosystemseng.2022.03.003 DOI
Garbulsky M.F., Peñuelas J., Gamon J. et al. : The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis. – Remote Sens. Environ. 115: 281-297, 2011. 10.1016/j.rse.2010.08.023 DOI
García-Vera Y.E., Polochè-Arango A., Mendivelso-Fajardo C.A., Gutiérrez-Bernal F.J.: Hyperspectral image analysis and machine learning techniques for crop disease detection and identification: a review. – Sustainability 16: 6064, 2024. 10.3390/su16146064 DOI
Garzonio R., Di Mauro B., Colombo R., Cogliati S.: Surface reflectance and sun-induced fluorescence spectroscopy measurements using a small hyperspectral UAS. – Remote Sens. 9: 472, 2017. 10.3390/rs9050472 DOI
Ge X., Ding J., Jin X. et al. : Estimating agricultural soil moisture content through UAV-based hyperspectral images in the arid region. – Remote Sens. 13: 1562, 2021. 10.3390/rs13081562 DOI
Geipel J., Bakken A.K., Jørgensen M., Korsaeth A.: Forage yield and quality estimation by means of UAV and hyperspectral imaging. – Precis. Agric. 22: 1437-1463, 2021. 10.1007/s11119-021-09790-2 DOI
Gevaert C.M., Suomalainen J., Tang J., Kooistra L.: Generation of spectral–temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. – IEEE J. Sel. Top. Appl. 8: 3140-3146, 2015. 10.1109/JSTARS.2015.2406339 DOI
Gitelson A.A., Gritz Y., Merzlyak M.N.: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. – J. Plant Physiol. 160: 271-282, 2003. 10.1078/0176-1617-00887 PubMed DOI
Gitelson A.A., Peng Y., Masek J.G. et al. : Remote estimation of crop gross primary production with Landsat data. – Remote Sens. Environ. 121: 404-414, 2012. 10.1016/j.rse.2012.02.017 DOI
Gitelson A.A., Stark R., Grits U. et al. : Vegetation and soil lines in visible spectral space: a concept and technique for remote estimation of vegetation fraction. – Int. J. Remote Sens. 23: 2537-2562, 2002. 10.1080/01431160110107806 DOI
Gitelson A.A., Viña A., Ciganda V. et al. : Remote estimation of canopy chlorophyll content in crops. – Geophys. Res. Lett. 32: L08403, 2005. 10.1029/2005GL022688 DOI
Goetz A.F., Vane G., Solomon J.E., Rock B.N.: Imaging spectrometry for earth remote sensing. – Science 228: 1147-1153, 1985. 10.1126/science.228.4704.1147 PubMed DOI
Gonzalez-Dugo V., Zarco-Tejada P., Berni J.A.J. et al. : Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. – Agr. Forest Meteorol. 154-155: 156-165, 2012. 10.1016/j.agrformet.2011.11.004 DOI
Grossmann K., Frankenberg C., Magney T.S. et al. : PhotoSpec: a new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence. – Remote Sens. Environ. 216: 311-327, 2018. 10.1016/j.rse.2018.07.002 DOI
Guanter L., Zhang Y., Jung M. et al. : Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. – PNAS 111: E1327-E1333, 2014. 10.1073/pnas.1320008111 PubMed DOI PMC
Guerra R., Barrios Y., Díaz M. et al. : A hardware-friendly hyperspectral lossy compressor for next-generation space-grade field programmable gate arrays. – IEEE J. Sel. Top. Appl. 12: 4813-4828, 2019. 10.1109/JSTARS.2019.2919791 DOI
Guerri M.F., Distante C., Spagnolo P. et al. : Deep learning techniques for hyperspectral image analysis in agriculture: a review. – ISPRS J. Photogramm. 12: 100062, 2024. 10.1016/j.ophoto.2024.100062 DOI
Haboudane D., Miller J.R., Tremblay N. et al. : Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. – Remote Sens. Environ. 81: 416-426, 2002. 10.1016/S0034-4257(02)00018-4 DOI
Hajaj S., El Harti A., Pour A.B. et al. : A review on hyperspectral imagery application for lithological mapping and mineral prospecting: machine learning techniques and future prospects. – Remote Sens. Appl. Soc. Environ. 35: 101218, 2024. 10.1016/j.rsase.2024.101218 DOI
Han S., Liu Z., Chen Z. et al. : Using high-frequency PAR measurements to assess the quality of the SIF derived from continuous field observations. – Remote Sens. 14: 2083, 2022. 10.3390/rs14092083 DOI
Hank T.B., Berger K., Bach H. et al. : Spaceborne imaging spectroscopy for sustainable agriculture: contributions and challenges. – Surv. Geophys. 40: 515-551, 2019. 10.1007/s10712-018-9492-0 DOI
Haworth M., Marino G., Atzori G. et al. : Plant physiological analysis to overcome limitations to plant phenotyping. – Plants-Basel 12: 4015, 2023. 10.3390/plants12234015 PubMed DOI PMC
He R., Meng J., Du Y. et al. : Enhancing regional topsoil total nitrogen mapping through differentiated fusion of ground hyperspectral data and satellite images under low vegetation cover. – Agriculture 14: 2145, 2024. 10.3390/agriculture14122145 DOI
Hejtmánek J., Stejskal J., Čepl J. et al. : Revealing the complex relationship among hyperspectral reflectance, photosynthetic pigments, and growth in Norway spruce ecotypes. – Front. Plant Sci. 13: 721064, 2022. 10.3389/fpls.2022.721064 PubMed DOI PMC
Hernández-Clemente R., Hornero A., Mottus M. et al. : Early diagnosis of vegetation health from high-resolution hyperspectral and thermal imagery: lessons learned from empirical relationships and radiative transfer modelling. – Curr. Forestry Rep. 5: 169-183, 2019. 10.1007/s40725-019-00096-1 DOI
Herrmann I., Karnieli A., Bonfil D.J. et al. : SWIR-based spectral indices for assessing nitrogen content in potato fields. – Int. J. Remote Sens. 31: 5127-5143, 2010. 10.1080/01431160903283892 DOI
Hollberg J.L., Schellberg J.: Distinguishing intensity levels of grassland fertilization using vegetation indices. – Remote Sens. 9: 81, 2017. 10.3390/rs9010081 DOI
Homolová L., Malenovský Z., Clevers J.G.P.W. et al. : Review of optical-based remote sensing for plant trait mapping. – Ecol. Complex. 15: 1-16, 2013. 10.1016/j.ecocom.2013.06.003 DOI
Honkanen M., Heikkinen P., MacArthur A. et al. : UAV-borne measurements of solar-induced chlorophyll fluorescence (SIF) at a boreal site. – In: Westerlund T., Peña Queralta J. (ed.): New Developments and Environmental Applications of Drones. FinDrones 2023. Pp. 115-135. Springer, Cham: 2024. 10.1007/978-3-031-44607-8_8 DOI
Houborg R., McCabe M.F.: Adapting a regularized canopy reflectance model (REGFLEC) for the retrieval challenges of dryland agricultural systems. – Remote Sens. Environ. 186: 105-120, 2016. 10.1016/j.rse.2016.08.017 DOI
Huang H., Sun Z., Liu S. et al. : Underwater hyperspectral imaging for DOI
Huang Y., Ma Q., Wu X. et al. : Estimation of chlorophyll content in DOI
Hunt Jr. E.R., Doraiswamy P.C., McMurtrey J.E. et al. : A visible band index for remote sensing leaf chlorophyll content at the canopy scale. – Int. J. Appl. Earth Obs. Geoinf. 21: 103-112, 2013. 10.1016/j.jag.2012.07.020 DOI
Hunt Jr. E.R., Gillham J.H., Daughtry C.S.: Improving potential geographic distribution models for invasive plants by remote sensing. – Rangeland Ecol. Manag. 63: 505-513, 2010. 10.2111/REM-D-09-00137.1 DOI
Imran H.A., Gianelle D., Rocchini D. et al. : VIS-NIR, red-edge and NIR-shoulder based normalized vegetation indices response to co-varying leaf and canopy structural traits in heterogeneous grasslands. – Remote Sens. 12: 2254, 2020. 10.3390/rs12142254 DOI
Ishida T., Kurihara J., Viray F.A. et al. : A novel approach for vegetation classification using UAV-based hyperspectral imaging. – Comput. Electron. Agr. 144: 80-85, 2018. 10.1016/j.compag.2017.11.027 DOI
Islam T., Islam R., Uddin P., Ulhaq A.: Spectrally segmented-enhanced neural network for precise land cover object classification in hyperspectral imagery. – Remote Sens. 16: 807, 2024. 10.3390/rs16050807 DOI
Jacquemoud S., Verhoef W., Baret F. et al. : PROSPECT+SAIL models: A review of use for vegetation characterization. – Remote Sens. Environ. 113: S56-S66, 2009. 10.1016/j.rse.2008.01.026 DOI
Jaggard K.W., Qi A., Ober E.S.: Possible changes to arable crop yields by 2050. – Philos. T. Roy. Soc. B 365: 2835-2851, 2010. 10.1098/rstb.2010.0153 PubMed DOI PMC
Jia M., Colombo R., Rossini M. et al. : Estimation of leaf nitrogen content and photosynthetic nitrogen use efficiency in wheat using sun-induced chlorophyll fluorescence at the leaf and canopy scales. – Eur. J. Agron. 122: 126192, 2021. 10.1016/j.eja.2020.126192 DOI
Jiang Y., Snider J.L., Li C. et al. : Ground based hyperspectral imaging to characterize canopy-level photosynthetic activities. – Remote Sens. 12: 315, 2020. 10.3390/rs12020315 DOI
Johnson B., Tateishi R., Kobayashi T.: Remote sensing of fractional green vegetation cover using spatially-interpolated endmembers. – Remote Sens. 4: 2619-2634, 2012. 10.3390/rs4092619 DOI
Jones H.G.: Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. – Adv. Bot. Res. 41: 107-163, 2004. 10.1016/S0065-2296(04)41003-9 DOI
Jones H.G., Leinonen I.: Thermal imaging for the study of plant water relations. – J. Agric. Meteorol. 59: 205-217, 2003. 10.2480/agrmet.59.205 DOI
Jurado-Rodríguez D., Latorre-Hortelano P., René-Dominguez L., Ortega L.M.: 3D modeling of rural environments from multiscale aerial imagery. – Comput. Graph. 122: 103982, 2024. 10.1016/j.cag.2024.103982 DOI
Kariani R., Supriyadi A.A.: The use of satellite imagery in supporting non-military operations: a geospatial intelligence perspective. – Remote Sens. Technol. Defense Environ. 1: 56-66, 2024. https://journal-iasssf.com/index.php/RSTDE/article/view/935
Khan A., Vibhute A.D., Mali S., Patil C.H.: A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications. – Ecol. Inform. 69: 101678, 2022. 10.1016/j.ecoinf.2022.101678 DOI
Khonina S.N., Kazanskiy N.L., Oseledets I.V. et al. : Synergy between artificial intelligence and hyperspectral imagining – a review. – Technologies 12: 163, 2024. 10.3390/technologies12090163 DOI
Kokaly R.F., Clark R.N., Swayze G.A. et al. : USGS Spectral Library Version 7: U.S. Geological Survey Data Series 1035. Pp. 61. U.S. Geological Survey, Reston: 2017. 10.3133/ds1035 DOI
Kong W., Huang W., Zhou X. et al. : Estimation of carotenoid content at the canopy scale using the carotenoid triangle ratio index from DOI
Kumar P., Eriksen R.L., Simko I. et al. : Insights into nitrogen metabolism in the wild and cultivated lettuce as revealed by transcriptome and weighted gene co-expression network analysis. – Sci. Rep.-UK 12: 9852, 2022. 10.1038/s41598-022-13954-z PubMed DOI PMC
Lai X., Qi G., Kovach C. et al. : Pursuing impactful quantitative proteomics using QC-channels in every spectrum and trend-design in experiment. – J. Am. Soc. Mass Spectr. 35: 674-682, 2024. 10.1021/jasms.3c00346 PubMed DOI
Law B.E., Falge E., Gu L. et al. : Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. – Agr. Forest Meteorol. 113: 97-120, 2002. 10.1016/S0168-1923(02)00104-1 DOI
Lee S.-D., Lee J.-H., Kim J.-H. et al. : Evaluation technologies for assessing drought tolerance of Kimchi cabbage seedlings using hyperspectral imaging and principal component analysis. – Microchem. J. 206: 111499, 2024. 10.1016/j.microc.2024.111499 DOI
Lefsky M.A., Cohen W.B., Parker G.G., Harding D.J.: Lidar remote sensing for ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. – BioScience 52: 19-30, 2002. 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 DOI
Lelong C.C.D., Burger P., Jubelin G. et al. : Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. – Sensors 8: 3557-3585, 2008. 10.3390/s8053557 PubMed DOI PMC
Li J., Huang X., Gamba P. et al. : Multiple feature learning for hyperspectral image classification. – IEEE T. Geosci. Remote 53: 1592-1606, 2015. 10.1109/TGRS.2014.2345739 DOI
Lin D., Chen Y., Qiao Y. et al. : A study on an accurate modeling for distinguishing nitrogen, phosphorous and potassium status in summer maize using DOI
Liran O.: Formulation of a structural equation relating remotely sensed electron transport rate index to photosynthesis activity. – Remote Sens. 14: 2439, 2022. 10.3390/rs14102439 DOI
Liu G., Liu M., Chao J. et al. : Diagnosis of leaf chlorophyll content based on close-range multispectral fluorescence image correction. – Comput. Electron. Agr. 231: 110040, 2025. 10.1016/j.compag.2025.110040 DOI
Liu H., Chen J., Xiang Y. et al. : Improving UAV hyperspectral monitoring accuracy of summer maize soil moisture content with an ensemble learning model fusing crop physiological spectral responses. – Eur. J. Agron. 160: 127299, 2024. 10.1016/j.eja.2024.127299 DOI
Lu B., Dao P.D., Liu J. et al. : Recent advances of hyperspectral imaging technology and applications in agriculture. – Remote Sens. 12: 2659, 2020. 10.3390/rs12162659 DOI
Lu Y., Nie L., Guo X. et al. : Rapid assessment of heavy metal accumulation capability of PubMed DOI
Maes W.H., Steppe K.: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. – Trends Plant Sci. 24: 152-164, 2019. 10.1016/j.tplants.2018.11.007 PubMed DOI
Mahlein A.-K., Kuska M.T., Behmann J. et al. : Hyperspectral sensors and imaging technologies in phytopathology: state of the art. – Annu. Rev. Phytopathol. 56: 535-558, 2018. 10.1146/annurev-phyto-080417-050100 PubMed DOI
Mahlein A.-K., Kuska M.T., Thomas S. et al. : Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed! – Curr. Opin. Plant Biol 50: 156-162, 2019. 10.1016/j.pbi.2019.06.007 PubMed DOI
Maimaitijiang M., Sagan V., Bhadra S. et al. : A fully automated and fast approach for canopy cover estimation using super high-resolution remote sensing imagery. – ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 3: 219-226, 2021. 10.5194/isprs-annals-V-3-2021-219-2021 DOI
Maimaitijiang M., Sagan V., Sidike P. et al. : Crop monitoring using satellite/UAV data fusion and machine learning. – Remote Sens. 12: 1357, 2020. 10.3390/rs12091357 DOI
Makarenko M., Burguete-Lopez A., Wang Q. et al. : Hardware-accelerated integrated optoelectronic platform towards real-time high-resolution hyperspectral video understanding. – Nat. Commun. 15: 7051, 2024. 10.1038/s41467-024-51406-6 PubMed DOI PMC
Mallick K., Verfaillie J., Wang T. et al. : Net fluxes of broadband shortwave and photosynthetically active radiation complement NDVI and near infrared reflectance of vegetation to explain gross photosynthesis variability across ecosystems and climate. – Remote Sens. Environ. 307: 114123, 2024. 10.1016/j.rse.2024.114123 DOI
Mangalraj P., Cho B.-K.: Recent trends and advances in hyperspectral imaging techniques to estimate solar-induced fluorescence for plant phenotyping. – Ecol. Indic. 137: 108721, 2022. 10.1016/j.ecolind.2022.108721 DOI
Manne M., Rajitha K., Chakraborty S., Gnanamoorthy P.: A path analysis approach to model the gross primary productivity of mangroves using climate data and optical indices. – Model. Earth Syst. Environ. 10: 509-522, 2024. 10.1007/s40808-023-01783-6 DOI
Marín-Ortiz J.C., Hoyos-Carvajal L.M., Botero-Fernández V. et al. : Characterizing diploid and tetraploid potato cultivars with reflectance spectroscopy. – Potato Res. 67: 1143-1157, 2024. 10.1007/s11540-023-09674-0 DOI
Marques P., Pádua L., Sousa J.J., Fernandes-Silva A.: Advancements in remote sensing imagery applications for precision management in olive growing: a systematic review. – Remote Sens. 16: 1324, 2024. 10.3390/rs16081324 DOI
Matsushita B., Yang W., Chen J. et al. : Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. – Sensors 7: 2636-2651, 2007. 10.3390/s7112636 PubMed DOI PMC
Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. 10.1093/jexbot/51.345.659 PubMed DOI
Meacham-Hensold K., Fu P., Wu J. et al. : Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging. – J. Exp. Bot. 71: 2312-2328, 2020. 10.1093/jxb/eraa068 PubMed DOI PMC
Merrick T., Jorge M.L.S.P., Silva T.S.F. et al. : Characterization of chlorophyll fluorescence, absorbed photosynthetically active radiation, and reflectance-based vegetation index spectroradiometer measurements. – Int. J. Remote Sens. 41: 6755-6782, 2020. 10.1080/01431161.2020.1750731 DOI
Mertens S., Verbraeken L., Sprenger H. et al. : Proximal hyperspectral imaging detects diurnal and drought-induced changes in maize physiology. – Front. Plant Sci. 12: 640914, 2021. 10.3389/fpls.2021.640914 PubMed DOI PMC
Middleton E.M., Huemmrich K.F., Landis D.R. et al. : Photosynthetic efficiency of northern forest ecosystems using a MODIS-derived Photochemical Reflectance Index (PRI). – Remote Sens. Environ. 187: 345-366, 2016. 10.1016/j.rse.2016.10.021 DOI
Mohammed G.H., Colombo R., Middleton E.M. et al. : Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. – Remote Sens. Environ. 231: 111177, 2019. 10.1016/j.rse.2019.04.030 PubMed DOI PMC
Moncholi-Estornell A., Cendrero-Mateo M.P., Antala M. et al. : Enhancing solar-induced fluorescence interpretation: quantifying fractional sunlit vegetation cover using linear spectral unmixing. – Remote Sens. 15: 4274, 2023. 10.3390/rs15174274 DOI
Mora-Poblete F., Mieres-Castro D., do Amaral Júnior A.T. et al. : Integrating deep learning for phenomic and genomic predictive modeling of DOI
Mulla D.J.: Twenty-five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. – Biosyst. Eng. 114: 358-371, 2013. 10.1016/j.biosystemseng.2012.08.009 DOI
Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. – J. Exp. Bot. 64: 3983-3998, 2013. 10.1093/jxb/ert208 PubMed DOI
Mutanga O., Adam E., Cho M.A.: High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. – Int. J. Appl. Earth Obs. Geoinf. 18: 399-406, 2012. 10.1016/j.jag.2012.03.012 DOI
Mutanga O., Skidmore A.K.: Red edge shift and biochemical content in grass canopies. – ISPRS J. Photogramm. 62: 34-42, 2007. 10.1016/j.isprsjprs.2007.02.001 DOI
Nakashima N., Kato T., Morozumi T. et al. : Area-ratio Fraunhofer line depth (aFLD) method approach to estimate solar-induced chlorophyll fluorescence in low spectral resolution spectra in a cool-temperate deciduous broadleaf forest. – J. Plant Res. 134: 713-728, 2021. 10.1007/s10265-021-01322-3 PubMed DOI
Neuwirthová E., Lhotáková Z., Červená L. et al. : Asymmetry of leaf internal structure affects PLSR modelling of anatomical traits using VIS-NIR leaf level spectra. – Eur. J. Remote Sens. 57: 2292154, 2024. 10.1080/22797254.2023.2292154 DOI
Nie J., Wu K., Li Y. et al. : Advances in hyperspectral remote sensing for precision fertilization decision-making: a comprehensive overview. – Turk. J. Agric. For. 48: 1084-1104, 2024. 10.55730/1300-011X.3243 DOI
Oivukkamäki J., Aalto J., Pfündel E.E. et al. : Field integration of shoot gas-exchange and leaf chlorophyll fluorescence measurements to study the long-term regulation of photosynthesis PubMed DOI PMC
Olakanmi S.J., Jayas D.S., Paliwal J. et al. : Quality characterization of fava bean-fortified bread using hyperspectral imaging. – Foods 13: 231, 2024. 10.3390/foods13020231 PubMed DOI PMC
Olorunsogo T., Jacks B.S., Ajala O.A.: Leveraging quantum computing for inclusive and responsible AI development: a conceptual and review framework. – Comput. Sci. IT Res. J. 5: 671-680, 2024. 10.51594/csitrj.v5i3.927 DOI
Olson D., Anderson J.: Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. – Agron. J. 113: 971-992, 2021. 10.1002/agj2.20595 DOI
Oppelt N., Muhuri A.: Fundamentals of remote sensing for terrestrial applications: evolution, current state of the art, and future possibilities. – In: Thenkabail P.S. (ed.): Remote Sensing Handbook. Vol. I. Sensors, Data Normalization, Harmonization, Cloud Computing, and Accuracies. Pp. 173-209. CRC Press, Boca Raton: 2024. 10.1201/9781003541141 DOI
Pacheco-Labrador J., Cendrero-Mateo M.P., Van Wittenberghe S. et al. : Eco physiological variables retrieval and early stress detection: insights from a synthetic spatial scaling exercise. – Int. J. Remote Sens. 46: 443-468, 2025. 10.1080/01431161.2024.2414435 DOI
Paloscia S., Pettinato S., Santi E. et al. : Soil moisture mapping using Sentinel-1 images: algorithm and preliminary validation. – Remote Sens. Environ. 134: 234-248, 2013. 10.1016/j.rse.2013.02.027 DOI
Pandey P., Ge Y., Stoerger V., Schnable J.C.: High throughput PubMed DOI PMC
Pascucci S., Pignatti S., Casa R. et al. : Special issue “Hyperspectral remote sensing of agriculture and vegetation”. – Remote Sens. 12: 3665, 2020. 10.3390/rs12213665 DOI
Patil S.M., Choudhary S., Kholova J. et al. : Applications of UAVs: image-based plant phenotyping. – In: Priyadarshan P.M., Jain S.M., Penna S., Al-Khayri J.M. (ed.): Digital Agriculture: A Solution for Sustainable Food and Nutritional Security. Pp. 341-367. Springer, Cham: 2024. 10.1007/978-3-031-43548-5_11 DOI
Peng D., Zhang H., Yu L. et al. : Assessing spectral indices to estimate the fraction of photosynthetically active radiation absorbed by the vegetation canopy. – Int. J. Remote Sens. 39: 8022-8040, 2018. 10.1080/01431161.2018.1479795 DOI
Peñuelas J., Filella I., Gamon J.A.: Assessment of photosynthetic radiation-use efficiency with spectral reflectance. – New Phytol. 131: 291-296, 1995. 10.1111/j.1469-8137.1995.tb03064.x DOI
Peñuelas J., Pinol J., Ogaya R., Filella I.: Estimation of plant water concentration by the reflectance water index WI (R900/R970). – Int. J. Remote Sens. 18: 2869-2875, 1997. 10.1080/014311697217396 DOI
Polivova M., Brook A.: Detailed investigation of spectral vegetation indices for fine field-scale phenotyping. – In: Carmona E.C., Ortiz A.C., Canas R.Q., Musarella C.M. (ed.): Vegetation Index and Dynamics. IntechOpen, London: 2022. 10.5772/intechopen.96882 DOI
Poorter H., Niinemets Ü., Poorter L. et al. : Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. – New Phytol. 182: 565-588, 2009. 10.1111/j.1469-8137.2009.02830.x PubMed DOI
Porcar-Castell A., Tyystjärvi E., Atherton J. et al. : Linking chlorophyll PubMed DOI
Pretty J., Benton T.G., Bharucha Z.P. et al. : Global assessment of agricultural system redesign for sustainable intensification. – Nat. Sustain. 1: 441-446, 2018. 10.1038/s41893-018-0114-0 DOI
Putra B.T.W., Soni P.: Evaluating NIR-Red and NIR-Red edge external filters with digital cameras for assessing vegetation indices under different illumination. – Infrared Phys. Techn. 81: 148-156, 2017. 10.1016/j.infrared.2017.01.007 DOI
Ram B.G., Oduor P., Igathinathane C. et al. : A systematic review of hyperspectral imaging in precision agriculture: analysis of its current state and future prospects. – Comput. Electron. Agr. 222: 109037, 2024. 10.1016/j.compag.2024.109037 DOI
Rascher U., Alonso L., Burkart A. et al. : Sun-induced fluorescence – a new probe of photosynthesis: first maps from the imaging spectrometer PubMed DOI
Raun W.R., Solie J.B., Johnson G.V. et al. : Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. – Agron. J. 94: 815-820, 2002. 10.2134/agronj2002.8150 DOI
Ray D.K., Mueller N.D., West P.C., Foley J.A.: Yield trends are insufficient to double global crop production by 2050. – PLoS ONE 8: e66428, 2013. 10.1371/journal.pone.0066428 PubMed DOI PMC
Ren Y., Liao L., Maybank S.J. et al. : Hyperspectral image spectral-spatial feature extraction DOI
Roy D.P., Wulder M.A., Loveland T.R. et al. : Landsat-8: science and product vision for terrestrial global change research. – Remote Sens. Environ. 145: 154-172, 2014. 10.1016/j.rse.2014.02.001 DOI
Ruszczak B., Wijata A.M., Nalepa J.: Unbiasing the estimation of chlorophyll from hyperspectral images: a benchmark dataset, validation procedure, and baseline results. – Remote Sens. 14: 5526, 2022. 10.3390/rs14215526 DOI
Ryu Y.: Upscaling land surface fluxes through hyper resolution remote sensing in space, time, and the spectrum. – J. Geophys. Res.-Biogeo. 129: e2023JG007678, 2024. 10.1029/2023JG007678 DOI
Sabater N., Vicent J., Alonso L. et al. : Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy-leaving sun-induced chlorophyll fluorescence. – Remote Sens. 10: 1551, 2018. 10.3390/rs10101551 PubMed DOI PMC
Sabin G.P., Soares F.L.F., De Freitas D.L.D. et al. : Hyperspectral imaging applications. – In: Fernandes F.A.N., Rodrigues S., Filho E.G.A. (ed.): Chemometrics: Data Treatment and Applications. Pp. 91-123. Elsevier, Amsterdam: 2024. 10.1016/B978-0-443-21493-6.00005-8 DOI
Sanaeifar A., Yang C., de la Guardia M. et al. : Proximal hyperspectral sensing of abiotic stresses in plants. – Sci. Total Environ. 861: 160652, 2023. 10.1016/j.scitotenv.2022.160652 PubMed DOI
Sarkar S., Sagan V., Bhadra S., Fritschi F.B.: Spectral enhancement of PlanetScope using Sentinel-2 images to estimate soybean yield and seed composition. – Sci. Rep.-UK 14: 15063, 2024. 10.1038/s41598-024-63650-3 PubMed DOI PMC
Seelig H.-D., Hoehn A., Stodieck L.S. et al. : The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared. – Int. J. Remote Sens. 29: 3701-3713, 2008. 10.1080/01431160701772500 DOI
Serbin S.P., Dillaway D.N., Kruger E.L., Townsend P.A.: Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature. – J. Exp. Bot. 63: 489-502, 2012. 10.1093/jxb/err294 PubMed DOI PMC
Sethy P.K., Pandey C., Sahu Y.K., Behera S.K.: Hyperspectral imagery applications for precision agriculture – a systemic survey. – Multimed. Tools Appl. 81: 3005-3038, 2022. 10.1007/s11042-021-11729-8 DOI
Shanahan J.F., Schepers J.S., Francis D.D. et al. : Use of remote-sensing imagery to estimate corn grain yield. – Agron. J. 93: 583-589, 2001. 10.2134/agronj2001.933583x DOI
Sharma A.K., Singh A., Sidhu S.K. et al. : Fresh leaf spectroscopy to estimate the crop nutrient status of potato ( DOI
Shaver T.M.: Ground based active remote sensors for precision nitrogen management in irrigated maize production. PhD Thesis. Pp. 207. Colorado State University, Fort Collins: 2009. https://hdl.handle.net/10217/237956
Shen Q., Xia K., Zhang S. et al. : Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area. – Spectrochim. Acta A 222: 117191, 2019. 10.1016/j.saa.2019.117191 PubMed DOI
Shuai L., Li Z., Chen Z. et al. : A research review on deep learning combined with hyperspectral Imaging in multiscale agricultural sensing. – Comput. Electron. Agr. 217: 108577, 2024. 10.1016/j.compag.2023.108577 DOI
Siddique A., Cook K., Holt Y. et al. : From plants to pixels: the role of artificial intelligence in identifying DOI
Silva L., Conceição L.A., Lidon F.C., Maçãs B.: Remote monitoring of crop nitrogen nutrition to adjust crop models: a review. – Agriculture 13: 835, 2023. 10.3390/agriculture13040835 DOI
Sims D.A., Gamon J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. – Remote Sens. Environ. 81: 337-354, 2002. 10.1016/S0034-4257(02)00010-X DOI
Small C.: The Landsat ETM+ spectral mixing space. – Remote Sens. Environ. 93: 1-17, 2004. 10.1016/j.rse.2004.06.007 DOI
Smigaj M., Agarwal A., Bartholomeus H. et al. : Thermal infrared remote sensing of stress responses in forest environments: a review of developments, challenges, and opportunities. – Curr. Forestry Rep. 10: 56-76, 2024. 10.1007/s40725-023-00207-z DOI
Sobejano-Paz V., Mikkelsen T.N., Baum A. et al. : Hyperspectral and thermal sensing of stomatal conductance, transpiration, and photosynthesis for soybean and maize under drought. – Remote Sens. 12: 3182, 2020. 10.3390/rs12193182 DOI
Somers B., Delalieux S., Verstraeten W.W. et al. : An automated waveband selection technique for optimized hyperspectral mixture analysis. – Int. J. Remote Sens. 31: 5549-5568, 2010. 10.1080/01431160903311305 DOI
Song Y., Sapes G., Chang S. et al. : Hyperspectral signals in the soil: plant–soil hydraulic connection and disequilibrium as mechanisms of drought tolerance and rapid recovery. – Plant Cell Environ. 47: 4171-4187, 2024. 10.1111/pce.15011 PubMed DOI
Sosa M.V., Lehndorff E., Rodionov A. et al. : Micro-scale resolution of carbon turnover in soil – insights from laser ablation isotope ratio mass spectrometry on water-glass embedded aggregates. – Soil Biol. Biochem. 159: 108279, 2021. 10.1016/j.soilbio.2021.108279 DOI
Spasova T., Avetisyan D., Ivanova I., Stankova N.: Assessment of mosses in Antarctica based on remote sensing and chlorophyll fluorescence. – Proc. SPIE 13191: 220-232, 2024. 10.1117/12.3031486 DOI
Steele M.R., Gitelson A.A., Rundquist D.C., Merzlyak M.N.: Nondestructive estimation of anthocyanin content in grapevine leaves. – Am. J. Enol. Vitic. 60: 87-92, 2009. 10.5344/ajev.2009.60.1.87 DOI
Sun J., Lu X., Mao H. et al. : Quantitative determination of rice moisture based on hyperspectral imaging technology and BCC-LS-SVR algorithm. – J. Food Process Eng. 40: e12446, 2017. 10.1111/jfpe.12446 DOI
Swain P.H., Davis S.M.: Remote sensing: the quantitative approach. – IEEE T. Pattern Anal. 3: 713-714, 1981. 10.1109/TPAMI.1981.4767177 DOI
Swaminathan V., Thomasson J.A., Hardin R.G. et al. : Radiometric calibration of UAV multispectral images under changing illumination conditions with a downwelling light sensor. – Plant Phenome J. 7: e70005, 2024. 10.1002/ppj2.70005 DOI
Taiz L., Zeiger E.: Plant Physiology. 5
Thenkabail P.S., Hanjra M.A., Dheeravath V., Gumma M.: Global croplands and their water use from remote sensing and nonremote sensing perspectives. – In: Weng Q. (ed.): Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications. Pp. 383-419. CRC Press, Boca Raton: 2011. https://researchoutput.csu.edu.au/en/publications/global-croplands-and-their-water-use-from-remote-sensing-and-nonr
Tilman D., Balzer C., Hill J., Befort B.L.: Global food demand and the sustainable intensification of agriculture. – PNAS 108: 20260-20264, 2011. 10.1073/pnas.1116437108 PubMed DOI PMC
Toyoshima M., Toya Y., Shimizu H.: Flux balance analysis of cyanobacteria reveals selective use of photosynthetic electron transport components under different spectral light conditions. – Photosynth. Res. 143: 31-43, 2020. 10.1007/s11120-019-00678-x PubMed DOI
Tsouros D.C., Bibi S., Sarigiannidis P.G.: A review on UAV-based applications for precision agriculture. – Information 10: 349, 2019. 10.3390/info10110349 DOI
Ulaby F.T., Michielssen E., Ravaioli U.: Fundamentals of Applied Electromagnetics. 6
Ustin S.L., Gitelson A.A., Jacquemoud S. et al. : Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. – Remote Sens. Environ. 113: S67-S77, 2009. 10.1016/j.rse.2008.10.019 DOI
Varghese R., Cherukuri A.K., Doddrell N.H. et al. : Machine learning in photosynthesis: prospects on sustainable crop development. – Plant Sci. 335: 111795, 2023. 10.1016/j.plantsci.2023.111795 PubMed DOI
Veramendi W.N.C., Cruvinel P.E.: Method for maize plants counting and crop evaluation based on multispectral images analysis. – Comput. Electron. Agr. 216: 108470, 2024. 10.1016/j.compag.2023.108470 DOI
Verma B., Singh P., Prasad R. et al. : Leaf chlorophyll content retrieval for AVIRIS-NG imagery using different feature selection and wavelet analysis. – Adv. Space Res. 73: 1304-1315, 2024. 10.1016/j.asr.2023.06.005 DOI
Vidican R., Mălinaş A., Ranta O. et al. : Using remote sensing vegetation indices for the discrimination and monitoring of agricultural crops: a critical review. – Agronomy 13: 3040, 2023. 10.3390/agronomy13123040 DOI
Wang D., Hu M., Jin Y. et al. : Hyper SIGMA: hyperspectral intelligence comprehension foundation model. – IEEE T. Pattern Anal., 2025. 10.1109/TPAMI.2025.3557581 PubMed DOI
Wang F., Gao J., Zha Y.: Hyperspectral sensing of heavy metals in soil and vegetation: feasibility and challenges. – ISPRS J. Photogramm. 136: 73-84, 2018. 10.1016/j.isprsjprs.2017.12.003 DOI
Wang N., Suomalainen J., Bartholomeus H. et al. : Diurnal variation of sun-induced chlorophyll fluorescence of agricultural crops observed from a point-based spectrometer on a UAV. – Int. J. Appl. Earth Obs. Geoinf. 96: 102276, 2021. 10.1016/j.jag.2020.102276 DOI
Wang X., Hu Q., Cheng Y. et al. : Hyperspectral image super-resolution meets deep learning: a survey and perspective. – IEEE/CAA J. Autom. Sin. 10: 1668-1691, 2023. 10.1109/JAS.2023.123681 DOI
Wang Y., Suarez L., Poblete T. et al. : Evaluating the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen assessment in almond using airborne hyperspectral imagery. – Remote Sens. Environ. 279: 113141, 2022. 10.1016/j.rse.2022.113141 DOI
Wang Z., Feng Y., Jia Y.: Spatio-spectral hybrid compressive sensing of hyperspectral imagery. – Remote Sens. Lett. 6: 199-208, 2015. 10.1080/2150704X.2015.1024892 DOI
Warner E., Cook-Patton S.C., Lewis O.T. et al. : Young mixed planted forests store more carbon than monocultures – a meta-analysis. – Front. For. Glob. Change 6: 1226514, 2023. 10.3389/ffgc.2023.1226514 DOI
Wen T., Li J.-H., Wang Q. et al. : Thermal imaging: the digital eye facilitates high-throughput phenotyping traits of plant growth and stress responses. – Sci. Total Environ. 899: 165626, 2023. 10.1016/j.scitotenv.2023.165626 PubMed DOI
Wientjes E., Philippi J., Borst J.W., van Amerongen H.: Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf. – BBA-Bioenergetics 1858: 259-265, 2017. 10.1016/j.bbabio.2017.01.008 PubMed DOI
Wu C., Niu Z., Tang Q., Huang W.: Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. – Agr. Forest Meteorol. 148: 1230-1241, 2008. 10.1016/j.agrformet.2008.03.005 DOI
Wulder M.A., White J.C., Fournier R.A. et al. : Spatially explicit large area biomass estimation: three approaches using forest inventory and remotely sensed imagery in a GIS. – Sensors 8: 529-560, 2008. 10.3390/s8010529 PubMed DOI PMC
Wüpper D., Oluoch W.A., Hadi: Satellite data in agricultural and environmental economics: theory and practice. – In: 32 DOI
Xiao B., Li S., Dou S. et al. : Comparison of leaf chlorophyll content retrieval performance of citrus using FOD and CWT methods with field-based full-spectrum hyperspectral reflectance data. – Comput. Electron. Agr. 217: 108559, 2024. 10.1016/j.compag.2023.108559 DOI
Xie C., Chu B., He Y.: Prediction of banana color and firmness using a novel wavelengths selection method of hyperspectral imaging. – Food Chem. 245: 132-140, 2018. 10.1016/j.foodchem.2017.10.079 PubMed DOI
Xie Q., Zhou M., Zhao Q. et al. : Multispectral and hyperspectral image fusion by MS/HS fusion net. – In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA. Pp. 1585-1594. IEEE, 2019. 10.1109/CVPR.2019.00168 DOI
Xie W., Lei J., Cui Y. et al. : Hyperspectral pansharpening with deep priors. – IEEE T. Neur. Net. Lear. 31: 1529-1543, 2020. 10.1109/TNNLS.2019.2920857 PubMed DOI
Xie Y., Plett D., Evans M. et al. : Hyperspectral imaging detects biological stress of wheat for early diagnosis of crown rot disease. – Comput. Electron. Agr. 217: 108571, 2024. 10.1016/j.compag.2023.108571 DOI
Xing H., Feng H., Fu J. et al. : Development and application of hyperspectral remote sensing. – In: Li D., Zhao C. (ed.): Computer and Computing Technologies in Agriculture XI. CCTA 2017. IFIP Advances in Information and Communication Technology. Vol. 546. Pp. 271-282. Springer, Cham: 2019. 10.1007/978-3-030-06179-1_28 DOI
Xiong X., Liu X., Wu W. et al. : Observation of Hunga Tonga volcanic eruption using hyperspectral infrared satellite sensors. – In: 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024. Pp. 5590-5594. IEEE, 2024. 10.1109/IGARSS53475.2024.10641078 DOI
Xu M., Xu J., Liu S. et al. : Multiscale convolutional mask network for hyperspectral unmixing. – IEEE J. Sel. Top. Appl. 17: 3687-3700, 2024. 10.1109/JSTARS.2024.3352080 DOI
Yang M., Kang X., Qiu X. et al. : Method for early diagnosis of DOI
Yang P., Prikaziuk E., Verhoef W., van der Tol C.: SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals. – Geosci. Model Dev. 14: 4697-4712, 2021. 10.5194/gmd-14-4697-2021 DOI
Yang X., Liu S., Liu Y. et al. : Assessing shaded-leaf effects on photochemical reflectance index (PRI) for water stress detection in winter wheat. – Biogeosciences 16: 2937-2947, 2019. 10.5194/bg-16-2937-2019 DOI
Yang X., Yu Y., Fan W.: Chlorophyll content retrieval from hyperspectral remote sensing imagery. – Environ. Monit. Assess. 187: 456, 2015. 10.1007/s10661-015-4682-4 PubMed DOI
Yang Z., Tian J., Wang Z., Feng K.: Monitoring the photosynthetic performance of grape leaves using a hyperspectral-based machine learning model. – Eur. J. Agron. 140: 126589, 2022. 10.1016/j.eja.2022.126589 DOI
Yu Y., Yang X., Fan W.: Remote sensing inversion of leaf maximum carboxylation rate based on a mechanistic photosynthetic model. – IEEE T. Geosci. Remote 60: 1-12, 2022. 10.1109/TGRS.2021.3050105 DOI
Yu Z., Cui W.: Robust hyperspectral image classification using generative adversarial networks. – Inform. Sci. 666: 120452, 2024. 10.1016/j.ins.2024.120452 DOI
Yue J., Feng H., Jin X. et al. : A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-definition digital camera. – Remote Sens. 10: 1138, 2018. 10.3390/rs10071138 DOI
Yue J., Tian Q., Dong X. et al. : Using hyperspectral crop residue angle index to estimate maize and winter-wheat residue cover: a laboratory study. – Remote Sens. 11: 807, 2019. 10.3390/rs11070807 DOI
Zarco-Tejada P.J., Berni J.A., Suárez L. et al. : Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. – Remote Sens. Environ. 113: 1262-1275, 2009. 10.1016/j.rse.2009.02.016 DOI
Zarco-Tejada P.J., Catalina A., González M.R., Martín P.: Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery. – Remote Sens. Environ. 136: 247-258, 2013. 10.1016/j.rse.2013.05.011 DOI
Zarco-Tejada P.J., González-Dugo M.V., Fereres E.: Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. – Remote Sens. Environ. 179: 89-103, 2016. 10.1016/j.rse.2016.03.024 DOI
Zarco-Tejada P.J., González-Dugo V., Berni J.A.J.: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. – Remote Sens. Environ. 117: 322-337, 2012. 10.1016/j.rse.2011.10.007 DOI
Zarco-Tejada P.J., Miller J.R., Mohammed G.H. et al. : Estimation of chlorophyll fluorescence under natural illumination from hyperspectral data. – Int. J. Appl. Earth Obs. Geoinf. 3: 321-327, 2001. 10.1016/S0303-2434(01)85039-X DOI
Zarco-Tejada P.J., Miller J.R., Morales A. et al. : Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. – Remote Sens. Environ. 90: 463-476, 2004. 10.1016/j.rse.2004.01.017 DOI
Zeng C., King D.J., Richardson M., Shan B.: Fusion of multispectral imagery and spectrometer data in UAV remote sensing. – Remote Sens. 9: 696, 2017. 10.3390/rs9070696 DOI
Zhang C., Kovacs J.M.: The application of small unmanned aerial systems for precision agriculture: a review. – Precis. Agric. 13: 693-712, 2012. 10.1007/s11119-012-9274-5 DOI
Zhang L., Zhang Q., Wu J et al. : Moisture detection of single corn seed based on hyperspectral imaging and deep learning. – Infrared Phys. Techn. 125: 104279, 2022. 10.1016/j.infrared.2022.104279 DOI
Zhang X., Sun Y., Shang K. et al. : Crop classification based on feature band set construction and object-oriented approach using hyperspectral images. – IEEE J. Sel. Top. Appl. 9: 4117-4128, 2016. 10.1109/JSTARS.2016.2577339 DOI
Zhang Y., Guanter L., Berry J.A. et al. : Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. – Glob. Change Biol. 20: 3727-3742, 2014. 10.1111/gcb.12664 PubMed DOI
Zhang Y., Xiao J., Yan K. et al. : Advances and developments in monitoring and inversion of the biochemical information of crop nutrients based on hyperspectral technology. – Agronomy 13: 2163, 2023. 10.3390/agronomy13082163 DOI
Zhang Z., Huang L., Wang Q. et al. : UAV hyperspectral remote sensing image classification: a systematic review. – IEEE J. Sel. Top. Appl. 18: 3099-3124, 2025. 10.1109/JSTARS.2024.3522318 DOI
Zhao C., Qin B., Feng S. et al. : Hyperspectral image classification with multi-attention transformer and adaptive superpixel segmentation-based active learning. – IEEE T. Image Process. 32: 3606-3621, 2023. 10.1109/TIP.2023.3287738 PubMed DOI
Zhao Y., Zhou L., Wang W. et al. : Visible/near-infrared spectroscopy and hyperspectral imaging facilitate the rapid determination of soluble solids content in fruits. – Food Eng. Rev. 16: 470-496, 2024. 10.1007/s12393-024-09374-6 DOI
Zheng C., Wang S., Chen J.M. et al. : Modeling transpiration using solar-induced chlorophyll fluorescence and photochemical reflectance index synergistically in a closed-canopy winter wheat ecosystem. – Remote Sens. Environ. 302: 113981, 2024. 10.1016/j.rse.2023.113981 DOI
Zheng H., Cheng T., Li D. et al. : Combining unmanned aerial vehicle (UAV)-based multispectral imagery and ground-based hyperspectral data for plant nitrogen concentration estimation in rice. – Front. Plant Sci. 9: 936, 2018. 10.3389/fpls.2018.00936 PubMed DOI PMC
Zhi X., Massey-Reed S.R., Wu A. et al. : Estimating photosynthetic attributes from high-throughput canopy hyperspectral sensing in sorghum. – Plant Phenomics 2022: 9768502, 2022. 10.34133/2022/9768502 PubMed DOI PMC
Zhou J.-J., Zhang Y.-H., Han Z.-M. et al. : Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities. – Remote Sens. 13: 2160, 2021. 10.3390/rs13112160 DOI
Zhu D., Zhong P., Du B., Zhang L.: Attention-based sparse and collaborative spectral abundance learning for hyperspectral subpixel target detection. – Neural Networks 178: 106416, 2024. 10.1016/j.neunet.2024.106416 PubMed DOI