Acquisition of neural crest promoted thyroid evolution from chordate endostyle

. 2025 Aug 08 ; 11 (32) : eadv2657. [epub] 20250806

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40768591

Grantová podpora
F31 DE031154 NIDCR NIH HHS - United States
R00 HD100587 NICHD NIH HHS - United States
R35 NS111564 NINDS NIH HHS - United States

The endostyle is an endodermal organ unique to nonvertebrate chordates except for lamprey larvae, where it serves as forerunner to the adult thyroid. Here, we examine whether the acquisition of neural crest in the vertebrate lineage played a role in the elaboration of the endostyle. CM-DiI lineage tracing reveals a neural crest contribution to the endostyle, and CRISPR-Cas9 mutagenesis of key neural crest genes causes endostyle defects including formation of a single rather than bilobed structure. RNA sequencing reveals gene profiles characteristic of embryonic neural crest cells and Schwann cell precursors in the developing endostyle. Contrasting with the prevailing view that the endostyle is an endoderm-derived organ, we propose that the acquisition of the neural crest played a critical step in promoting thyroid evolution from chordate endostyle.

Zobrazit více v PubMed

N. Satoh,

G. R. De Beer,

Grevellec A., Tucker A. S., The pharyngeal pouches and clefts: Development, evolution, structure and derivatives. Semin. Cell Dev. Biol. 21, 325–332 (2010). PubMed

De Felice M., Di Lauro R., Thyroid development and its disorders: Genetics and molecular mechanisms. Endocr. Rev. 25, 722–746 (2004). PubMed

Nilsson M., Fagman H., Development of the thyroid gland. Development 144, 2123–2140 (2017). PubMed

Policeni B. A., Smoker W. R., Reede D. L., Anatomy and embryology of the thyroid and parathyroid glands. Semin. Ultrasound CT MR 33, 104–114 (2012). PubMed

Kameda Y., Morphological and molecular evolution of the ultimobranchial gland of nonmammalian vertebrates, with special reference to the chicken C cells. Dev. Dyn. 246, 719–739 (2017). PubMed

Alt B., Reibe S., Feitosa N. M., Elsalini O. A., Wendl T., Rohr K. B., Analysis of origin and growth of the thyroid gland in zebrafish. Dev. Dyn. 235, 1872–1883 (2006). PubMed

Fagman H., Nilsson M., Morphogenesis of the thyroid gland. Mol. Cell. Endocrinol. 323, 35–54 (2010). PubMed

Le Lièvre C. S., Le Douarin N. M., Mesenchymal derivatives of the neural crest: Analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morphol. 34, 125–154 (1975). PubMed

Bockman D. E., Kirby M. L., Dependence of thymus development on derivatives of the neural crest. Science 223, 498–500 (1984). PubMed

Maeda K., Asai R., Maruyama K., Kurihara Y., Nakanishi T., Kurihara H., Miyagawa-Tomita S., Postotic and preotic cranial neural crest cells differently contribute to thyroid development. Dev. Biol. 409, 72–83 (2016). PubMed

Jiang X., Rowitch D. H., Soriano P., McMahon A. P., Sucov H. M., Fate of the mammalian cardiac neural crest. Development 127, 1607–1616 (2000). PubMed

Johansson E., Andersson L., Örnros J., Carlsson T., Ingeson-Carlsson C., Liang S., Dahlberg J., Jansson S., Parrillo L., Zoppoli P., Barila G. O., Altschuler D. L., Padula D., Lickert H., Fagman H., Nilsson M., Revising the embryonic origin of thyroid C cells in mice and humans. Development 142, 3519–3528 (2015). PubMed PMC

Olsson R., Endostyles and endostylar secretions: A comparative histochemical study. Acta Zool. 44, 299–328 (1963).

Müller W., Über die Hypobranchialrinne der Tunicaten und deren Vorhandensein bei Amphioxus und den Cyclostomen. Jena Z. Med. 7, 327–332 (1873).

Takagi W., Sugahara F., Higuchi S., Kusakabe R., Pascual-Anaya J., Sato I., Oisi Y., Ogawa N., Miyanishi H., Adachi N., Hyodo S., Kuratani S., Thyroid and endostyle development in cyclostomes provides new insights into the evolutionary history of vertebrates. BMC Biol. 20, 76 (2022). PubMed PMC

Ogasawara M., Di Lauro R., Satoh N., Ascidian homologs of mammalian thyroid peroxidase genes are expressed in the thyroid-equivalent region of the endostyle. J. Exp. Zool. 285, 158–169 (1999). PubMed

Hiruta J., Mazet F., Yasui K., Zhang P., Ogasawara M., Comparative expression analysis of transcription factor genes in the endostyle of invertebrate chordates. Dev. Dyn. 233, 1031–1037 (2005). PubMed

Jiang A., Han K., Wei J., Su X., Wang R., Zhang W., Liu X., Qiao J., Liu P., Liu Q., Zhang J., Zhang N., Ge Y., Zhuang Y., Yu H., Wang S., Chen K., Lu W., Xu X., Yang H., Fan G., Dong B., Spatially resolved single-cell atlas of ascidian endostyle provides insight into the origin of vertebrate pharyngeal organs. Sci. Adv. 10, eadi9035 (2024). PubMed PMC

Barrington E. J. W., Thorpe A., The identification of monoiodotyrosine, diiodotyrosine and thyroxine in extracts of the endostyle of the ascidian, PubMed

Wright G. M., Filosa M. F., Youson J. H., Light and electron microscopic immunocytochemical localization of thyroglobulin in the thyroid gland of the anadromous sea lamprey, PubMed

Suzuki S., Kondo Y., Thyroidal morphogenesis and biosynthesis of thyroglobulin before and after metamorphasis in the lamprey, PubMed

Kluge B., Renault N., Rohr K. B., Anatomical and molecular reinvestigation of lamprey endostyle development provides new insight into thyroid gland evolution. Dev. Genes Evol. 215, 32–40 (2005). PubMed

Barrington E. J. W., Thorpe A., An autoradiographic study of the binding of iodine-125 in the endostyle and pharynx of the ascidian, PubMed

Fredriksson G., Ericson L. E., Olsson R., Iodine binding in the endostyle of larval PubMed

M. W. Hardisty,

Holley M. C., Cell shape, spatial patterns of cilia, and mucus-net construction in the ascidian endostyle. Tissue Cell 18, 667–684 (1986). PubMed

Fujita H., Nanba H., Fine structure and its functional properties of the endostyle of ascidians, PubMed

Olsson R., The cytology of the endostyle of PubMed

Compère P., Godeaux J. E. A., On endostyle ultrastructure in two new species of doliolid-like tunicates. Mar. Biol. 128, 447–453 (1997).

Moore J. W., Mallat J. M., Feeding of larval lamprey. Can. J. Fish. Aquat. Sci. 37, 1658–1664 (1980).

Mallat J., The suspension feeding mechanism of the larval lamprey

E. S. Goodrich,

Marine D., The metamorphosis of the endostyle (thyroid gland) of ammocoetes branchialis (larval land-locked Petromyzon marinus) (Jordan) or Petromyzon dorsatus (Wilder). J. Exp. Med. 17, 379–395 (1913). PubMed PMC

Tahara Y., Normal stages of development in the lamprey,

Hausken K. N., Marquis T. J., Sower S. A., Expression of two glycoprotein hormone receptors in larval, parasitic phase, and adult sea lampreys. Gen. Comp. Endocrinol. 264, 39–47 (2018). PubMed

Parlato R., Rosica A., Rodriguez-Mallon A., Affuso A., Postiglione M. P., Arra C., Mansouri A., Kimura S., Di Lauro R., De Felice M., An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev. Biol. 276, 464–475 (2004). PubMed

Fernández L. P., López-Márquez A., Santisteban P., Thyroid transcription factors in development, differentiation and disease. Nat. Rev. Endocrinol. 11, 29–42 (2015). PubMed

Martik M. L., Bronner M. E., Regulatory logic underlying diversification of the neural crest. Trends Genet. 33, 715–727 (2017). PubMed PMC

Liang S., Johansson E., Barila G., Altschuler D. L., Fagman H., Nilsson M., A branching morphogenesis program governs embryonic growth of the thyroid gland. Development 145, dev146829 (2018). PubMed PMC

Chen Z., Huang J., Liu Y., Dattilo L. K., Huh S. H., Ornitz D., Beebe D. C., FGF signaling activates a Sox9-Sox10 pathway for the formation and branching morphogenesis of mouse ocular glands. Development 141, 2691–2701 (2014). PubMed PMC

Kastriti M. E., Faure L., Von Ahsen D., Bouderlique T. G., Boström J., Solovieva T., Jackson C., Bronner M., Meijer D., Hadjab S., Lallemend F., Erickson A., Kaucka M., Dyachuk V., Perlmann T., Lahti L., Krivanek J., Brunet J. F., Fried K., Adameyko I., Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J. 41, e108780 (2022). PubMed PMC

Solovieva T., Bronner M., Schwann cell precursors: Where they come from and where they go. Cells Dev. 166, 203686 (2021). PubMed PMC

Martik M. L., Gandhi S., Uy B. R., Gillis J. A., Green S. A., Simoes-Costa M., Bronner M. E., Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature 574, 675–678 (2019). PubMed PMC

Square T. A., Jandzik D., Massey J. L., Romášek M., Stein H. P., Hansen A. W., Purkayastha A., Cattell M. V., Medeiros D. M., Evolution of the endothelin pathway drove neural crest cell diversification. Nature 585, 563–568 (2020). PubMed

Arduini B. L., Bosse K. M., Henion P. D., Genetic ablation of neural crest cell diversification. Development 136, 1987–1994 (2009). PubMed PMC

Wang W. D., Melville D. B., Montero-Balaguer M., Hatzopoulos A. K., Knapik E. W., Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population. Dev. Biol. 360, 173–185 (2011). PubMed PMC

Monaco F., Andreoli M., La Posta A., Roche J., Thyroglobulin biosynthesis in a larval (ammocoete) and adult freshwater lamprey ( PubMed

Holzer G., Morishita Y., Fini J. B., Lorin T., Gillet B., Hughes S., Tohmé M., Deléage G., Demeneix B., Arvan P., Laudet V., Thyroglobulin represents a novel molecular architecture of vertebrates. J. Biol. Chem. 291, 16553–16566 (2016). PubMed PMC

Miyashita T., Gess R. W., Tietjen K., Coates M. I., Non-ammocoete larvae of Palaeozoic stem lampreys. Nature 591, 408–412 (2021). PubMed

Mallat J., Vertebrate origins are informed by larval lampreys (ammocoetes): A response to Miyashita et al., 2021. Zool. J. Linn. Soc. 197, 287–321 (2023).

I. Adameyko, “Elaboration of fates in neural crest lineage during evolution” in

Rees J. M., Kirk K., Gattoni G., Hockman D., Sleight V. A., Ritter D. J., Benito-Gutierrez È., Knapik E. W., Crump J. G., Fabian P., Gillis J. A., A pre-vertebrate endodermal origin of calcitonin-producing neuroendocrine cells. Development 151, dev202821 (2024). PubMed PMC

El-Nachef W. N., Bronner M. E., De novo enteric neurogenesis in post-embryonic zebrafish from Schwann cell precursors rather than resident cell types. Development 147, dev186619 (2020). PubMed PMC

Kaukua N., Shahidi M. K., Konstantinidou C., Dyachuk V., Kaucka M., Furlan A., An Z., Wang L., Hultman I., Ahrlund-Richter L., Blom H., Brismar H., Lopes N. A., Pachnis V., Suter U., Clevers H., Thesleff I., Sharpe P., Ernfors P., Fried K., Adameyko I., Glial origin of mesenchymal stem cells in a tooth model system. Nature 513, 551–554 (2014). PubMed

Hockman D., Adameyko I., Kaucka M., Barraud P., Otani T., Hunt A., Hartwig A. C., Sock E., Waithe D., Franck M. C. M., Ernfors P., Ehinger S., Howard M. J., Brown N., Reese J., Baker C. V. H., Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Dev. Biol. 444, S308–S324 (2018). PubMed PMC

Furlan A., Dyachuk V., Kastriti M. E., Calvo-Enrique L., Abdo H., Hadjab S., Chontorotzea T., Akkuratova N., Usoskin D., Kamenev D., Petersen J., Sunadome K., Memic F., Marklund U., Fried K., Topilko P., Lallemend F., Kharchenko P. V., Ernfors P., Adameyko I., Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 357, eaal3753 (2017). PubMed PMC

Chatzeli L., Gaete M., Tucker A. S., Fgf10 and Sox9 are essential for the establishment of distal progenitor cells during mouse salivary gland development. Development 144, 2294–2305 (2017). PubMed PMC

Nikitina N., Bronner-Fraser M., Sauka-Spengler T., Culturing lamprey embryos. Cold Spring Harb Protoc. 2009, pdb.prot5122 (2009). PubMed

McGrew M. J., Sherman A., Lillico S. G., Ellard F. M., Radcliffe P. A., Gilhooley H. J., Mitrophanous K. A., Cambray N., Wilson V., Sang H., Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development 135, 2289–2299 (2008). PubMed

Walsh C. L., Tafforeau P., Wagner W. L., Jafree D. J., Bellier A., Werlein C., Kühnel M. P., Boller E., Walker-Samuel S., Robertus J. L., Long D. A., Jacob J., Marussi S., Brown E., Holroyd N., Jonigk D. D., Ackermann M., Lee P. D., Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Methods 18, 1532–1541 (2021). PubMed PMC

Leyhr J., Sanchez S., Dollman K. N., Tafforeau P., Haitina T., Enhanced contrast synchrotron X-ray microtomography for describing skeleton-associated soft tissue defects in zebrafish mutants. Front. Endocrinol. (Lausanne) 14, 1108916 (2023). PubMed PMC

Langmead B., Salzberg S. L., Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). PubMed PMC

Liao Y., Smyth G. K., Shi W., featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). PubMed

Love M. I., Huber W., Anders S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC

Ogata H., Goto S., Sato K., Fujibuchi W., Bono H., Kanehisa M., KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999). PubMed PMC

Gillotay P., Shankar M., Haerlingen B., Sema Elif E., Pozo-Morales M., Garteizgogeascoa I., Reinhardt S., Kränkel A., Bläsche J., Petzold A., Ninov N., Kesavan G., Lange C., Brand M., Lefort A., Libert F., Detours V., Costagliola S., Sumeet Pal S., Single-cell transcriptome analysis reveals thyrocyte diversity in the zebrafish thyroid gland. EMBO Rep. 21, e50612 (2020). PubMed PMC

Matsubara S., Osugi T., Shiraishi A., Wada A., Satake H., Comparative analysis of transcriptomic profiles among ascidians, zebrafish, and mice: Insights from tissue-specific gene expression. PLOS ONE 16, e0254308 (2021). PubMed PMC

Emms D. M., Kelly S., OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019). PubMed PMC

Zhang Y., Parmigiani G., Johnson W. E., PubMed PMC

Choi H. M. T., Schwarzkopf M., Fornace M. E., Acharya A., Artavanis G., Stegmaier J., Cunha A., Pierce N. A., Third-generation in situ hybridization chain reaction: Multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018). PubMed PMC

Stundl J., Martik M. L., Chen D., Raja D. A., Franěk R., Pospisilova A., Pšenička M., Metscher B. D., Braasch I., Haitina T., Cerny R., Ahlberg P. E., Bronner M. E., Ancient vertebrate dermal armor evolved from trunk neural crest. Proc. Natl. Acad. Sci. U.S.A. 120, e2221120120 (2023). PubMed PMC

Criswell K. E., Gillis J. A., Resegmentation is an ancestral feature of the gnathostome vertebral skeleton. eLife 9, e51696 (2020). PubMed PMC

Häming D., Simoes-Costa M., Uy B., Valencia J., Sauka-Spengler T., Bronner-Fraser M., Expression of sympathetic nervous system genes in Lamprey suggests their recruitment for specification of a new vertebrate feature. PLOS ONE 6, e26543 (2011). PubMed PMC

Moreno-Mateos M. A., Vejnar C. E., Beaudoin J. D., Fernandez J. P., Mis E. K., Khokha M. K., Giraldez A. J., CRISPRscan: Designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015). PubMed PMC

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J., Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). PubMed

Kroll F., Powell G. T., Ghosh M., Gestri G., Antinucci P., Hearn T. J., Tunbak H., Lim S., Dennis H. W., Fernandez J. M., Whitmore D., Dreosti E., Wilson S. W., Hoffman E. J., Rihel J., A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. eLife 10, e59683 (2021). PubMed PMC

Martin W. M., Bumm L. A., McCauley D. W., Development of the viscerocranial skeleton during embryogenesis of the sea lamprey, PubMed

Clement K., Rees H., Canver M. C., Gehrke J. M., Farouni R., Hsu J. Y., Cole M. A., Liu D. R., Joung J. K., Bauer D. E., Pinello L., CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...