Acquisition of neural crest promoted thyroid evolution from chordate endostyle
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
F31 DE031154
NIDCR NIH HHS - United States
R00 HD100587
NICHD NIH HHS - United States
R35 NS111564
NINDS NIH HHS - United States
PubMed
40768591
PubMed Central
PMC12327467
DOI
10.1126/sciadv.adv2657
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- Chordata * embryologie MeSH
- CRISPR-Cas systémy MeSH
- crista neuralis * embryologie metabolismus MeSH
- štítná žláza * embryologie metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The endostyle is an endodermal organ unique to nonvertebrate chordates except for lamprey larvae, where it serves as forerunner to the adult thyroid. Here, we examine whether the acquisition of neural crest in the vertebrate lineage played a role in the elaboration of the endostyle. CM-DiI lineage tracing reveals a neural crest contribution to the endostyle, and CRISPR-Cas9 mutagenesis of key neural crest genes causes endostyle defects including formation of a single rather than bilobed structure. RNA sequencing reveals gene profiles characteristic of embryonic neural crest cells and Schwann cell precursors in the developing endostyle. Contrasting with the prevailing view that the endostyle is an endoderm-derived organ, we propose that the acquisition of the neural crest played a critical step in promoting thyroid evolution from chordate endostyle.
Department of Organismal Biology Uppsala University Uppsala SE75236 Sweden
Department of Zoology Faculty of Science Charles University Prague Prague 12800 Czech Republic
Zobrazit více v PubMed
N. Satoh,
G. R. De Beer,
Grevellec A., Tucker A. S., The pharyngeal pouches and clefts: Development, evolution, structure and derivatives. Semin. Cell Dev. Biol. 21, 325–332 (2010). PubMed
De Felice M., Di Lauro R., Thyroid development and its disorders: Genetics and molecular mechanisms. Endocr. Rev. 25, 722–746 (2004). PubMed
Nilsson M., Fagman H., Development of the thyroid gland. Development 144, 2123–2140 (2017). PubMed
Policeni B. A., Smoker W. R., Reede D. L., Anatomy and embryology of the thyroid and parathyroid glands. Semin. Ultrasound CT MR 33, 104–114 (2012). PubMed
Kameda Y., Morphological and molecular evolution of the ultimobranchial gland of nonmammalian vertebrates, with special reference to the chicken C cells. Dev. Dyn. 246, 719–739 (2017). PubMed
Alt B., Reibe S., Feitosa N. M., Elsalini O. A., Wendl T., Rohr K. B., Analysis of origin and growth of the thyroid gland in zebrafish. Dev. Dyn. 235, 1872–1883 (2006). PubMed
Fagman H., Nilsson M., Morphogenesis of the thyroid gland. Mol. Cell. Endocrinol. 323, 35–54 (2010). PubMed
Le Lièvre C. S., Le Douarin N. M., Mesenchymal derivatives of the neural crest: Analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morphol. 34, 125–154 (1975). PubMed
Bockman D. E., Kirby M. L., Dependence of thymus development on derivatives of the neural crest. Science 223, 498–500 (1984). PubMed
Maeda K., Asai R., Maruyama K., Kurihara Y., Nakanishi T., Kurihara H., Miyagawa-Tomita S., Postotic and preotic cranial neural crest cells differently contribute to thyroid development. Dev. Biol. 409, 72–83 (2016). PubMed
Jiang X., Rowitch D. H., Soriano P., McMahon A. P., Sucov H. M., Fate of the mammalian cardiac neural crest. Development 127, 1607–1616 (2000). PubMed
Johansson E., Andersson L., Örnros J., Carlsson T., Ingeson-Carlsson C., Liang S., Dahlberg J., Jansson S., Parrillo L., Zoppoli P., Barila G. O., Altschuler D. L., Padula D., Lickert H., Fagman H., Nilsson M., Revising the embryonic origin of thyroid C cells in mice and humans. Development 142, 3519–3528 (2015). PubMed PMC
Olsson R., Endostyles and endostylar secretions: A comparative histochemical study. Acta Zool. 44, 299–328 (1963).
Müller W., Über die Hypobranchialrinne der Tunicaten und deren Vorhandensein bei Amphioxus und den Cyclostomen. Jena Z. Med. 7, 327–332 (1873).
Takagi W., Sugahara F., Higuchi S., Kusakabe R., Pascual-Anaya J., Sato I., Oisi Y., Ogawa N., Miyanishi H., Adachi N., Hyodo S., Kuratani S., Thyroid and endostyle development in cyclostomes provides new insights into the evolutionary history of vertebrates. BMC Biol. 20, 76 (2022). PubMed PMC
Ogasawara M., Di Lauro R., Satoh N., Ascidian homologs of mammalian thyroid peroxidase genes are expressed in the thyroid-equivalent region of the endostyle. J. Exp. Zool. 285, 158–169 (1999). PubMed
Hiruta J., Mazet F., Yasui K., Zhang P., Ogasawara M., Comparative expression analysis of transcription factor genes in the endostyle of invertebrate chordates. Dev. Dyn. 233, 1031–1037 (2005). PubMed
Jiang A., Han K., Wei J., Su X., Wang R., Zhang W., Liu X., Qiao J., Liu P., Liu Q., Zhang J., Zhang N., Ge Y., Zhuang Y., Yu H., Wang S., Chen K., Lu W., Xu X., Yang H., Fan G., Dong B., Spatially resolved single-cell atlas of ascidian endostyle provides insight into the origin of vertebrate pharyngeal organs. Sci. Adv. 10, eadi9035 (2024). PubMed PMC
Barrington E. J. W., Thorpe A., The identification of monoiodotyrosine, diiodotyrosine and thyroxine in extracts of the endostyle of the ascidian, PubMed
Wright G. M., Filosa M. F., Youson J. H., Light and electron microscopic immunocytochemical localization of thyroglobulin in the thyroid gland of the anadromous sea lamprey, PubMed
Suzuki S., Kondo Y., Thyroidal morphogenesis and biosynthesis of thyroglobulin before and after metamorphasis in the lamprey, PubMed
Kluge B., Renault N., Rohr K. B., Anatomical and molecular reinvestigation of lamprey endostyle development provides new insight into thyroid gland evolution. Dev. Genes Evol. 215, 32–40 (2005). PubMed
Barrington E. J. W., Thorpe A., An autoradiographic study of the binding of iodine-125 in the endostyle and pharynx of the ascidian, PubMed
Fredriksson G., Ericson L. E., Olsson R., Iodine binding in the endostyle of larval PubMed
M. W. Hardisty,
Holley M. C., Cell shape, spatial patterns of cilia, and mucus-net construction in the ascidian endostyle. Tissue Cell 18, 667–684 (1986). PubMed
Fujita H., Nanba H., Fine structure and its functional properties of the endostyle of ascidians, PubMed
Olsson R., The cytology of the endostyle of PubMed
Compère P., Godeaux J. E. A., On endostyle ultrastructure in two new species of doliolid-like tunicates. Mar. Biol. 128, 447–453 (1997).
Moore J. W., Mallat J. M., Feeding of larval lamprey. Can. J. Fish. Aquat. Sci. 37, 1658–1664 (1980).
Mallat J., The suspension feeding mechanism of the larval lamprey
E. S. Goodrich,
Marine D., The metamorphosis of the endostyle (thyroid gland) of ammocoetes branchialis (larval land-locked Petromyzon marinus) (Jordan) or Petromyzon dorsatus (Wilder). J. Exp. Med. 17, 379–395 (1913). PubMed PMC
Tahara Y., Normal stages of development in the lamprey,
Hausken K. N., Marquis T. J., Sower S. A., Expression of two glycoprotein hormone receptors in larval, parasitic phase, and adult sea lampreys. Gen. Comp. Endocrinol. 264, 39–47 (2018). PubMed
Parlato R., Rosica A., Rodriguez-Mallon A., Affuso A., Postiglione M. P., Arra C., Mansouri A., Kimura S., Di Lauro R., De Felice M., An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev. Biol. 276, 464–475 (2004). PubMed
Fernández L. P., López-Márquez A., Santisteban P., Thyroid transcription factors in development, differentiation and disease. Nat. Rev. Endocrinol. 11, 29–42 (2015). PubMed
Martik M. L., Bronner M. E., Regulatory logic underlying diversification of the neural crest. Trends Genet. 33, 715–727 (2017). PubMed PMC
Liang S., Johansson E., Barila G., Altschuler D. L., Fagman H., Nilsson M., A branching morphogenesis program governs embryonic growth of the thyroid gland. Development 145, dev146829 (2018). PubMed PMC
Chen Z., Huang J., Liu Y., Dattilo L. K., Huh S. H., Ornitz D., Beebe D. C., FGF signaling activates a Sox9-Sox10 pathway for the formation and branching morphogenesis of mouse ocular glands. Development 141, 2691–2701 (2014). PubMed PMC
Kastriti M. E., Faure L., Von Ahsen D., Bouderlique T. G., Boström J., Solovieva T., Jackson C., Bronner M., Meijer D., Hadjab S., Lallemend F., Erickson A., Kaucka M., Dyachuk V., Perlmann T., Lahti L., Krivanek J., Brunet J. F., Fried K., Adameyko I., Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J. 41, e108780 (2022). PubMed PMC
Solovieva T., Bronner M., Schwann cell precursors: Where they come from and where they go. Cells Dev. 166, 203686 (2021). PubMed PMC
Martik M. L., Gandhi S., Uy B. R., Gillis J. A., Green S. A., Simoes-Costa M., Bronner M. E., Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature 574, 675–678 (2019). PubMed PMC
Square T. A., Jandzik D., Massey J. L., Romášek M., Stein H. P., Hansen A. W., Purkayastha A., Cattell M. V., Medeiros D. M., Evolution of the endothelin pathway drove neural crest cell diversification. Nature 585, 563–568 (2020). PubMed
Arduini B. L., Bosse K. M., Henion P. D., Genetic ablation of neural crest cell diversification. Development 136, 1987–1994 (2009). PubMed PMC
Wang W. D., Melville D. B., Montero-Balaguer M., Hatzopoulos A. K., Knapik E. W., Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population. Dev. Biol. 360, 173–185 (2011). PubMed PMC
Monaco F., Andreoli M., La Posta A., Roche J., Thyroglobulin biosynthesis in a larval (ammocoete) and adult freshwater lamprey ( PubMed
Holzer G., Morishita Y., Fini J. B., Lorin T., Gillet B., Hughes S., Tohmé M., Deléage G., Demeneix B., Arvan P., Laudet V., Thyroglobulin represents a novel molecular architecture of vertebrates. J. Biol. Chem. 291, 16553–16566 (2016). PubMed PMC
Miyashita T., Gess R. W., Tietjen K., Coates M. I., Non-ammocoete larvae of Palaeozoic stem lampreys. Nature 591, 408–412 (2021). PubMed
Mallat J., Vertebrate origins are informed by larval lampreys (ammocoetes): A response to Miyashita et al., 2021. Zool. J. Linn. Soc. 197, 287–321 (2023).
I. Adameyko, “Elaboration of fates in neural crest lineage during evolution” in
Rees J. M., Kirk K., Gattoni G., Hockman D., Sleight V. A., Ritter D. J., Benito-Gutierrez È., Knapik E. W., Crump J. G., Fabian P., Gillis J. A., A pre-vertebrate endodermal origin of calcitonin-producing neuroendocrine cells. Development 151, dev202821 (2024). PubMed PMC
El-Nachef W. N., Bronner M. E., De novo enteric neurogenesis in post-embryonic zebrafish from Schwann cell precursors rather than resident cell types. Development 147, dev186619 (2020). PubMed PMC
Kaukua N., Shahidi M. K., Konstantinidou C., Dyachuk V., Kaucka M., Furlan A., An Z., Wang L., Hultman I., Ahrlund-Richter L., Blom H., Brismar H., Lopes N. A., Pachnis V., Suter U., Clevers H., Thesleff I., Sharpe P., Ernfors P., Fried K., Adameyko I., Glial origin of mesenchymal stem cells in a tooth model system. Nature 513, 551–554 (2014). PubMed
Hockman D., Adameyko I., Kaucka M., Barraud P., Otani T., Hunt A., Hartwig A. C., Sock E., Waithe D., Franck M. C. M., Ernfors P., Ehinger S., Howard M. J., Brown N., Reese J., Baker C. V. H., Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Dev. Biol. 444, S308–S324 (2018). PubMed PMC
Furlan A., Dyachuk V., Kastriti M. E., Calvo-Enrique L., Abdo H., Hadjab S., Chontorotzea T., Akkuratova N., Usoskin D., Kamenev D., Petersen J., Sunadome K., Memic F., Marklund U., Fried K., Topilko P., Lallemend F., Kharchenko P. V., Ernfors P., Adameyko I., Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 357, eaal3753 (2017). PubMed PMC
Chatzeli L., Gaete M., Tucker A. S., Fgf10 and Sox9 are essential for the establishment of distal progenitor cells during mouse salivary gland development. Development 144, 2294–2305 (2017). PubMed PMC
Nikitina N., Bronner-Fraser M., Sauka-Spengler T., Culturing lamprey embryos. Cold Spring Harb Protoc. 2009, pdb.prot5122 (2009). PubMed
McGrew M. J., Sherman A., Lillico S. G., Ellard F. M., Radcliffe P. A., Gilhooley H. J., Mitrophanous K. A., Cambray N., Wilson V., Sang H., Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development 135, 2289–2299 (2008). PubMed
Walsh C. L., Tafforeau P., Wagner W. L., Jafree D. J., Bellier A., Werlein C., Kühnel M. P., Boller E., Walker-Samuel S., Robertus J. L., Long D. A., Jacob J., Marussi S., Brown E., Holroyd N., Jonigk D. D., Ackermann M., Lee P. D., Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Methods 18, 1532–1541 (2021). PubMed PMC
Leyhr J., Sanchez S., Dollman K. N., Tafforeau P., Haitina T., Enhanced contrast synchrotron X-ray microtomography for describing skeleton-associated soft tissue defects in zebrafish mutants. Front. Endocrinol. (Lausanne) 14, 1108916 (2023). PubMed PMC
Langmead B., Salzberg S. L., Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). PubMed PMC
Liao Y., Smyth G. K., Shi W., featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). PubMed
Love M. I., Huber W., Anders S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC
Ogata H., Goto S., Sato K., Fujibuchi W., Bono H., Kanehisa M., KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999). PubMed PMC
Gillotay P., Shankar M., Haerlingen B., Sema Elif E., Pozo-Morales M., Garteizgogeascoa I., Reinhardt S., Kränkel A., Bläsche J., Petzold A., Ninov N., Kesavan G., Lange C., Brand M., Lefort A., Libert F., Detours V., Costagliola S., Sumeet Pal S., Single-cell transcriptome analysis reveals thyrocyte diversity in the zebrafish thyroid gland. EMBO Rep. 21, e50612 (2020). PubMed PMC
Matsubara S., Osugi T., Shiraishi A., Wada A., Satake H., Comparative analysis of transcriptomic profiles among ascidians, zebrafish, and mice: Insights from tissue-specific gene expression. PLOS ONE 16, e0254308 (2021). PubMed PMC
Emms D. M., Kelly S., OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019). PubMed PMC
Zhang Y., Parmigiani G., Johnson W. E., PubMed PMC
Choi H. M. T., Schwarzkopf M., Fornace M. E., Acharya A., Artavanis G., Stegmaier J., Cunha A., Pierce N. A., Third-generation in situ hybridization chain reaction: Multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018). PubMed PMC
Stundl J., Martik M. L., Chen D., Raja D. A., Franěk R., Pospisilova A., Pšenička M., Metscher B. D., Braasch I., Haitina T., Cerny R., Ahlberg P. E., Bronner M. E., Ancient vertebrate dermal armor evolved from trunk neural crest. Proc. Natl. Acad. Sci. U.S.A. 120, e2221120120 (2023). PubMed PMC
Criswell K. E., Gillis J. A., Resegmentation is an ancestral feature of the gnathostome vertebral skeleton. eLife 9, e51696 (2020). PubMed PMC
Häming D., Simoes-Costa M., Uy B., Valencia J., Sauka-Spengler T., Bronner-Fraser M., Expression of sympathetic nervous system genes in Lamprey suggests their recruitment for specification of a new vertebrate feature. PLOS ONE 6, e26543 (2011). PubMed PMC
Moreno-Mateos M. A., Vejnar C. E., Beaudoin J. D., Fernandez J. P., Mis E. K., Khokha M. K., Giraldez A. J., CRISPRscan: Designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015). PubMed PMC
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J., Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). PubMed
Kroll F., Powell G. T., Ghosh M., Gestri G., Antinucci P., Hearn T. J., Tunbak H., Lim S., Dennis H. W., Fernandez J. M., Whitmore D., Dreosti E., Wilson S. W., Hoffman E. J., Rihel J., A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. eLife 10, e59683 (2021). PubMed PMC
Martin W. M., Bumm L. A., McCauley D. W., Development of the viscerocranial skeleton during embryogenesis of the sea lamprey, PubMed
Clement K., Rees H., Canver M. C., Gehrke J. M., Farouni R., Hsu J. Y., Cole M. A., Liu D. R., Joung J. K., Bauer D. E., Pinello L., CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019). PubMed PMC