Highly efficient non-relativistic Edelstein effect in nodal p-wave magnets
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
TRR 173 268565370 (project A03)
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
40775210
PubMed Central
PMC12332020
DOI
10.1038/s41467-025-62516-0
PII: 10.1038/s41467-025-62516-0
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The origin and efficiency of charge-to-spin conversion, known as the Edelstein effect (EE), has been typically linked to spin-orbit coupling mechanisms, which require materials with heavy elements within a non-centrosymmetric environment. Here we demonstrate that the high efficiency of spin-charge conversion can be achieved even without spin-orbit coupling in the recently identified coplanar p-wave magnets. The non-relativistic Edelstein effect (NREE) in these magnets exhibits a distinct phenomenology compared to the relativistic EE, characterized by a strongly anisotropic response and an out-of-plane polarized spin density resulting from the spin symmetries. We illustrate the NREE through minimal tight-binding models, allowing a direct comparison to different systems. Through first-principles calculations, we further identify the nodal p-wave candidate material CeNiAsO as a high-efficiency NREE material, revealing a ~ 25 times larger response than the maximally achieved relativistic EE and other reported NREE in non-collinear magnetic systems with broken time-reversal symmetry. This highlights the potential for efficient spin-charge conversion in p-wave magnetic systems.
Department of Physics Texas A and M University College Station Texas USA
Institut für Physik Johannes Gutenberg Universität Mainz Mainz Germany
Max Planck Institute for Chemical Physics of Solids Nöthnitzer Str 40 Dresden Germany
Max Planck Institute for the Physics of Complex Systems Nöthnitzer Str 38 Dresden Germany
School of Physics and Astronomy University of Nottingham Nottingham United Kingdom
See more in PubMed
Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications.
Maekawa, S. Concepts in spin electronics.
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects.
Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems.
Aronov, aG. & Lyanda-Geller, Y. B. Nuclear electric resonance and orientation of carrier spins by an electric field.
Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems.
Gambardella, P. & Miron, I. M. Current-induced spin-orbit torques. PubMed
Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. PubMed
Vaz, D. C. et al. Mapping spin-charge conversion to the band structure in a topological oxide two-dimensional electron gas. PubMed
Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin-orbit logic. PubMed
Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. PubMed
Bernevig, B. A. & Zhang, S. C. Intrinsic spin Hall effect in the two-dimensional hole gas. PubMed
Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet.
Manchon, A. & Zhang, S. Theory of spin torque due to spin-orbit coupling.
Matos-Abiague, A. & Rodríguez-Suárez, R. L. Spin-orbit coupling mediated spin torque in a single ferromagnetic layer.
Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field.
Garate, I. & MacDonald, A. H. Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets.
Bryksin, V. V. & Kleinert, P. Theory of electric-field-induced spin accumulation and spin current in the two-dimensional Rashba model.
Leiva-Montecinos, S., Henk, J., Mertig, I. & Johansson, A. Spin and orbital Edelstein effect in a bilayer system with Rashba interaction.
Rojas-Sánchez, J. C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α -sn films. PubMed
Kato, Y., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Coherent spin manipulation without magnetic fields in strained semiconductors. PubMed
Peters, R. & Yanase, Y. Strong enhancement of the Edelstein effect in f-electron systems.
Johansson, A., Henk, J. & Mertig, I. Edelstein effect in Weyl semimetals.
Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics.
Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. PubMed
Shao, Q. et al. Strong Rashba-Edelstein effect-induced spin-orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers. PubMed
Trama, M. et al. Non-linear anomalous Edelstein response at altermagnetic interfaces. http://arxiv.org/abs/2410.18036 (2024).
Lazrak, G. et al. Boosting the Edelstein effect of two-dimensional electron gases by ferromagnetic exchange.
Johansson, A., Göbel, B., Henk, J., Bibes, M. & Mertig, I. Spin and orbital Edelstein effects in a two-dimensional electron gas: theory and application to SrTiO3 interfaces.
Chirolli, L., Mercaldo, M. T., Guarcello, C., Giazotto, F. & Cuoco, M. Colossal orbital Edelstein effect in noncentrosymmetric superconductors. PubMed
Hayami, S., Yanagi, Y. & Kusunose, H. Spontaneous antisymmetric spin splitting in noncollinear antiferromagnets without spin-orbit coupling.
Naka, M. et al. Spin current generation in organic antiferromagnets. PubMed PMC
González-Hernández, R., Ritzinger, P., Výborný, K., Železný, J. & Manchon, A. Non-relativistic torque and Edelstein effect in non-collinear magnets. PubMed PMC
Hu, M. et al. Spin Hall and Edelstein effects in novel chiral noncollinear altermagnets. a
Hellenes, A. B. et al. P-wave magnets. a
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry.
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism.
Hellenes, A. B., Jungwirth, T., Sinova, J. & Šmejkal, L. Exchange spin-orbit coupling and unconventional p-wave magnetism.
Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. PubMed
Bahramy, M. S., Arita, R. & Nagaosa, N. Origin of giant bulk Rashba splitting: application to BiTeI.
Johansson, A., Henk, J. & Mertig, I. Theoretical aspects of the Edelstein effect for anisotropic two-dimensional electron gas and topological insulators.
Luo, Y. et al. Heavy-fermion quantum criticality and destruction of the Kondo effect in a nickel oxypnictide. PubMed
Li, Y. et al. Kramers non-magnetic superconductivity in LnNiAsO superconductors. PubMed
Lu, F. et al. As 75 NMR study of the antiferromagnetic Kondo lattice compound CeNiAsO.
Luo, Y. et al. CeNiAsO: an antiferromagnetic dense Kondo lattice. PubMed
Wu, S. et al. Incommensurate magnetism near quantum criticality in CeNiAsO. PubMed PMC
Garate, I., Gilmore, K., Stiles, M. D. & MacDonald, A. H. Nonadiabatic spin-transfer torque in real materials.
Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. PubMed
Gurung, G., Shao, D. F. & Tsymbal, E. Y. Transport spin polarization of noncollinear antiferromagnetic antiperovskites.
Gallego, S. V. et al. MAGNDATA: towards a database of magnetic structures. II. The incommensurate case.
Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin-orbit coupling. PubMed
Gurung, G., Shao, D.-F. F. & Tsymbal, E. Y. Transport spin polarization of noncollinear antiferromagnetic antiperovskites.
Grytsiuk, S. et al. Topological-chiral magnetic interactions driven by emergent orbital magnetism. PubMed PMC
Hagihala, M. et al. Magnetic states of coupled spin tubes with frustrated geometry in CsCrF 4.
Seki, K. & Okunishi, K. Magnetic phase diagram of the coupled triangular spin tubes for CsCrF4.
Smolyanyuk, A., Šmejkal, L. & Mazin, I. I. A tool to check whether a symmetry-compensated collinear magnetic material is antiferro- or altermagnetic.
Shinohara, K. et al. Algorithm for spin symmetry operation search. PubMed
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. PubMed
Blöchl, P. E. Projector augmented-wave method. PubMed
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method.
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. PubMed
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. PubMed
Ma, P. W. & Dudarev, S. L. Constrained density functional for noncollinear magnetism.
Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands.