Reassessment of mechanical restitution in guinea pig cardiomyocytes through refined computational modelling
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO: 61388998
Czech Academy of Sciences, Czech Republic
NU22-02-00348
Ministry of Health of the Czech Republic
MUNI/A/1641/2024
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
40783643
PubMed Central
PMC12335519
DOI
10.1038/s41598-025-14815-1
PII: 10.1038/s41598-025-14815-1
Knihovny.cz E-zdroje
- Klíčová slova
- Calcium current, Guinea pig cardiomyocyte, Mathematical model, Mechanical restitution, Ryanodine receptor,
- MeSH
- akční potenciály fyziologie MeSH
- kardiomyocyty * fyziologie metabolismus MeSH
- kontrakce myokardu * fyziologie MeSH
- modely kardiovaskulární * MeSH
- morčata MeSH
- počítačová simulace MeSH
- ryanodinový receptor vápníkového kanálu metabolismus MeSH
- vápníkové kanály - typ L metabolismus MeSH
- zvířata MeSH
- Check Tag
- morčata MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ryanodinový receptor vápníkového kanálu MeSH
- vápníkové kanály - typ L MeSH
Mechanical restitution (MR) represents the time recovery of the heart muscle's ability to contract. Despite intensive research, some aspects of MR remain unclear. To describe MR in guinea pig cardiac muscle, we modified our published mathematical model of guinea pig ventricular cardiomyocyte and supplemented it with a description of cellular contraction. To achieve the best agreement between the model simulations and available experimental data, some model parameters were optimised. The model enables the simulation of the experimentally observed fast onset of recovery of action potential duration, L-type Ca2+ current amplitude, and isometric force. The performed simulations and analyses of model data showed that the high time constant of voltage-dependent inactivation of L-type Ca2+ channels used in previously published models (~ 600 ms at resting voltage) is not consistent with the initial steep rise of the MR curve in guinea pig cardiomyocytes. It also suggests that the adaptation rate of ryanodine receptors, which was set differently in the previous models, is fast (~ 100 s- 1). Finally, analysis of the effect of a 50% reduction in membrane currents on MR revealed a marked dependence on stimulation frequency. At 1 Hz, only the reduction of INaCa and INaK significantly affected the MR course.
Zobrazit více v PubMed
Giotti, A. Quantitative aspects and mechanisms of the relation between myocardial contraction and diastolic period. PubMed
Meijler, F. L.
Braveny, P. & Kruta, V. Dissociation de Deux facteurs: restitution et potentiation Dans l’action de l’intervalle Sur l’amplitude de La contraction du myocarde. PubMed
Allen, D. G., Jewell, B. R. & Wood, E. H. Studies of the contractility of mammalian myocardium at low rates of stimulation. PubMed PMC
Bravený, P., Sumbera, J. & Kruta, V. After-contractions and restitution of contractility in the isolated guinea-pig auricles. PubMed
Kruta, V. & Bravený, P. Potentiation of contractility in the heart muscle of the rat and some other mammals. PubMed
Kruta, V. & Bravený, P. Rate of restitution and self-regulation of contractility in mammalian heart muscle. PubMed
Kruta, V., Braveny, P., Hlavkova Stejskalova, J. & Husakova, B. Restoration of myocardial contractility and inotropic effects (ouabain, quinidine, tyramine, Theophylline and acetylcholine) in Guinea pigs and rats. PubMed
Edman, K. A. & Jóhannsson, M. The contractile state of rabbit papillary muscle in relation to stimulation frequency. PubMed PMC
Hoffman, B. F. & Cranefield, P. F. Paired-pulse stimulation of the heart. PubMed
Dumitrescu, C., Narayan, P., Cheng, Y., Efimov, I. R. & Altschuld, R. A. Phase I and phase II of short-term mechanical restitution in perfused rat left ventricles. PubMed
Liu, B., Wohlfart, B. & Johansson, B. W. Mechanical restitution at different temperatures in papillary-muscles from rabbit, rat and Hedgehog. PubMed
Bass, B. G. Enhanced contractility during relaxation of Cat papillary-muscle. PubMed
Bjornstad, H., Tande, P. M. & Refsum, H. Mechanisms for hypothermia-induced increase in contractile force studied by mechanical restitution and post-rest contractions in Guinea pig papillary muscle. PubMed
Wier, W. G. & Yue, D. T. Intracellular calcium transients underlying the short-term force-interval relationship in ferret ventricular myocardium. PubMed PMC
Dumitrescu, C. et al. Mechanical alternans and restitution in failing SHHF rat left ventricles. PubMed
Rice, J. J., Jafri, M. S. & Winslow, R. L. Modeling short-term interval-force relations in cardiac muscle. PubMed
Cortassa, S. et al. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. PubMed PMC
Pasek, M., Simurda, J., Orchard, C. H. & Christe, G. A model of the guinea-pig ventricular cardiac myocyte incorporating a transverse-axial tubular system. PubMed
Luo, C. & Rudy, Y. A dynamic model of the cardiac ventricular action-potential. I. Simulations of ionic currents and concentration changes. PubMed
Szigligeti, P. et al. Intracellular calcium and electrical restitution in mammalian cardiac cells. PubMed
Vornanen, M. & Shepherd, N. Restitution of contractility in single ventricular myocytes of Guinea pig heart. PubMed
Wang, W. et al. Reduced junctional Na PubMed PMC
Sher, A., Noble, P., Hinch, R., Gavaghan, D. & Noble, D. The role of the Na PubMed
Khokhlova, A., Balakina-Vikulova, N., Katsnelson, L., Iribe, G. & Solovyova, O. Transmural cellular heterogeneity in myocardial electromechanics. PubMed PMC
Pytkowski, B., Lewartowski, B., Prokopczuk, A., Zdanowski, K. & Lewandowska, K. Excitation-dependent and rest-dependent shifts of Ca in guinea-pig ventricular myocardium. PubMed
Kurihara, S. & Sakai, T. Effects of rapid cooling on mechanical and electrical responses in ventricular muscle of guinea-pig. PubMed PMC
Takagi, S. et al. Cold acclimation of Guinea pig depressed contraction of cardiac papillary muscle. PubMed
Alam, T., Qamar, S., Dixit, A. & Benaida, M. Genetic algorithm: reviews, implementations and applications.
Pásek, M. & Simurda, J. Quantitative modelling of interaction of propafenone with sodium channels in cardiac cells. PubMed
Jafri, M., Rice, J. & Winslow, R. Cardiac Ca PubMed PMC
Dumitrescu, C. et al. Mechanical alternans and restitution in failing SHHF rat left ventricles. PubMed
Spencer, C., Morner, S., Noble, M. & Seed, W. Influences of stimulation frequency and temperature on interval-force relationships in guinea-pig papillary-muscles. PubMed
Cooper, I. C. & Fry, C. H. Mechanical restitution in isolated mammalian myocardium – species-differences and underlying mechanisms. PubMed
Valdivia, H., Kaplan, J., Ellisdavies, G. & Lederer, W. Rapid adaptation of cardiac Ryanodine receptors – modulation by Mg PubMed PMC
Yasui, K., Palade, P. & Györke, S. Negative control mechanism with features of adaptation controls Ca PubMed PMC
Kohajda, Z. et al. The effect of a novel highly selective inhibitor of the sodium/calcium exchanger (NCX) on cardiac arrhythmias in in vitro and in vivo experiments. PubMed PMC
Hegner, P. et al. SAR296968, a novel selective Na PubMed PMC
Pelat, M. et al. SAR340835, a novel selective Na PubMed
Ozdemir, S. et al. Pharmacological Inhibition of na/ca exchange results in increased cellular Ca PubMed
Bögeholz, N. et al. The effects of SEA0400 on Ca PubMed PMC
Altamirano, J. et al. The inotropic effect of cardioactive glycosides in ventricular myocytes requires Na PubMed PMC