Quantitative modelling of interaction of propafenone with sodium channels in cardiac cells

. 2004 Mar ; 42 (2) : 151-7.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid15125143

A mathematical model of the interaction of propafenone with cardiac sodium channels is based on experimental data that demonstrate use-dependent effects of the drug. The Clancy-Rudy model is applied to describe Na-channels in absence of the drug. The values of rate constants of the drug-receptor reaction are fitted to experimental data by iterative computer simulations using a genetic algorithm. The model suggests the following interpretation of available experimental results: First, drug molecules have access to the binding sites predominantly in the inactivated states. Secondly, the biphasic development of the block during depolarisation is consistent with a rapid increase due to drug binding in the fast inactivated state (rate constants k(on) = 645 micromol(-1) l s(-1), k(off) = 16.21 s(-1)) and a slow increase due to binding in the intermediate inactivated state (rate constants approximately 100-fold lower), followed by transition to the drug-occupied slow inactivated state (rate constants 0.784 and 0.921 s(-1)). Thirdly, the observed biphasic time course of recovery of I(Na) from block following restoration of the resting voltage results from simultaneous relief of block from the channels residing in the intermediate and slow inactivated states. Fourthly, the accumulation of blocked channels in the slow inactivated state is responsible for the observed use-dependent effects. Fifthly, when incorporated into a quantitative description of the electrical activity of a ventricular cell, the model predicts that propafenone (0.2 micromol l(-1)) effectively suppresses premature excitations, leaving the regular action potentials nearly unaffected.

Zobrazit více v PubMed

Circ Res. 1996 May;78(5):916-24 PubMed

Gen Physiol Biophys. 1995 Apr;14(2):75-89 PubMed

Nature. 1999 Aug 5;400(6744):566-9 PubMed

Circ Res. 2000 Oct 13;87(8):E37-43 PubMed

J Membr Biol. 1994 May;139(3):191-201 PubMed

J Membr Biol. 1988 May;102(2):105-19 PubMed

Drug Saf. 1995 Jan;12(1):55-72 PubMed

J Gen Physiol. 2002 Jul;120(1):39-51 PubMed

Circulation. 2002 Mar 12;105(10):1208-13 PubMed

Am Heart J. 1975 Mar;89(3):378-90 PubMed

J Mol Cell Cardiol. 2001 Apr;33(4):599-613 PubMed

J Cardiovasc Pharmacol. 1993 Jan;21(1):47-55 PubMed

J Gen Physiol. 2003 Feb;121(2):163-75 PubMed

J Cardiovasc Pharmacol. 1994 Nov;24(5):753-60 PubMed

Br J Pharmacol. 1992 Nov;107(3):813-20 PubMed

Circ Res. 1991 Jun;68(6):1501-26 PubMed

J Cardiovasc Pharmacol. 1992 Aug;20(2):324-31 PubMed

J Gen Physiol. 2003 Mar;121(3):199-214 PubMed

Circulation. 2000 Aug 1;102(5):584-90 PubMed

J Membr Biol. 1991 Jun;122(3):267-78 PubMed

Biophys J. 1999 Apr;76(4):1868-85 PubMed

Pacing Clin Electrophysiol. 2000 Mar;23(3):416-8 PubMed

Circ Res. 2000 May 12;86(9):E91-7 PubMed

Biophys J. 1978 May;22(2):283-94 PubMed

Circ Res. 2001 Apr 13;88(7):740-5 PubMed

J Gen Physiol. 1977 Apr;69(4):497-515 PubMed

J Clin Invest. 1997 Apr 1;99(7):1714-20 PubMed

Europace. 1999 Jul;1(3):156-66 PubMed

Mol Pharmacol. 2002 Nov;62(5):1228-37 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace