Quantitative modelling of interaction of propafenone with sodium channels in cardiac cells
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15125143
DOI
10.1007/bf02344625
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- antiarytmika farmakologie MeSH
- krysa rodu Rattus MeSH
- modely kardiovaskulární * MeSH
- myokard metabolismus MeSH
- počítačová simulace MeSH
- propafenon farmakologie MeSH
- sodíkové kanály účinky léků MeSH
- srdce účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiarytmika MeSH
- propafenon MeSH
- sodíkové kanály MeSH
A mathematical model of the interaction of propafenone with cardiac sodium channels is based on experimental data that demonstrate use-dependent effects of the drug. The Clancy-Rudy model is applied to describe Na-channels in absence of the drug. The values of rate constants of the drug-receptor reaction are fitted to experimental data by iterative computer simulations using a genetic algorithm. The model suggests the following interpretation of available experimental results: First, drug molecules have access to the binding sites predominantly in the inactivated states. Secondly, the biphasic development of the block during depolarisation is consistent with a rapid increase due to drug binding in the fast inactivated state (rate constants k(on) = 645 micromol(-1) l s(-1), k(off) = 16.21 s(-1)) and a slow increase due to binding in the intermediate inactivated state (rate constants approximately 100-fold lower), followed by transition to the drug-occupied slow inactivated state (rate constants 0.784 and 0.921 s(-1)). Thirdly, the observed biphasic time course of recovery of I(Na) from block following restoration of the resting voltage results from simultaneous relief of block from the channels residing in the intermediate and slow inactivated states. Fourthly, the accumulation of blocked channels in the slow inactivated state is responsible for the observed use-dependent effects. Fifthly, when incorporated into a quantitative description of the electrical activity of a ventricular cell, the model predicts that propafenone (0.2 micromol l(-1)) effectively suppresses premature excitations, leaving the regular action potentials nearly unaffected.
Zobrazit více v PubMed
Circ Res. 1996 May;78(5):916-24 PubMed
Gen Physiol Biophys. 1995 Apr;14(2):75-89 PubMed
Nature. 1999 Aug 5;400(6744):566-9 PubMed
Circ Res. 2000 Oct 13;87(8):E37-43 PubMed
J Membr Biol. 1994 May;139(3):191-201 PubMed
J Membr Biol. 1988 May;102(2):105-19 PubMed
Drug Saf. 1995 Jan;12(1):55-72 PubMed
J Gen Physiol. 2002 Jul;120(1):39-51 PubMed
Circulation. 2002 Mar 12;105(10):1208-13 PubMed
Am Heart J. 1975 Mar;89(3):378-90 PubMed
J Mol Cell Cardiol. 2001 Apr;33(4):599-613 PubMed
J Cardiovasc Pharmacol. 1993 Jan;21(1):47-55 PubMed
J Gen Physiol. 2003 Feb;121(2):163-75 PubMed
J Cardiovasc Pharmacol. 1994 Nov;24(5):753-60 PubMed
Br J Pharmacol. 1992 Nov;107(3):813-20 PubMed
Circ Res. 1991 Jun;68(6):1501-26 PubMed
J Cardiovasc Pharmacol. 1992 Aug;20(2):324-31 PubMed
J Gen Physiol. 2003 Mar;121(3):199-214 PubMed
Circulation. 2000 Aug 1;102(5):584-90 PubMed
J Membr Biol. 1991 Jun;122(3):267-78 PubMed
Biophys J. 1999 Apr;76(4):1868-85 PubMed
Pacing Clin Electrophysiol. 2000 Mar;23(3):416-8 PubMed
Circ Res. 2000 May 12;86(9):E91-7 PubMed
Biophys J. 1978 May;22(2):283-94 PubMed
Circ Res. 2001 Apr 13;88(7):740-5 PubMed
J Gen Physiol. 1977 Apr;69(4):497-515 PubMed
J Clin Invest. 1997 Apr 1;99(7):1714-20 PubMed
Europace. 1999 Jul;1(3):156-66 PubMed
Mol Pharmacol. 2002 Nov;62(5):1228-37 PubMed