Ectomycorrhizal fungal communities of Shorea robusta along an elevation gradient
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Ph.D.- 2018/2019- S&T-2
University Grants Commission- Nepal
PubMed
40794331
DOI
10.1007/s00572-025-01224-5
PII: 10.1007/s00572-025-01224-5
Knihovny.cz E-zdroje
- Klíčová slova
- Tomentella, Next-generation sequencing, Root colonization, Sal forest, Thelephoraceae,
- MeSH
- Basidiomycota * klasifikace fyziologie izolace a purifikace genetika MeSH
- biodiverzita MeSH
- kořeny rostlin mikrobiologie MeSH
- lesy MeSH
- mykobiom * MeSH
- mykorhiza * klasifikace fyziologie genetika izolace a purifikace MeSH
- nadmořská výška MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
Shorea robusta (Sal) is an ecologically and economically important hardwood tree species growing in the plains and lower foothills of the Himalayan region. It is a dual-mycorrhizal tree associated with both arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. To understand how ECM communities associated with Sal roots are structured, we studied their diversity, composition, and root colonisation in four tropical forests along an elevation gradient (82 to 950 m a.s.l.). The ECM community was not found to be very diverse: we obtained 155 ECM operational taxonomic units (OTUs) belonging to 13 ECM genera in 8 families of Basidiomycota. The genus Tomentella was the most dominant, followed by Russula and Inocybe. Elevation explained 10.2% of variability in ECM composition, and significant effects of forest type, geographic position, soil temperature and moisture were confirmed. The forest at the highest elevation had ECM communities whose community structure was divergent from those at lower elevation. ECM root colonisation significantly decreased with increasing elevation and decreasing available P content. Whereas a low number of ECM species produced a high ECM colonisation of Shorea roots in low-elevation forests, a more diverse ECM community formed a low ECM colonization in high-elevation forests. The identified dominant species may be potentially used as inoculum for Sal forest restoration.
Central Department of Botany Tribhuvan University Kirtipur Nepal
Department of Biology Central Campus of Technology Tribhuvan University Dharan Nepal
Department of Botany Degree Campus Tribhuvan University Biratnagar Nepal
Department of Botany Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Department of Botany Mahendra Morang Adarsh Multiple Campus Tribhuvan University Biratnagar Nepal
Global Change Research Institute Czech Academy of Sciences Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Abarenkov K, Zirk A, Piirmann T (2020) Full UNITE + INSD dataset for fungi. https://doi.org/10.15156/BIO/1281531 . Version 04.02.2020 UNITE Community 2020
Ajungla T, Jamir N (2006) Effect of Boletus edulis and Suillus bovinus on the growth performance of Schima wallichii seedlings on degraded land sites. Bionature 26:81–85
Alam M, Furukawa Y, Sarker S, Ahmed R (2008) Sustainability of Sal (Shorea robusta) forest in bangladesh: past, present and future actions. Int Rev 10:29–37
Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565. https://doi.org/10.1111/j.1365-294X.2010.04898.x PubMed DOI
Aronesty E (2013) Comparison of sequencing utility programs. Open Bioinform J 7:1–8. https://doi.org/10.2174/1875036201307010001 DOI
Bahram M, Polme S, Kõljalg U, Zarre S, Tedersoo L (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the hyrcanian forests of Northern Iran. New Phytol 193:465–473. https://doi.org/10.1111/j.1469-8137.2011.03927.x PubMed DOI
Balami S, Vašutová M, Chaudhary VK, Cudlín P (2023) How do root fungi of Alnus nepalensis and Schima wallichii recover during succession of abandoned land? Mycorrhiza 33:1–2. https://doi.org/10.1007/s00572-023-01124-6
Barnes RB, Richardson D, Berry JW, Hood RL (1945) Flame photometry. A rapid analytical procedure. Ind Eng Chem Anal Ed 17:605–611. https://doi.org/10.1021/i560146a001 DOI
Baum C, Makeschin F (2000) Effects of nitrogen and phosphorus fertilization on mycorrhizal formation of two Poplar clones (Populus trichocarpa and P. tremula x tremuloides). J Plant Nutr Soil Sci 163:491e497. https://doi.org/10.1002/1522-2624(200010)163 :5%3C491::AID-JPLN491%3E3.0.CO;2-3 DOI
Baxter JW, Dighton J (2001) Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol 152:139–149. https://doi.org/10.1046/j.0028-646x.2001.00245.x PubMed DOI
Bengtsson-Palme J, Ryberg M, Hartmann M, Branco, Wang Z, Godhe A, Wit PD, Sanchez-Garcia M, Ebersberger M, Sousa F, Amend A (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919. https://doi.org/10.1111/2041-210X.12073 DOI
Blake GR (1965) Bulk density. In: Black CA (ed) Methods of soil analysis. Part 1: Physical properties. American Society of Agronomy, Madison, WI, pp 374–390. https://doi.org/10.2134/agronmonogr9.1.c
Chitale V, Behera M (2012) Can the distribution of Sal (Shorea robusta Gaertn. f.) shift in the Northeastern direction in India due to changing climate? Curr Sci 102:1126–1135
Clausing S, Polle A (2020) Mycorrhizal phosphorus efficiencies and microbial competition drive root P uptake. Front Glob 3:54. https://doi.org/10.3389/ffgc.2020.00054 DOI
Corrales A, Turner BL, Tedersoo L, Anslan S, Dalling JW (2017) Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. Fungal Ecol 27:14–23. https://doi.org/10.1016/j.funeco.2017.02.004 DOI
Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113. https://doi.org/10.1111/j.1461-0248.2010.01494.x PubMed DOI
de Souza Kulmann MS, Aguilar MVM, Tassinari A, Schwalbert R, Tabaldi LA, Araujo MM, Antoniolli ZI, Nicoloso FT, Brunetto G, Schumacher MV (2023) Effects of increasing soil phosphorus and association with ectomycorrhizal fungi (Pisolithus microcarpus) on morphological, nutritional, biochemical, and physiological parameters of Pinus Taeda L. Ecol Manag 544:121207. https://doi.org/10.1016/j.foreco.2023.121207 DOI
Deb JC, Salman MHR, Halim MA, Chowdhury MQ, Roy A (2014) Characterising the diameter distribution of Sal plantations by comparing normal, lognormal and Weibull distributions at Tilagarh Eco-park, Bangladesh. South for 76:201–208. https://doi.org/10.2989/20702620.2014.947077 DOI
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996. https://doi.org/10.1038/nmeth.2604 PubMed DOI
Gautam KH (1990) Regeneration status of Sal (Shorea robusta) forests in Nepal. Ministry of Forests and Soil Conservation, Kathmandu, p 11
Gautam KH, Devoe NN (2006) Ecological and anthropogenic niches of Sal (Shorea robusta gaertn. f.) forest and prospects for multiple-product forest management—A review. Forestry 79:81–101. https://doi.org/10.1093/forestry/cpi063 DOI
Gautam TP, Mandal TN (2013) Soil characteristics in moist tropical forest of Sunsari district, Nepal. Nepal J Sci Tech 14:35–40
Gautam TP, Mandal TN (2018) Storage and flux of nutrients in disturbed and undisturbed tropical moist forest of Eastern Nepal. Hindwai Int J Res 4:1–12. https://doi.org/10.1155/2018/8516321 DOI
Geml J (2017) Altitudinal gradients in mycorrhizal symbioses: the current state of knowledge on how richness and community structure change with elevation. In: Tedersoo, L. (eds) Biogeography of Mycorrhizal Symbiosis. 230:107–123. https://doi.org/10.1007/978-3-319-56363-3_5
Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, Wicaksono CY, Nouhra ER (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol 23:2452–2472. https://doi.org/10.1111/mec.12765 PubMed DOI
Geml J, Morgado LN, Semenova-Nelsen TA, Schilthuizen M (2017) Changes in richness and community composition of ectomycorrhizal fungi among altitudinal vegetation types on Mount Kinabalu in Borneo. New Phytol 215:454–468. https://doi.org/10.1111/nph.14566 PubMed DOI
Geml J, Arnold AE, Semenova‐Nelsen TA, Nouhra ER, Drechsler‐Santos ER, Góes‐Neto A, Lutzoni F (2022) Community dynamics of soil‐borne fungal communities along elevation gradients in Neotropical and Palaeotropical forests. Mol Ecol 31:2044–2060. https://doi.org/10.1111/mec.16368 PubMed DOI
Gómez-Hernández M, Williams-Linera G, Guevara R, Lodge DJ (2012) Patterns of macromycete community assemblage along an elevation gradient: options for fungal gradient and metacommunity analyse. Biodivers Conserv 21:2247–2268. https://doi.org/10.1007/s10531-011-0180-3 DOI
Gavlak R, Horneck D, Miller RO (2005) Soil, Plant and Water Reference Methods for the Western Region (3rd ed.). WREP-125, WERA-103 Technical Committee
Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440. https://doi.org/10.1111/j.1469-8137.2007.02016.x PubMed DOI
Jackson ML (1958) Soil chemical analysis. Prentice Hall. Inc., Englewood Cliffs, New York
Jarvis SG, Woodward S, Taylor AFS (2015) Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol 206:1145–1155. https://doi.org/10.1111/nph.13315 PubMed DOI
Kilpeläinen J, Aphalo PJ, Barbero-López A, Adamczyk B, Nipu SA, Lehto T (2020) Are arbuscular-mycorrhizal Alnus Incana seedlings more resistant to drought than ectomycorrhizal and nonmycorrhizal ones? Tree Physiol 40:782–795. https://doi.org/10.1093/treephys/tpaa035 PubMed DOI
Korner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574. https://doi.org/10.1016/j.tree.2007.09.006 PubMed DOI
Kumar J, Atri NS (2016) Characterization of ectomycorrhiza of Russula and Lactifluus (Russulaceae) associated with Shorea robusta from Indian Shiwaliks. Nova Hedwigia 103:501–513. https://doi.org/10.1127/nova_hedwigia/2016/0368
Kumar J, Atri NS (2017) Studies on ectomycorrhiza: an appraisal. Bot Rev 84:108–155. https://doi.org/10.1007/s12229-017-9196-z DOI
Kumar J, Singh Atri NS (2023) Selection of efficient ectomycorrhizal fungi for improved growth, biomass and nutrient uptake of Shorea robusta seedlings. Nord J Bot 12:e04024
Lee SS, Thi BK, Patahayah M (2010) An ectomycorrhizal thelephoroid fungus of Malaysian dipterocarp seedlings. J Trop Sci 22:355–363
Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115. https://doi.org/10.2307/2680124 DOI
Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x DOI
Looby CI, Maltz MR, Treseder KK (2016) Belowground responses to elevation in a changing cloud forest. Ecol Evol 6:1996–2009. https://doi.org/10.1002/ece3.2025 PubMed DOI PMC
MacGlinn D, Xiao X, McGill B, May F, Engel T, Oliver C, Blowes S, Knight T, Purschke O, Gotelli N, Chase J (2024). mobr: Measurement of biodiversity. R package version 3.0.0. https://CRAN.package.mobr
Mandal TN (2011) Seasonal variations in available N and N-mineralization in relation to fine roots in landslide damaged sites in the Sal forest ecosystem of Nepal himalaya. Nepal J Biosci 1:114–124
Natarajan K, Senthilrasu G, Kumaresan V, Riviera T (2005) Diversity in ectomycorrhizal fungi of a dipterocarp forest in Western Ghats. Curr Sci 88:1893–1895
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006 DOI
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens HH, Szoecs E et al (2022) Vegan: community ecology package. R Package Version 2:6–4
Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (ed) Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd edn. Agronomy 9:403–430
Parihar A, Hembrom ME, Vizzini A, Das K (2018) Indoporus Shoreae gen. Et sp. Nov. (Boletaceae) from tropical India. Cryptogam Mycol 39:447–466. https://doi.org/10.7872/crym/v39.iss4.2018.447 DOI
Parrent JL, Morris WF, Vilgalys R (2006) CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87:2278–2287. https://doi.org/10.1890/0012-9658(2006)87[2278:CANAAE]2.0.CO;2 PubMed DOI
Peay KG, Russo SE, Mcguire KL, Lim Z, Chan JP, Tan S, Davies SJ (2015) Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecol Lett 18(8):807–816. https://doi.org/10.1111/ele.12459 PubMed DOI
Phosri C, Põlme S, Taylor AFS, Kõljalg U, Suwannasai N, Tedersoo L (2012) Diversity and community composition of ectomycorrhizal fungi in a dry deciduous dipterocarp forest in Thailand. Biodivers Conserv 21:2287–2298. https://doi.org/10.1007/s10531-012-0250-1 DOI
Piper CS (1966) Soil and plant analysis. Hans, Bombay
Põlme S, Kessy A, Henrik Nilsson R, Lindahl BD, Clemmensen KE, Kauserud H, Nguyen N, Kjoller R, Bater ST, Baldrian P, Frosley TG (2020) Fungal traits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers 105:1–16. https://doi.org/10.1007/s13225-021-00470-0 DOI
Pradhan P, Dutta AK, Roy A, Basu SK, Acharya K (2012) Inventory and spatial ecology of macrofungi in the Shorea robusta forest ecosystem of lateritic region of West Bengal. Biodiversity 13:88–99. https://doi.org/10.1080/14888386.2012.690560 DOI
R Core Team (2021) R: A language and environment for statistical computing. https://www.R-project.org/
Rahman MM, Motiur MR, Guogang Z, Islam KS (2010) A review of the present threats to tropical moist deciduous Sal (Shorea robusta) forest ecosystem of central Bangladesh. Trop Conserv Sci 3:90–102. https://doi.org/10.1177/194008291000300108 DOI
Riviere T, Diedhiou AG, Diabate M, Senthilarasu G, Natarajan K, Verbeken A, Buyck B, Dreyfus B, Bena G, Ba AM (2007) Genetic diversity of ectomycorrhizal basidiomycetes from African and Indian tropical forests. Mycorrhiza 17:415–428. https://doi.org/10.1007/s00572-007-0117-6 PubMed DOI
Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584 PubMed DOI PMC
Sapkota IP, Tigabu M, Oden PC (2009) Tree diversity and regeneration of Community-managed Bhabar lowland and hill Sal forests in central region of Nepal. Bois Et Forets Des Tropiques 300:57–68
Sarker SK, Deb JC, Halim MA (2011) A diagnosis of existing logging bans in Bangladesh. Int Rev 13:461–475. https://doi.org/10.1505/146554811798811344 DOI
Sharma R, Rajak RC, Pandey AK (2009) Ectomycorrhizal mushrooms in Indian tropical forests. Biodiversity 10:25–30. https://doi.org/10.1080/14888386.2009.9712634 DOI
Shrestha S, Gautam TP, Mandal TN, Aryal HP (2021) Ecology and diversity of ectomycorrhiza in moist tropical forest of Sunsari district, Eastern Nepal. J Inst Sci Technol 26(1):35–42. https://doi.org/10.3126/jist.v26i1.37815 DOI
Shrestha S, Gautam TP, Raut JK, Goto BT, Chaudhary S, Mandal TN (2023) Edaphic factors and elevation gradient influence arbuscular mycorrhizal colonization and spore density in the rhizosphere of Shorea robusta Gaertn. Acta Ecol Sin 44:257–265. https://doi.org/10.1016/j.chnaes.2023.05.011 DOI
Sirikantaramas S, Sugioka N, Lee SS, Mohamed LA, Lee HS, Szmidt AE, Yamazaki T (2003) Molecular identification of ectomycorrhizal fungi associated with Dipterocarpaceae. Tropics 13:69–77. https://doi.org/10.3759/tropics.13.69 DOI
Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic
Stainton JDA (1972) Forests of Nepal. Hafner Publishing Company, New York, p 181
Taniguchi T, Kitajima K, Douhan GW, Yamanaka N, Allen MF (2018) A pulse of summer precipitation after the dry season triggers changes in ectomycorrhizal formation, diversity, and community composition in a mediterranean forest in California, USA. Mycorrhiza 28:665–677. https://doi.org/10.1007/s00572-018-0859-3 PubMed DOI PMC
Tapwal A, Kumar R, Borah D (2015) Effect of mycorrhizal inoculations on the growth of Shorea robusta seedlings. Nusantara Bioscie 7:1–5. https://doi.org/10.13057/nusbiosci/n070101 DOI
Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490. https://doi.org/10.1111/j.1469-8137.2008.02561.x PubMed DOI
Tedersoo L, Bahram M, Toots M, Diedhiou AG, Henkel TW, Kjøller R, Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljag U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170. https://doi.org/10.1111/j.1365-294X.2012.05602.x PubMed DOI
Tedersoo L, Mikryukov V, Zizka A, Bahram M, Hagh-Doust N, Anslan S, Prylutskyi, Abarenkov K (2022) Global patterns in endemicity and vulnerability of soil fungi. Glob Change Biol 28:6696–6710. https://doi.org/10.1111/gcb.16398 DOI
Ter Braak CJF, Šmilauer P (2012) CANOCO reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power, Ithaca pp 496
Teste FP, Jones MD, Dickie IA (2020) Dual-mycorrhizal plants: their ecology and relevance. New Phytol 225:1835–1851. https://doi.org/10.1111/nph.16190 PubMed DOI
Thiem D, Gołębiewski M, Hulisz P, Piernik A, Hrynkiewicz K (2018) How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots? Front Microbiol 9:651. https://doi.org/10.3389/fmicb.2018.00651 PubMed DOI PMC
Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355. https://doi.org/10.1111/j.1469-8137.2004.01159.x PubMed DOI
Truong C, Gabbarini LA, Corrales A, Mujic AB, Escobar JM, Moretto A, Smith ME (2019) Ectomycorrhizal fungi and soil enzymes exhibit contrasting patterns along elevation gradients in Southern Patagonia. New Phytol 222:1936–1950. https://doi.org/10.1111/nph.15714 PubMed DOI
Twieg BD, Durall DM, Simard SW, Jones MD (2009) Influence of soil nutrients on ectomycorrhizal communities in a chronosequence of mixed temperate forests. Mycorrhiza 19:305–316. https://doi.org/10.1007/s00572-009-0232-7 PubMed DOI
Urbanová M, Snajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 DOI
Vašutová M, Edwards-Jonasova M, Baldrian P, Cermak M, Cudlin P (2017) Distinct environmental variables drive the community composition of mycorrhizal and saprotrophic fungi at the alpine treeline ecotone. Fungal Ecol 27:116–124. https://doi.org/10.1016/j.funeco.2016.08.010 DOI
Verma RK, Pandro V (2018) Diversity and distribution of amanitaceous mushrooms in India, two new reports from Sal forest of central India. Indian J Trop Biodiv 26:42–54
Větrovský T, Baldrian P, Morais D (2018) SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 13:2292–2294. https://doi.org/10.1093/bioinformatics/bty071 DOI
Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. https://doi.org/10.1097/00010694-193401000-00003 DOI
Wallander H, Thelin G (2008) The stimulating effect of apatite on ectomycorrhizal growth diminishes after PK fertilization. Soil Biol Biochem 40:2517–2522. https://doi.org/10.1016/j.soilbio.2008.06.011 DOI
Wood SN (2017) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Series B Stat Methodol 73:3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x DOI
Yuwa-Amornpitak T, Vichitsoonthonkul T, Tanticharoen M, Cheevadhanarak S, Ratchadawong S (2006) Diversity of ectomycorrhizal fungi on Dipterocarpaceae in Thailand. J Biol Sci 6:1059–1064. https://doi.org/10.3923/jbs.2006.1059.1064 DOI
Zeileis A, Hothorn T (2002) Diagnostic Checking in Regression Relationships. R News 2:7–10. https://CRAN.R-project.org/doc/Rnews/
Zobel DB, Jha PK, Behan MJ, Yadav UKR (1987) A practical manual for ecology. Ratna Book Distributors, Kathmandu, Nepal, p 149