Initial characterization of M2-muscarinic receptor overexpressing mouse heart
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-23-0502.
Slovak Research and Development Agency
PubMed
40802009
DOI
10.1007/s00210-025-04502-3
PII: 10.1007/s00210-025-04502-3
Knihovny.cz E-zdroje
- Klíčová slova
- Arrhythmia, Human M2-muscarinic receptors,
- Publikační typ
- časopisecké články MeSH
There are five muscarinic receptor subtypes expressed in the human heart. The main subtype is the M2-muscarinic receptor. We hypothesized that overexpression of the M2-muscarinic receptor should augment any contractile effects that are M2-muscarinic receptor-mediated. Therefore, we generated a transgenic mouse with overexpression of the human M2-muscarinic receptor under the control of the heart-specific α-myosin heavy chain promoter (M2-TG). We performed contraction experiments with electrically stimulated (1 Hz) left atrial preparations (LA) and spontaneously beating right atrial preparations (RA) from adult M2-TG or from adult wild-type littermate mice (WT). We confirmed the expression of the human M2-muscarinic receptor in the mouse heart by reverse transcription polymerase chain reaction (RT-PCR) and radioligand binding experiments at cardiac membranes and tissue sections. We did not detect differences in hematoxylin/eosin staining or Masson/Goldner staining between M2-TG and WT. We noticed that carbachol (10 nM-10 µM cumulatively applied) alone or in the presence of 1 µM isoprenaline reduced the force of contraction (FOC) to a similar extent in LA from M2-TG and WT. The beating rate in RA was similarly decreased by carbachol alone or by carbachol in the presence of 1 µM isoprenaline in M2-TG and WT. Overall, the number of RA that displayed absolute arrhythmias was higher in atria from M2-TG compared to atria from WT. No arrhythmias were noted in LA from M2-TG or WT. Stimulation of human M2-muscarinic receptors induced absolute atrial arrhythmias more often in RA from M2-TG than in RA from WT. Overexpressed M2-muscarinic receptors were silent to the force and beating rate.
Department of Cardiac Surgery Medical Faculty Martin Luther University Halle Wittenberg Germany
Institute for Hematopathology Fangdieckstraße 75a D 22547 Hamburg Germany
Institute of Pharmacy University of Regensburg Universitätsstraße 31 D 93053 Regensburg Germany
Institute of Physiology Charles University Albertov 5 CZ 128 00 Prague 2 Czech Republic
Zobrazit více v PubMed
Brodde OE, Konschak U, Becker K, Rüter F, Poller U, Jakubetz J, Radke J, Zerkowski HR (1998) Cardiac muscarinic receptors decrease with age. In vitro and in vivo studies. J Clin Invest 101(2):471–478. https://doi.org/10.1172/JCI1113 PubMed DOI PMC
Carbajales J, Krishnan D, Principato M, Tomatti A, Paolucci A, Yoo HS, von Wulffen A, Ciampi N, Tepper R, Carradori J, Baranchuk A (2021) Prevalence of cardiac arrhythmias and distal conduction disorders in patients with chronic Chagas’ disease and elevated autoantibodies against M2 muscarinic acetylcholine receptors. Curr Probl Cardiol 46(6):100820. https://doi.org/10.1016/j.cpcardiol.2021.100820 PubMed DOI
Chen X, Bai Y, Sun H, Su Z, Guo J, Sun C, Du Z (2017) Overexpression of M3 muscarinic receptor suppressed adverse electrical remodeling in hypertrophic myocardium via increasing repolarizing K+ currents. Cell Physiol Biochem 43(3):915–925. https://doi.org/10.1159/000481642 PubMed DOI
Dhein S, van Koppen CJ, Brodde OE (2001) Muscarinic receptors in the mammalian heart. Pharmacol Res 44(3):161–182. https://doi.org/10.1006/phrs.2001.0835 PubMed DOI
Dickinson KE, Matsumoto H, Anderson W, Pruitt RE, Uemura N, Hirschowitz BI (1988) Muscarinic cholinergic receptor subtype on frog esophageal peptic cells: binding and secretion studies. J Pharmacol Exp Ther 246(3):879–886 PubMed
Dobrev D, Graf E, Wettwer E, Himmel HM, Hála O, Doerfel C, Christ T, Schüler S, Ravens U (2001) Molecular basis of downregulation of G-protein-coupled inward rectifying K(+) current (I(K,ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced I(K,ACh) and muscarinic receptor-mediated shortening of action potentials. Circulation 104(21):2551–2557. https://doi.org/10.1161/hc4601.099466 PubMed DOI
Du XY, Schoemaker RG, Bos E, Saxena PR (1994) Different pharmacological responses of atrium and ventricle: studies with human cardiac tissue. Eur J Pharmacol 259(2):173–180. https://doi.org/10.1016/0014-2999(94)90507-x PubMed DOI
Du XY, Schoemaker RG, Bos E, Saxena PR (1995) Characterization of the positive and negative inotropic effects of acetylcholine in the human myocardium. Eur J Pharmacol 284(1–2):119–127. https://doi.org/10.1016/0014-2999(95)00384-w
Fabritz L, Damke D, Emmerich M, Kaufmann SG, Theis K, Blana A, Fortmüller L, Laakmann S, Hermann S, Aleynichenko E, Steinfurt J, Volkery D, Riemann B, Kirchhefer U, Franz MR, Breithardt G, Carmeliet E, Schäfers M, Maier SK, Carmeliet P, Kirchhof P (2010) Autonomic modulation and antiarrhythmic therapy in a model of long QT syndrome type 3. Cardiovasc Res 87(1):60–72. https://doi.org/10.1093/cvr/cvq029 PubMed DOI PMC
Gergs U, Böckler A, Ebelt H, Hauptmann S, Keller N, Otto V, Pönicke K, Schmitz W, Neumann J (2013) Human 5-HT PubMed DOI
Gergs U, Wackerhagen S, Fuhrmann T, Schäfer I, Neumann J (2024) Further investigations on the influence of protein phosphatases on the signaling of muscarinic receptors in the atria of mouse hearts. Naunyn Schmiedebergs Arch Pharmacol. https://doi.org/10.1007/s00210-024-02973-4 PubMed DOI PMC
Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:1692–1697 PubMed PMC
Grundig P, Pham TH, Hofmann B, Neumann J, Gergs U (2025) Temperature alters the inotropic and chronotropic effect of D
Harada N, Ochi K, Yaosaka N, Teraoka H, Hiraga T, Iwanaga T, Unno T, Komori S, Yamada M, Kitazawa T (2012) Immunohistochemical and functional studies for M₃ muscarinic receptors and cyclo-oxygenase-2 expressed in the mouse atrium. Auton Autacoid Pharmacol 32(3 Pt 4):41–52. https://doi.org/10.1111/j.1474-8673.2012.00472.x
Herzig S, Meier A, Pfeiffer M, Neumann J (1995) Stimulation of protein phosphatases as a mechanism of the muscarinic-receptor-mediated inhibition of cardiac L-type Ca2+ channels. Pflugers Arch 429(4):531–538. https://doi.org/10.1007/BF00704158 PubMed DOI
Kirchhof P, Fabritz L, Fortmuller L, Matherne GP, Lankford A, Baba HA, Schmitz W, Breithardt G, Neumann J, Boknik P (2003) Altered sinus nodal and atrioventricular nodal function in freely moving mice overexpressing the A1 adenosine receptor. Am J Physiol Heart Circ Physiol 285(1):H145–53. https://doi.org/10.1152/ajpheart.01036.2002
Lazzerini PE, Capecchi PL, Guideri F, Acampa M, Selvi E, Bisogno S, Galeazzi M, Laghi-Pasini F (2008) Autoantibody-mediated cardiac arrhythmias: mechanisms and clinical implications. Basic Res Cardiol 103(1):1–11. https://doi.org/10.1007/s00395-007-0686-8 PubMed DOI
Le Guludec D, Cohen-Solal A, Delforge J, Delahaye N, Syrota A, Merlet P (1997) Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy. An in vivo PET study. Circulation 96:3416–3422 PubMed
Levitzki A (1981) The beta-adrenergic receptor and its mode of coupling to adenylate cyclase. CRC Crit Rev Biochem 10(2):81–112. https://doi.org/10.3109/10409238109114550 PubMed DOI
Liu Y, Sun HL, Li DL, Wang LY, Gao Y, Wang YP, Du ZM, Lu YJ, Yang BF (2008) Choline produces antiarrhythmic actions in animal models by cardiac M3 receptors: improvement of intracellular Ca2+ handling as a common mechanism. Can J Physiol Pharmacol 86(12):860–865. https://doi.org/10.1139/Y08-094 PubMed DOI
Livolsi A, Feldman J, Feingold J, Weiss L, Alembik Y, Sharifah-Anion IM, Fischbach M, Messer J, Bousquet P (2002) First model of spontaneous vagal hyperreactivity and its mode of genetic transmission. Circulation 106(18):2301–2304. https://doi.org/10.1161/01.cir.0000039155.49920.1f PubMed DOI
Livolsi A, Niederhoffer N, Dali-Youcef N, Mokni W, Olexa-Zorn C, Gies JP, Marcellin L, Feldman J, Bousquet P (2010a) Constitutive overexpression of muscarinic receptors leads to vagal hyperreactivity. PLoS ONE 5(12):e15618. https://doi.org/10.1371/journal.pone.0015618 PubMed DOI PMC
Livolsi A, Niederhoffer N, Dali-Youcef N, Rambaud C, Olexa C, Mokni W, Gies JP, Bousquet P (2010b) Cardiac muscarinic receptor overexpression in sudden infant death syndrome. PLoS ONE 5(3):e9464. https://doi.org/10.1371/journal.pone.0009464 PubMed DOI PMC
Myslivecek J, Klein M, Novakova M, Ricny J (2008) The detection of the non-M2 muscarinic receptor subtype in the rat heart atria and ventricles. Naunyn Schmiedebergs Arch Pharmacol 378(1):103–116. https://doi.org/10.1007/s00210-008-0285-8 PubMed DOI
Neumann J, Scholz H (1998) Deferoxamine blocks interactions of fluoride and carbachol in isolated mammalian cardiac preparations. Eur J Pharmacol 350(2–3):189–194. https://doi.org/10.1016/s0014-2999(98)00235-0 PubMed DOI
Neumann J, Bokník P, Bodor GS, Jones LR, Schmitz W, Scholz H (1994) Effects of adenosine receptor and muscarinic cholinergic receptor agonists on cardiac protein phosphorylation. Influence of pertussis toxin. J Pharmacol Exp Ther 269(3):1310–1318 PubMed
Neumann J, Herzig S, Boknik P, Apel M, Kaspareit G, Schmitz W, Scholz H, Zimmermann N (1995) On the cardiac contractile, biochemical and electrophysiological effects of cantharidin, a phosphatase inhibitor. J Pharmacol Exp Ther 274:530–539 PubMed
Neumann J, Boknik P, Matherne GP, Lankford A, Schmitz W (2003) Pertussis toxin sensitive and insensitive effects of adenosine and carbachol in murine atria overexpressing A(1)-adenosine receptors. Br J Pharmacol 138(1):209–217. https://doi.org/10.1038/sj.bjp.0705012 PubMed DOI PMC
Neumann J, Gupta RC, Watanabe AM (1993) Biochemical basis of cardiac sympathetic-parasympathetic interaction. In: Levy MN, Schwartz PJ (eds) Vagal control of the heart: Experimental basis and clinical implications. Futura Publishing Co. Inc. Mount Kisco, New York pp 161–170
Nussinovitch U, Shoenfeld Y (2012) The diagnostic and clinical significance of anti-muscarinic receptor autoantibodies. Clin Rev Allergy Immunol 42(3):298–308. https://doi.org/10.1007/s12016-010-8235-x PubMed DOI
Petersen J, Castro L, Bengaard AKP, Pecha S, Ismaili D, Schulz C, Sahni J, Steenpass A, Meier C, Reichenspurner H, Jespersen T, Eschenhagen T, Christ T (2022) Muscarinic receptor activation reduces force and arrhythmias in human atria independent of IK,ACh. J Cardiovasc Pharmacol 79(5):678–686. https://doi.org/10.1097/FJC.0000000000001237 PubMed DOI
Putney JW Jr, Van De Walle CM (1980) The relationship between muscarinic receptor binding and ion movements in rat parotid cells. J Physiol 299(1):521–531. https://doi.org/10.1113/jphysiol.1980.sp013140 PubMed DOI PMC
RayoAbella LM, Jacob H, Hesse C, Hofmann B, Schneider S, Schindler L, Keller M, Buchwalow IB, Jin C, Panula P, Dhein S, Klimas J, Hadova K, Gergs U, Neumann J (2024) Initial characterization of a transgenic mouse with overexpression of the human D1-dopamine receptor in the heart. Naunyn Schmiedebergs Arch Pharmacol. https://doi.org/10.1007/s00210-023-02901-y DOI
Ryabkova VA, Shubik YV, Erman MV, Churilov LP, Kanduc D, Shoenfeld Y (2019) Lethal immunoglobulins: autoantibodies and sudden cardiac death. Autoimmun Rev 18(4):415–425. https://doi.org/10.1016/j.autrev.2018.12.005 PubMed DOI
Sassu E, Tumlinson G, Stefanovska D, Fernández MC, Iaconianni P, Madl J, Brennan TA, Koch M, Cameron BA, Preissl S, Ravens U, Schneider-Warme F, Kohl P, Zgierski-Johnston CM, Hortells L (2024) Age-related structural and functional changes of the intracardiac nervous system. J Mol Cell Cardiol 187:1–14. https://doi.org/10.1016/j.yjmcc.2023.12.002 PubMed DOI
Schwarz R, Hofmann B, Gergs U, Neumann J (2023) Cantharidin increases the force of contraction and protein phosphorylation in the isolated human atrium. Naunyn Schmiedeberg´s Arch Pharmacol 396(10):2613–2625. https://doi.org/10.1007/s00210-023-02483-9 PubMed DOI
Schwarz R, Hofmann B, Gergs U, Neumann J (2024) Cantharidin and sodium fluoride attenuate the negative inotropic effects of carbachol in the isolated human atrium. Naunyn-Schmiedebergs Arch Pharmacol 397(4):2183–2202. https://doi.org/10.1007/s00210-023-02747-4 PubMed DOI
Shi H, Wang H, Li D, Nattel S, Wang Z (2004) Differential alterations of receptor densities of three muscarinic acetylcholine receptor subtypes and current densities of the corresponding K+ channels in canine atria with atrial fibrillation induced by experimental congestive heart failure. Cell Physiol Biochem 14(1–2):31–40. https://doi.org/10.1159/000076924 PubMed DOI
Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M(2) and M(4) receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292:877–885 PubMed
Swynghedauw B, Besse S, Assayag P, Carré F, Chevalier B, Charlemagne D, Delcayre C, Hardouin S, Heymes C, Moalic JM (1995) Molecular and cellular biology of the senescent hypertrophied and failing heart. Am J Cardiol 76(13):2D-7D. https://doi.org/10.1016/s0002-9149(99)80484-6 PubMed DOI
Wakimoto H, Maguire CT, Kovoor P, Hammer PE, Gehrmann J, Triedman JK, Berul CI (2001) Induction of atrial tachycardia and fibrillation in the mouse heart. Cardiovasc Res 50(3):463–473. https://doi.org/10.1016/s0008-6363(01)00264-4 PubMed DOI
Yang YH, Zheng QS, Li J, Shang FJ, Liu T, Wang HT, Liu XT, Liu L (2009) Age-related changes in the atrial muscarinic type 2 receptor and their effects on atrial fibrillation vulnerability in rabbits. Exp Gerontol 44(9):572–578. https://doi.org/10.1016/j.exger.2009.06.002 PubMed DOI
Yeh YH, Qi X, Shiroshita-Takeshita A, Liu J, Maguy A, Chartier D, Hebert T, Wang Z, Nattel S (2007) Atrial tachycardia induces remodelling of muscarinic receptors and their coupled potassium currents in canine left atrial and pulmonary vein cardiomyocytes. Br J Pharmacol. 152(7):1021–32. https://doi.org/10.1038/sj.bjp.0707376 PubMed DOI PMC