Structural Analysis of the Newly Prepared Ti55Al27Mo13 Alloy by Aluminothermic Reaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/18_069/0010045
Ministry of Education, co-financed by the European Union
CZ.10.02.01/00/24_061/0000462
Ministry of Environment, co-financed by the European Union
PubMed
40805459
PubMed Central
PMC12348209
DOI
10.3390/ma18153583
PII: ma18153583
Knihovny.cz E-zdroje
- Klíčová slova
- EDS analysis, Ti–Al–Mo alloy, aluminothermic reaction, chemical composition, scanning electron microscopy,
- Publikační typ
- časopisecké články MeSH
This study presents the structural and compositional characterisation of a newly developed Ti55Al27Mo13 alloy synthesised via aluminothermic reaction. The alloy was designed to overcome the limitations of conventional processing routes for high-melting-point elements such as Ti and Mo, enabling the formation of a complex, multi-phase microstructure in a single high-temperature step. The aim was to develop and characterise a material with microstructural features expected to enhance wear resistance, oxidation behaviour, and thermal stability in future applications. The alloy is intended as a precursor for composite nanopowders and surface coatings applied to aluminium-, magnesium-, and iron-based substrates subjected to mechanical and thermal loading. Elemental analysis (XRF, EDS) confirmed the presence of Ti, Al, Mo, and minor elements such as Si, Fe, and C. Microstructural investigations using laser confocal and scanning electron microscopy revealed a heterogeneous structure comprising solid solutions, eutectic regions, and dispersed oxide and carbide phases. Notably, the alloy exhibits high hardness values, reaching >2400 HV in Al2O3 regions and ~1300 HV in Mo- and Si-enriched solid solutions. These results suggest the material's substantial potential for protective surface engineering. Further tribological, thermal, and corrosion testing, conducted with meticulous attention to detail, will follow to validate its functional performance in target applications.
Zobrazit více v PubMed
Michna Š., Knaislová A., Hren I., Novotný J., Michnová L., Svobodová J. Chemical and Structural Analysis of Newly Prepared Co–W–Al Alloy by Aluminothermic Reaction. Materials. 2022;15:658. doi: 10.3390/ma15020658. PubMed DOI PMC
Maleki A., Hosseini N., Niroumand B. A review on aluminothermic reaction of Al/ZnO system. Ceram. Int. 2018;44:10–23. doi: 10.1016/j.ceramint.2017.09.168. DOI
Xing Z., Lu J., Ji X. A Brief Review of Metallothermic Reduction Reactions for Materials Preparation. Small Methods. 2018;2:1800062. doi: 10.1002/smtd.201800062. DOI
Gostishchev V.V., Kim E.D., Khimukhin S.N., Ri E.H. High–Temperature Synthesis of Al–Zr–W Aluminum–Matrix Alloys. Inorg. Mater. 2019;55:32–36. doi: 10.1134/S0020168519010059. DOI
Kirakosyan H., Nazaretyan K., Kharatyan A., Aydinyan S. The preparation of high–entropy refractory alloys by aluminothermic reduction process. AIP Conf. Proc. 2024;2989:040012.
Zhang W., Chabok A., Kooi B.J., Pei Y. Additive manufactured high entropy alloys: A review of the microstructure and properties. Mater. Des. 2022;220:110875. doi: 10.1016/j.matdes.2022.110875. DOI
Birol Y. Aluminothermic reduction of boron oxide for the manufacture of Al–B alloys. Mater. Chem. Phys. 2012;136:963–966. doi: 10.1016/j.matchemphys.2012.08.030. DOI
Meir Y., Jerby E. Underwater microwave ignition of hydrophobic thermite powder enabled by the bubble–marble effect. Appl. Phys. Lett. 2015;107:054101. doi: 10.1063/1.4928110. DOI
de Souza K.M., de Lemos M.J.S. Detailed Numerical Modeling and Simulation of Fe2O3−Al Thermite Reaction. Propellants Explos. Pyrotech. 2021;46:806–824. doi: 10.1002/prep.202000290. DOI
Koch E.C., Knapp S. Thermites—Versatile Materials. Propellants Explos. Pyrotech. 2019;44:7. doi: 10.1002/prep.201980131. DOI
Kim D.K., Bae J.H., Kang M.K., Kim H.J. Analysis on thermite reactions of CuO nanowires and nanopowders coated with Al. Curr. Appl. Phys. Juneec. 2011;11:1067–1070. doi: 10.1016/j.cap.2011.01.043. DOI
Moore J.J., Feng H.J. Combustion synthesis of advanced materials: Part, I. Reaction parameters. Prog. Mater. Sci. 1995;39:243–273. doi: 10.1016/0079-6425(94)00011-5. DOI
Manojlovic V., Kamberovic Ž., Gavrilovski M., Sokic M., Korac M. Combustion of Metallurgical Wastes Using Secondary Aluminum Foils. Combust. Sci. Technol. 2017;189:1072. doi: 10.1080/00102202.2016.1274310. DOI
Cojocaru M., Branzei M., Coman T.A. Thermodynamics of Iron Metallothermy. Adv. Mater. Res. 2015;1114:112–117. doi: 10.4028/www.scientific.net/AMR.1114.112. DOI
United States Military Chemistry and Chemical Agents. [(accessed on 22 May 2025)]; Available online: https://catalog.hathitrust.org/Record/009425398.
Venugopalan R., Sathiyamoorthy D. Investigation through factorial design on novel method of preparing vanadium carbide using carbon during aluminothermic reduction. J. Mater. Process. Technol. 2006;176:133–139. doi: 10.1016/j.jmatprotec.2006.03.118. DOI
Biswas A., Nair K.U., Bose D.K. Preparation of single–phase Cr7C3 by aluminothermic reduction. J. Alloys Compd. 1993;198:181–185. doi: 10.1016/0925-8388(93)90163-H. DOI
Xu Y., Yang Z., Han Z., Liu G., Li J. Fabrication of Ni/WC composite with two distinct layers through centrifugal infiltration combined with a thermite reaction. Ceram. Int. 2014;40:1037–1043. doi: 10.1016/j.ceramint.2013.06.101. DOI
Sheybani K., Paydar M.H., Shariat M.H. Effect of mechanical activation on aluminothermic reduction of molybdenum trioxide. Int. J. Refract. Met. Hard Mater. 2019;82:245–254. doi: 10.1016/j.ijrmhm.2019.04.015. DOI
Distl B., Stein F. Ti–Al–based alloys with Mo: High–temperature phase equilibria and microstructures in the ternary system. Philos. Mag. 2024;104:28–54. doi: 10.1080/14786435.2023.2279575. DOI
Singh A.K., Banumathy S., Sowjanya D., Rao M.H. On the structure of the B2 phase in Ti–Al–Mo alloys. J. Appl. Phys. 2008;103:103519. doi: 10.1063/1.2931004. DOI
Chen Z., Jones I.P., Small C.J. The structure of the alloy Ti 50Al 15Mo between 800 °C and 1400 °C. Acta Mater. 1997;45:3801–3815. doi: 10.1016/S1359-6454(97)00049-9. DOI
Abdoshahi N., Dehghani M., Hatzenbichler L., Spoerk–Erdely P., Ruban A.V., Musi M., Mayer S., Spitaler J., Holec D. Structural stability and mechanical properties of TiAl+Mo alloys: A comprehensive ab initio study. Acta Mater. 2021;221:117427. doi: 10.1016/j.actamat.2021.117427. DOI
Huang X.M., Zhu L.L., Cai G.M., Liu H.S., Jin Z.P. Experimental investigation of phase equilibria in the Ti–Al–Mo ternary system. J. Mater. Sci. 2017;52:2270–2284. doi: 10.1007/s10853-016-0520-5. DOI
Kulkarni K. Master’s Thesis. Indian Institute of Technology Kanpur; Kanpur, India: [(accessed on 22 May 2025)]. Investigation of Interdiffusion and Diffusional Interactions in the Ternary Ti–Al–Mo Alloys. Available online: https://www.iitk.ac.in/new/investigation–of–interdiffusion–and–diffusional–interactions–in–the–ternary–ti–al–mo–alloys.
Yang G., Xu X., Liang Y., Wang Y., Hao G., Zhai Y., Lin J. Effects of Al and Mo on Microstructure and Hardness of As–Cast TNM TiAl Alloys. [(accessed on 22 May 2025)];Metals. 2021 11:1849. doi: 10.3390/met11111849. Available online: https://click.endnote.com/viewer?doi=10.3390%2Fmet11111849&token=WzE3OTc5MywiMTAuMzM5MC9tZXQxMTExMTg0OSJd._xThUeqp6RmM9nD9b2eNtQhTuLk. DOI
Tang J.J., Liang C., Xu C.G., Li J.Q. Effect of Alloying Elements on Strengthening Phase and Solidification Structure of Ti–Al–Mo–Zr Titanium Alloy. Adv. Mater. Res. 2022;1173:107–112. doi: 10.4028/p-n3d3bl. DOI
Singh A.K., Banerjee D. Transformations in α2+γ titanium aluminide alloys containing molybdenum: Part, I. Solidification behavior. Metall. Mater. Trans. A. 1997;28:1735–1743. doi: 10.1007/s11661-997-0105-7. DOI
Azad S., Mandal R.K., Singh A.K. Effect of Mo addition on transformation behavior of (α2 + γ) based Ti–Al alloys. Mater. Sci. Eng. A. 2006;429:219–224. doi: 10.1016/j.msea.2006.05.077. DOI
Gupta J., Ghosh S., Aravindan S. Effect of Mo content on Ti–Al–Mo ternary alloys for biomedical applications. Mater. Lett. 2021;305:130865. doi: 10.1016/j.matlet.2021.130865. DOI
Sun C., Xiao R., Li H., Ruan Y. Effects of phase selection and microsegregation on corrosion behaviors of Ti–Al–Mo alloys. Corros. Sci. 2022;200:110232. doi: 10.1016/j.corsci.2022.110232. DOI
Jimenez–Marcos C., Mirza–Rosca J.C., Baltatu M.S., Vizureanu P. Effect of Si Contents on the Properties of Ti15Mo7ZrxSi Alloys. Materials. 2023;16:4906. doi: 10.3390/ma16144906. PubMed DOI PMC
Jiang Z., Dai X., Middleton H. Effect of silicon on corrosion resistance of Ti–Si alloys. Mater. Sci. Eng. B. 2011;176:79–86. doi: 10.1016/j.mseb.2010.09.006. DOI
Kaur M., Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C. 2019;102:844–862. doi: 10.1016/j.msec.2019.04.064. PubMed DOI
Jirón–Lazos U., Rodil S.E., Mazón–Montijo D.A., Pérez–Higareda J.R., Torres–Torres D., Garay–Tapia A.M., Montiel–González Z. Microstructural behavior of the Ti–Al–Mo–N system controlled by Mo content: Impact on the performance as hard coatings. J. Mater. Sci. 2023;58:11771–11787. doi: 10.1007/s10853-023-08725-8. DOI
Leyens C., Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Wiley; Hoboken, NJ, USA: 2003.
Xu X., Zhang Q., Wu J., Wang H., Tian K., Wu C. Preparation and characterization of corundum–based ceramics for thermal storage. Ceram. Int. 2021;47:23620–23629. doi: 10.1016/j.ceramint.2021.05.081. DOI
Wang N., Choi Y., Matsugi K. Effect of C content on the microstructure and properties of in–situ synthesized TiC particles reinforced Ti composites. Sci. Rep. 2023;13:22206. doi: 10.1038/s41598-023-49783-x. PubMed DOI PMC
Wang Z., Cheng H., Lv Y., Zhang Z., Fan J., Zhang H., Liu B., Ma Z. Effect of TiC content on the microstructure and mechanical properties of Ti–30Mo–xTiC composites. Int. J. Refract. Met. Hard Mater. 2022;107:105879. doi: 10.1016/j.ijrmhm.2022.105879. DOI
Wei W.H., Shao Z.N., Shen J., Duan X.M. Microstructure and mechanical properties of in situ formed TiC–reinforced Ti–6Al–4V matrix composites. Mater. Sci. Technol. 2018;34:191–198. doi: 10.1080/02670836.2017.1366737. DOI
Fargas G., Roa J.J., Sefer B., Pederson R., Antti M.L., Mateo A. Influence of cyclic thermal treatments on the oxidation behavior of Ti–6Al–2Sn–4Zr–2Mo alloy. Mater. Charact. 2018;145:218–224. doi: 10.1016/j.matchar.2018.08.049. DOI
Semiatin S.L., Thomas J.F., Dadras P. Processing–microstructure relationships for Ti–6Al–2Sn–4Zr–2Mo–0.1Si. Metall. Trans. A. 1983;14:2363–2374. doi: 10.1007/BF02663312. DOI
Stella P., Giovanetti I., Masi G., Leoni M., Molinari A. Microstructure and microhardness of heat–treated Ti–6Al–2Sn–4Zr–6Mo alloy. J. Alloys Compd. 2013;567:134–140. doi: 10.1016/j.jallcom.2013.03.046. DOI
Carrozza A., Aversa A., Fino P., Lombardi M. A study on the microstructure and mechanical properties of the Ti–6Al–2Sn–4Zr–6Mo alloy produced via Laser Powder Bed Fusion. J. Alloys Compd. 2021;870:159329. doi: 10.1016/j.jallcom.2021.159329. DOI
Gatina S.A., Polyakova V.V., Polyakov A.V., Semenova I.P. Microstructure and Mechanical Properties of β–Titanium Ti–15Mo Alloy Produced by Combined Processing including ECAP–Conform and Drawing. Materials. 2022;15:8666. doi: 10.3390/ma15238666. PubMed DOI PMC
Awad A.H., Aly H.A., Saood M. Physical, mechanical, and corrosion properties of Ti–12Mo and Ti–15Mo alloys fabricated by elemental blend and mechanical alloying techniques. Mater. Chem. Phys. 2024;312:128661. doi: 10.1016/j.matchemphys.2023.128661. DOI