The Role of Random Texture Scattering on the Absorptance Enhancement in Halide Perovskite Layers

. 2025 Sep 03 ; 17 (35) : 49986-49992. [epub] 20250820

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40832944

Hybrid perovskites are a class of thin-film semiconductors with remarkably steep absorption edges and high absorption coefficient. In the case of solar cells, a film thickness of less than a micrometer is usually sufficient to absorb most of the light when combined with a back reflector. Otherwise, an efficient light trapping strategy may be desired, e.g., in the case of tandem or semitransparent cells. Traditionally, light trapping is accomplished by employing randomly nanotextured substrates. In this contribution, absorption enhancements due to not only nanorough but also microrough substrates and with or without additional gold coating are evaluated from the point of gains in photocurrent and from the point of view of valid optical models. We find that light trapping from nanotextured substrates follows mainly the Yablonovitch model, leading to an apparent shift of absorption edge. This contrasts with microrough substrates and also the remarkable efficient light trapping capabilities of bare layers due to their native surface roughness, where the path enhancement in this case is almost uniform, making the layer optically thicker by factor two or more. Light trapping optical models as well as analytical techniques are reviewed, and new insights are presented.

Zobrazit více v PubMed

Chin X. Y., Turkay D., Steele J. A., Tabean S., Eswara S., Mensi M., Fiala P., Wolff C. M., Paracchino A., Artuk K., Jacobs D., Guesnay Q., Sahli F., Andreatta G., Boccard M., Jeangros Q., Ballif C.. Interface Passivation for 31.25%-Efficient Perovskite/Silicon Tandem Solar Cells. Science. 2023;381(6653):59–63. doi: 10.1126/science.adg0091. PubMed DOI

National Renewable Energy Laboratory . NREL Efficiency Chart. Https://Www.Nrel.Gov/Pv/Cell-Efficiency.Html, 2023.

34.85%! LONGi Breaks World Record for Crystalline Silicon-Perovskite Tandem Solar Cell Efficiency Again. https://www.longi.com/en/news/silicon-perovskite-tandem-solar-cells-new-world-efficiency/ (accessed July 25, 2025).

Chen B., Baek S.-W., Hou Y., Aydin E., De Bastiani M., Scheffel B., Proppe A., Huang Z., Wei M., Wang Y.-K., Jung E.-H., Allen T. G., Van Kerschaver E., García de Arquer F. P., Saidaminov M. I., Hoogland S., De Wolf S., Sargent E. H.. Enhanced Optical Path and Electron Diffusion Length Enable High-Efficiency Perovskite Tandems. Nat. Commun. 2020;11(1):1257. doi: 10.1038/s41467-020-15077-3. PubMed DOI PMC

Mariotti S., Köhnen E., Scheler F., Sveinbjörnsson K., Zimmermann L., Piot M., Yang F., Li B., Warby J., Musiienko A., Menzel D., Lang F., Keßler S., Levine I., Mantione D., Al-Ashouri A., Härtel M. S., Xu K., Cruz A., Kurpiers J., Wagner P., Köbler H., Li J., Magomedov A., Mecerreyes D., Unger E., Abate A., Stolterfoht M., Stannowski B., Schlatmann R., Korte L., Albrecht S.. Interface Engineering for High-Performance, Triple-Halide Perovskite–Silicon Tandem Solar Cells. Science. 2023;381(6653):63–69. doi: 10.1126/science.adf5872. PubMed DOI

Turkay D., Artuk K., Chin X.-Y., Jacobs D., Moon S.-J., Walter A., Mensi M., Andreatta G., Blondiaux N., Lai H., Fu F., Boccard M., Jeangros Q., Ballif C., Wolff C.. High-Efficiency (>30%) Monolithic Perovskite-Si Tandem Solar Cells with Flat Front-Side Wafers. Research Square. 2023;5:1. doi: 10.21203/rs.3.rs-3015915/v1. DOI

Wang F., Zhang Y., Yang M., Fan L., Yang L., Sui Y., Yang J., Zhang X.. Toward Ultra-Thin and Omnidirectional Perovskite Solar Cells: Concurrent Improvement in Conversion Efficiency by Employing Light-Trapping and Recrystallizing Treatment. Nano Energy. 2019;60:198–204. doi: 10.1016/j.nanoen.2019.03.059. DOI

Iftiquar S. M., Yi J.. Numerical Simulation and Light Trapping in Perovskite Solar Cell. J. Photon. Energy. 2016;6(2):025507. doi: 10.1117/1.JPE.6.025507. DOI

Tooghi A., Fathi D., Eskandari M.. Numerical Study of a Highly Efficient Light Trapping Nanostructure of Perovskite Solar Cell on a Textured Silicon Substrate. Sci. Rep. 2020;10(1):18699. doi: 10.1038/s41598-020-75630-4. PubMed DOI PMC

Du Q. G., Shen G., John S.. Light-Trapping in Perovskite Solar Cells. AIP Adv. 2016;6(6):065002. doi: 10.1063/1.4953336. DOI

Sun S., Xie Z., Qin G., Xiao L.. Light Trapping Nano Structures with over 30% Enhancement in Perovskite Solar Cells. Org. Electron. 2019;75:105385. doi: 10.1016/j.orgel.2019.105385. DOI

Wang Y., Wang P., Zhou X., Li C., Li H., Hu X., Li F., Liu X., Li M., Song Y.. Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping. Adv. Energy Mater. 2018;8(12):1702960. doi: 10.1002/aenm.201702960. DOI

Li J. F., Hao H. Y., Hao J. B., Shi L., Dong J. J., Liu H., Xing J.. Light Trapping Effect of Textured FTO in Perovskite Solar Cells. IOP Conf. Ser.: Mater. Sci. Eng. 2019;479:012046. doi: 10.1088/1757-899X/479/1/012046. DOI

Mishima R., Hino M., Uzu H., Meguro T., Yamamoto K.. High-Current Perovskite Solar Cells Fabricated with Optically Enhanced Transparent Conductive Oxides. Appl. Phys. Express. 2017;10(6):062301. doi: 10.7567/APEX.10.062301. DOI

Jäger K., Zeman M.. A Scattering Model for Surface-Textured Thin Films. Appl. Phys. Lett. 2009;95(17):171108. doi: 10.1063/1.3254239. DOI

Zhang H., Kramarenko M., Osmond J., Toudert J., Martorell J.. Natural Random Nanotexturing of the Au Interface for Light Backscattering Enhanced Performance in Perovskite Solar Cells. ACS Photonics. 2018;5(6):2243–2250. doi: 10.1021/acsphotonics.8b00099. DOI

Li P., Jiang X., Huang S., Liu Y., Fu N.. Plasmonic Perovskite Solar Cells: An Overview from Metal Particle Structure to Device Design. Surf. Interfaces. 2021;25:101287. doi: 10.1016/j.surfin.2021.101287. DOI

Guan T., Chen W., Tang H., Li D., Wang X., Weindl C. L., Wang Y., Liang Z., Liang S., Xiao T., Tu S., Roth S. V., Jiang L., Müller-Buschbaum P.. Decoding the Self-Assembly Plasmonic Interface Structure in a PbS Colloidal Quantum Dot Solid for a Photodetector. ACS Nano. 2023;17(22):23010–23019. doi: 10.1021/acsnano.3c08526. PubMed DOI

Temple, T. L. ; Boden, S. A. ; Bagnall, D. M. . Plasmonic and Biomimetic Light-Trapping for Photovoltaics; Tsakalakos, L. , Ed.; San Diego: CA, 2009; p 74110I.

Morawiec S., Holovský J., Mendes M. J., Müller M., Ganzerová K., Vetushka A., Ledinský M., Priolo F., Fejfar A., Crupi I.. Experimental Quantification of Useful and Parasitic Absorption of Light in Plasmon-Enhanced Thin Silicon Films for Solar Cells Application. Sci. Rep. 2016;6:22481. doi: 10.1038/srep22481. PubMed DOI PMC

Sha W. E. I., Ren X., Chen L., Choy W. C. H.. The Efficiency Limit of CH3NH3PbI3 Perovskite Solar Cells. Appl. Phys. Lett. 2015;106(22):221104. doi: 10.1063/1.4922150. DOI

Yablonovitch E., Cody G. D.. Intensity Enhancement in Textured Optical Sheets for Solar Cells. IEEE Trans. Electron Devices. 1982;29(2):300–305. doi: 10.1109/T-ED.1982.20700. DOI

Tiedje T., Yablonovitch E., Cody G. D., Brooks B. G.. Limiting Efficiency of Silicon Solar Cells. IEEE Trans. Electron Devices. 1984;31(5):711–716. doi: 10.1109/T-ED.1984.21594. DOI

Beckmann, P. ; Spizzichino, A. . Scattering of Electromagnetic Waves from Rough Surfaces; Pergamon: London, 1963.

Poruba A., Fejfar A., Remeš Z., Špringer J., Vaněček M., Kočka J., Meier J., Torres P., Shah A.. Optical Absorption and Light Scattering in Microcrystalline Silicon Thin Films and Solar Cells. J. Appl. Phys. 2000;88:148. doi: 10.1063/1.373635. DOI

Peter Amalathas A., Landová L., Hájková Z., Horák L., Ledinsky M., Holovský J.. Controlled Growth of Large Grains in CH 3 NH 3 PbI 3 Perovskite Films Mediated by an Intermediate Liquid Phase without an Antisolvent for Efficient Solar Cells. ACS Appl. Energy Mater. 2020;3(12):12484–12493. doi: 10.1021/acsaem.0c02441. DOI

Hishikawa Y., Nakamura N., Tsuda S., Nakano S., Yasuo Kishi Y. K., Yukinori Kuwano Y. K.. Interference-Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films. Jpn. J. Appl. Phys. 1991;30:1008–1014. doi: 10.1143/JJAP.30.1008. DOI

Sládek P., St’ahel P., Št’astný J.. Modifications of the Optical Parameters of Silicon Thin Films Due to Light Scattering. J. Non-Cryst. Solids. 2002;299–302:295–299. doi: 10.1016/S0022-3093(01)00952-8. DOI

Faÿ S., Steinhauser J., Oliveira N., Vallat-Sauvain E., Ballif C.. Opto-Electronic Properties of Rough LP-CVD ZnO:B for Use as TCO in Thin-Film Silicon Solar Cells. Thin Solid Films. 2007;515(24):8558–8561. doi: 10.1016/j.tsf.2007.03.130. DOI

Jost G., Merdzhanova T., Zimmermann T., Hüpkes J.. Process Monitoring of Texture-Etched High-Rate ZnO:Al Front Contacts for Silicon Thin-Film Solar Cells. Thin Solid Films. 2013;532:66–72. doi: 10.1016/j.tsf.2012.11.147. DOI

Sato, K. ; Goto, Y. ; Wakayama, Y. ; Hayashi, Y. ; Adachi, K. ; Nishimura, H. . Highly Textured SnO2:F TCO Films for a-Si Solar Cells. Reports of the Research Laboratory, Asahi Glass Co., Ltd., 1992; Vol. 42, p 129.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...