Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application

. 2016 Mar 03 ; 6 () : 22481. [epub] 20160303

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26935322

A combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts for the total absorptance and the photocurrent signal accounts only for the photons absorbed in the μc-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) light trapping structure. We demonstrate that with a 0.9 μm thick absorber layer the optical losses related to the plasmonic light trapping in the whole structure are insignificant below 730 nm, above which they increase rapidly with increasing illumination wavelength. An average useful absorption of 43% and an average parasitic absorption of 19% over 400-1100 nm wavelength range is measured for μc-Si:H films deposited on optimized self-assembled Ag nanoparticles coupled with a flat mirror (plasmonic back reflector). For this sample, we demonstrate a significant broadband enhancement of the useful absorption resulting in the achievement of 91% of the maximum theoretical Lambertian limit of absorption.

Zobrazit více v PubMed

Priolo F., Gregorkiewicz T., Galli M. & Krauss T. F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechol. 9, 19–32 (2014). PubMed

Battaglia C. et al. Light trapping in solar cells: Can periodic beat random? ACS Nano 6, 2790–2797 (2012). PubMed

Zhu J., Hsu C.-M., Yu Z., Fan S. & Cui Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010). PubMed

Vanecek M. et al. Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential. Appl. Phys. Lett. 98, 163503 (2011).

Mavrokefalos A., Han S. E., Yerci S., Branham M. S. & Chen G. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 12, 2792–2796 (2012). PubMed

Petermann J. H. et al. 19%‐efficient and 43 μm‐thick crystalline Si solar cell from layer transfer using porous silicon. Prog. Photovolt. 20, 1–5 (2012).

Atwater H. A. & Polman A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010). PubMed

Green M. A. & Pillai S. Harnessing plasmonics for solar cells. Nat. Photonics 6, 130–132 (2012).

Callahan D. M., Munday J. N. & Atwater H. A. Solar cell light trapping beyond the ray optic limit. Nano Lett. 12, 214–218 (2012). PubMed

Thompson C. V. Solid-state dewetting of thin films. Ann. Rev. Mater. Res. 42, 399–434 (2012).

Morawiec S. et al. Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties. Nanotechnology 24, 265601 (2013). PubMed

Mendes M. J. et al. Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids. Nanotechnology 26, 135202 (2015). PubMed

Tan H., Santbergen R., Smets A. H. M. & Zeman M. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano. Lett. 12, 4070–4076 (2012). PubMed

Zeman M., Isabella O., Solntsev S. & Jäger K. Modelling of thin-film silicon solar cells. Sol. Energ. Mat. Sol. Cells. 119, 94–111 (2013).

Beck F. J. & Mokkapati S. & Catchpole, K. R. “Light trapping with plasmonic particles: beyond the dipole model. Opt. Express 19, 25230–25241 (2011). PubMed

Deceglie M. G., Ferry V. E., Alivisatos A. P. & Atwater H. A. Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett. 12, 2894–2900 (2012). PubMed

Pennanen A. M. & Toppari J. J. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles. Opt. Express 21, A23–A35 (2013). PubMed

Schuster C. S. et al. Plasmonic and diffractive nanostructures for light trapping – an experimental comparison. Optica 2, 194–200 (2015).

Pahud C. et al. Plasmonic silicon solar cells: impact of material quality and geometry. Opt. Express 21, A786–A797 (2013). PubMed

Morawiec S. et al. Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors. Opt. Express 22, A1059–A1070 (2014). PubMed

Zhou K. et al. The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector. Opt. Express 20, A777 (2012). PubMed

Zhang Y., Jia B., Ouyang Z. & Gu M. Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells. J. Appl. Phys. 116, 124303 (2014).

Jackson W. B., Amer N. M., Boccara A. C. & Fournier D. Photothermal deflection spectroscopy and detection. Appl. Opt. 20, 1333–1344 (1981). PubMed

Vanecek M. & Poruba A. Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells. Appl. Phys. Lett. 80, 719–721 (2002).

Holovský J. et al. Time evolution of surface defect states in hydrogenated amorphous silicon studied by photothermal and photocurrent spectroscopy and optical simulation. J. Non-Cryst. Solids 358, 2035–2038 (2012).

Holovský J. et al. Fourier transform photocurrent measurement of thin silicon films on rough, conductive and opaque substrates. Phys. Status Solidi A 207, 578–581 (2010).

Santbergen R., Tan H., Zeman M. & Smets A. H. M. Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells. Opt. Express 22, A1026 (2014). PubMed

Mendes M. J., Morawiec S., Simone F., Priolo F. & Crupi I. Colloidal plasmonic back reflectors for light trapping in solar cells. Nanoscale 6, 4796–4805 (2014). PubMed

Fu Q. & Sun W. Mie theory for light scattering by a spherical particle in an absorbing medium. Appl. Opt. 40, 1354–1361 (2001). PubMed

Temple T. L. & Bagnall D. M. Broadband scattering of the solar spectrum by spherical metal nanoparticles. Prog. Photovolt. 21, 600–611 (2013).

Catchpole K. R. & Polman A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008).

Ledinský M. et al. Light trapping in thin-film solar cells measured by Raman spectroscopy. Appl. Phys. Lett. 105, 111106 (2014).

Araújo A. et al. Highly efficient nanoplasmonic SERS on cardboard packaging substrates. Nanotechnology 25, 415202 (2014). PubMed

Green M. A. Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions. Prog. Photovoltaics 10(4), 235–241 (2002).

Jun K. H., Carius R. & Stiebig H. Optical characteristics of intrinsic microcrystalline silicon. Phys. Rev. B 66, 115301 (2002).

Pillai S., Beck F. J., Catchpole K. R., Ouyang Z. & Green M. A. The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. J. Appl. Phys. 109 (2011).

Tan H., Santbergen R., Yang G., Smets A. H. M. & Zeman M. Combined Optical and Electrical Design of Plasmonic Back Reflector for High-Efficiency Thin-Film Silicon Solar Cells. IEEE J PHOTOVOLT 3, 53–58 (2013).

Kowalczewski P., Liscidini M. & Andreani L. C. Light trapping in thin-film solar cells with randomly rough and hybrid textures. Opt. Express 21, A808–A820 (2013). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Role of Random Texture Scattering on the Absorptance Enhancement in Halide Perovskite Layers

. 2025 Sep 03 ; 17 (35) : 49986-49992. [epub] 20250820

Nanostructures for Light Trapping in Thin Film Solar Cells

. 2019 Sep 17 ; 10 (9) : . [epub] 20190917

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...