Nanostructures for Light Trapping in Thin Film Solar Cells

. 2019 Sep 17 ; 10 (9) : . [epub] 20190917

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31533261

Thin film solar cells are one of the important candidates utilized to reduce the cost of photovoltaic production by minimizing the usage of active materials. However, low light absorption due to low absorption coefficient and/or insufficient active layer thickness can limit the performance of thin film solar cells. Increasing the absorption of light that can be converted into electrical current in thin film solar cells is crucial for enhancing the overall efficiency and in reducing the cost. Therefore, light trapping strategies play a significant role in achieving this goal. The main objectives of light trapping techniques are to decrease incident light reflection, increase the light absorption, and modify the optical response of the device for use in different applications. Nanostructures utilize key sets of approaches to achieve these objectives, including gradual refractive index matching, and coupling incident light into guided modes and localized plasmon resonances, as well as surface plasmon polariton modes. In this review, we discuss some of the recent developments in the design and implementation of nanostructures for light trapping in solar cells. These include the development of solar cells containing photonic and plasmonic nanostructures. The distinct benefits and challenges of these schemes are also explained and discussed.

Zobrazit více v PubMed

Lewis N.S. Research opportunities to advance solar energy utilization. Science. 2016;351:aad1920. doi: 10.1126/science.aad1920. PubMed DOI

Agency I.E. Renewables 2018. [(accessed on 1 September 2019)]; Available online: https://www.iea.org/renewables2018/power/

ITRPV International Technology Roadmap for Photovoltaic(ITRPV): Results 2017 including Maturity Report (2018) [(accessed on 1 September 2019)]; Available online: https://itrpv.vdma.org/

Battaglia C., Hsu C.-M., Söderström K., Escarré J., Haug F.-J., Charrière M., Boccard M., Despeisse M., Alexander D.T., Cantoni M. Light trapping in solar cells: Can periodic beat random? ACS Nano. 2012;6:2790–2797. doi: 10.1021/nn300287j. PubMed DOI

Zhu J., Hsu C.-M., Yu Z., Fan S., Cui Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 2009;10:1979–1984. doi: 10.1021/nl9034237. PubMed DOI

Garnett E., Yang P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010;10:1082–1087. doi: 10.1021/nl100161z. PubMed DOI

Kuang Y., Van der Werf K.H., Houweling Z.S., Schropp R.E. Nanorod solar cell with an ultrathin a-Si: H absorber layer. Appl. Phys. Lett. 2011;98:113111. doi: 10.1063/1.3567527. DOI

Chang H.-C., Lai K.-Y., Dai Y.-A., Wang H.-H., Lin C.-A., He J.-H. Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency. Energy Environ. Sci. 2011;4:2863–2869. doi: 10.1039/c0ee00595a. DOI

Cho K.S., Mandal P., Kim K., Baek I.H., Lee S., Lim H., Cho D.J., Kim S., Lee J., Rotermund F. Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography. Opt. Commun. 2011;284:2608–2612. doi: 10.1016/j.optcom.2011.01.042. DOI

Kim J., Hong A.J., Nah J.-W., Shin B., Ross F.M., Sadana D.K. Three-dimensional a-Si: H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres. ACS Nano. 2011;6:265–271. doi: 10.1021/nn203536x. PubMed DOI

Battaglia C., Escarré J., Söderström K., Charriere M., Despeisse M., Haug F.-J., Ballif C. Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nat. Photonics. 2011;5:535. doi: 10.1038/nphoton.2011.198. DOI

Taretto K., Rau U. Modeling extremely thin absorber solar cells for optimized design. Prog. Photovolt. Res. Appl. 2004;12:573–591. doi: 10.1002/pip.549. DOI

Shah A., Schade H., Vanecek M., Meier J., Vallat-Sauvain E., Wyrsch N., Kroll U., Droz C., Bailat J. Thin-film silicon solar cell technology. Prog. Photovolt. Res. Appl. 2004;12:113–142. doi: 10.1002/pip.533. DOI

Mallick S.B., Agrawal M., Peumans P. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Opt. Express. 2010;18:5691–5706. doi: 10.1364/OE.18.005691. PubMed DOI

Lin C.-A., Tsai M.-L., Wei W.-R., Lai K.-Y., He J.-H. Packaging Glass with a Hierarchically Nanostructured Surface: A Universal Method to Achieve Self-Cleaning Omnidirectional Solar Cells. ACS Nano. 2015;10:549–555. doi: 10.1021/acsnano.5b05564. PubMed DOI

Gwon H.J., Park Y., Moon C.W., Nahm S., Yoon S.-J., Kim S.Y., Jang H.W. Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells. Nano Res. 2014;7:670–678. doi: 10.1007/s12274-014-0427-x. DOI

Song Y., Nair R.P., Zou M., Wang Y. Superhydrophobic surfaces produced by applying a self-assembled monolayer to silicon micro/nano-textured surfaces. Nano Res. 2009;2:143–150. doi: 10.1007/s12274-009-9012-0. DOI

Park Y.-B., Im H., Im M., Choi Y.-K. Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. J. Mater. Chem. 2011;21:633–636. doi: 10.1039/C0JM02463E. DOI

Verma L.K., Sakhuja M., Son J., Danner A., Yang H., Zeng H., Bhatia C. Self-cleaning and antireflective packaging glass for solar modules. Renew. Energy. 2011;36:2489–2493. doi: 10.1016/j.renene.2011.02.017. DOI

Amalathas A.P., Alkaisi M.M. Upright nanopyramid structured cover glass with light harvesting and self-cleaning effects for solar cell applications. J. Phys. D Appl. Phys. 2016;49:465601. doi: 10.1088/0022-3727/49/46/465601. DOI

Amalathas A.P., Alkaisi M.M. Emerging Solar Energy Materials. IntechOpen; London, UK: 2018. Nanopyramid Structures with Light Harvesting and Self-Cleaning Properties for Solar Cells; p. 25.

Amalathas A.P., Alkaisi M.M. Enhanced Light Scattering and Hydrophobicity of Glass with Upright Nanopyramid Structure for Solar Cells Using UV Nanoimprint Lithography; Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC 2016; Munich, Germany. 20–24 June 2016; pp. 245–248.

Campbell P., Green M.A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 1987;62:243–249. doi: 10.1063/1.339189. DOI

Smith A., Rohatgi A. Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells. 1993;29:37–49. doi: 10.1016/0927-0248(93)90090-P. DOI

Kim K., Dhungel S., Jung S., Mangalaraj D., Yi J. Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication. Sol. Energy Mater. Sol. Cells. 2008;92:960–968. doi: 10.1016/j.solmat.2008.02.036. DOI

Macdonald D., Cuevas A., Kerr M.J., Samundsett C., Ruby D., Winderbaum S., Leo A. Texturing industrial multicrystalline silicon solar cells. Sol. Energy. 2004;76:277–283. doi: 10.1016/j.solener.2003.08.019. DOI

Kumaravelu G., Alkaisi M., Bittar A., MacDonald D., Zhao J. Damage studies in dry etched textured silicon surfaces. Curr. Appl. Phys. 2004;4:108–110. doi: 10.1016/j.cap.2003.10.008. DOI

Chattopadhyay S., Huang Y., Jen Y.-J., Ganguly A., Chen K., Chen L. Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R Rep. 2010;69:1–35. doi: 10.1016/j.mser.2010.04.001. DOI

Li Y., Zhang J., Yang B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today. 2010;5:117–127. doi: 10.1016/j.nantod.2010.03.001. DOI

Chiu W., Alkaisi M., Kumaravelu G., Blaikie R., Reeves R., Bittar A. Sub-wavelength texturing for solar cells using interferometric lithography. Adv. Sci. Technol. 2006;51:115–120. doi: 10.4028/www.scientific.net/AST.51.115. DOI

Yu Z., Raman A., Fan S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. USA. 2010;107:17491–17496. doi: 10.1073/pnas.1008296107. PubMed DOI PMC

Eisele C., Nebel C., Stutzmann M. Periodic light coupler gratings in amorphous thin film solar cells. J. Appl. Phys. 2001;89:7722–7726. doi: 10.1063/1.1370996. DOI

Zeng L., Yi Y., Hong C., Liu J., Feng N., Duan X., Kimerling L., Alamariu B. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector. Appl. Phys. Lett. 2006;89:111111. doi: 10.1063/1.2349845. DOI

Sheng X., Johnson S.G., Michel J., Kimerling L.C. Optimization-based design of surface textures for thin-film Si solar cells. Opt. Express. 2011;19:A841–A850. doi: 10.1364/OE.19.00A841. PubMed DOI

Amalathas A.P., Alkaisi M.M. Efficient light trapping nanopyramid structures for solar cells patterned using UV nanoimprint lithography. Mater. Sci. Semicond. Process. 2017;57:54–58. doi: 10.1016/j.mssp.2016.09.032. DOI

Biswas R., Bhattacharya J., Lewis B., Chakravarty N., Dalal V. Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector. Sol. Energy Mater. Sol. Cells. 2010;94:2337–2342. doi: 10.1016/j.solmat.2010.08.007. DOI

Sheng X., Liu J., Kozinsky I., Agarwal A.M., Michel J., Kimerling L.C. Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells. Adv. Mater. 2011;23:843–847. doi: 10.1002/adma.201003217. PubMed DOI

Li J., Yu H., Li Y., Wang F., Yang M., Wong S.M. Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells. Appl. Phys. Lett. 2011;98:021905. doi: 10.1063/1.3537810. DOI

Bermel P., Luo C., Zeng L., Kimerling L.C., Joannopoulos J.D. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt. Express. 2007;15:16986–17000. doi: 10.1364/OE.15.016986. PubMed DOI

Law M., Greene L.E., Johnson J.C., Saykally R., Yang P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005;4:455–459. doi: 10.1038/nmat1387. PubMed DOI

Wallentin J., Anttu N., Asoli D., Huffman M., Åberg I., Magnusson M.H., Siefer G., Fuss-Kailuweit P., Dimroth F., Witzigmann B. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science. 2013;339:1057–1060. doi: 10.1126/science.1230969. PubMed DOI

Muskens O.L., Rivas J.G., Algra R.E., Bakkers E.P., Lagendijk A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 2008;8:2638–2642. doi: 10.1021/nl0808076. PubMed DOI

Battaglia C., Söderström K., Escarre J., Haug F.-J., Domine D., Cuony P., Boccard M., Bugnon G., Denizot C., Despeisse M. Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting. Appl. Phys. Lett. 2010;96:213504. doi: 10.1063/1.3432739. DOI

Zaidi S.H., Ruby D.S., Gee J.M. Characterization of random reactive ion etched-textured silicon solar cells. IEEE Trans. Electron Devices. 2001;48:1200–1206. doi: 10.1109/16.925248. DOI

Ferry V.E., Sweatlock L.A., Pacifici D., Atwater H.A. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 2008;8:4391–4397. doi: 10.1021/nl8022548. PubMed DOI

Pala R.A., White J., Barnard E., Liu J., Brongersma M.L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 2009;21:3504–3509. doi: 10.1002/adma.200900331. DOI

Mendes M.J., Morawiec S., Mateus T., Lyubchyk A., Águas H., Ferreira I., Fortunato E., Martins R., Priolo F., Crupi I. Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids. Nanotechnology. 2015;26:135202. doi: 10.1088/0957-4484/26/13/135202. PubMed DOI

Wu F., Shi G., Xu H., Liu L., Wang Y., Qi D., Lu N. Fabrication of antireflective compound eyes by imprinting. ACS Appl. Mater. Interfaces. 2013;5:12799–12803. doi: 10.1021/am404168d. PubMed DOI

Mokkapati S., Catchpole K. Nanophotonic light trapping in solar cells. J. Appl. Phys. 2012;112:101101. doi: 10.1063/1.4747795. DOI

Kanamori Y., Sasaki M., Hane K. Broadband antireflection gratings fabricated upon silicon substrates. Opt. Lett. 1999;24:1422–1424. doi: 10.1364/OL.24.001422. PubMed DOI

Tsui K.H., Lin Q., Chou H., Zhang Q., Fu H., Qi P., Fan Z. Low-Cost, Flexible, and Self-Cleaning 3D Nanocone Anti-Reflection Films for High-Efficiency Photovoltaics. Adv. Mater. 2014;26:2805–2811. doi: 10.1002/adma.201304938. PubMed DOI

Jeong S., Garnett E.C., Wang S., Yu Z., Fan S., Brongersma M.L., McGehee M.D., Cui Y. Hybrid silicon nanocone–polymer solar cells. Nano Lett. 2012;12:2971–2976. doi: 10.1021/nl300713x. PubMed DOI

Jeong S., McGehee M.D., Cui Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nat. Commun. 2013;4:2950. doi: 10.1038/ncomms3950. PubMed DOI

Wang B., Leu P.W. Enhanced absorption in silicon nanocone arrays for photovoltaics. Nanotechnology. 2012;23:194003. doi: 10.1088/0957-4484/23/19/194003. PubMed DOI

Lu Y., Lal A. High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett. 2010;10:4651–4656. doi: 10.1021/nl102867a. PubMed DOI

Tsai D.-S., Lin C.-A., Lien W.-C., Chang H.-C., Wang Y.-L., He J.-H. Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays. ACS Nano. 2011;5:7748–7753. doi: 10.1021/nn203357e. PubMed DOI

Lin Y.-R., Wang H.-P., Lin C.-A., He J.-H. Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings. J. Appl. Phys. 2009;106:114310. doi: 10.1063/1.3267147. PubMed DOI PMC

Lin Q., Hua B., Leung S.-F., Duan X., Fan Z. Efficient light absorption with integrated nanopillar/nanowell arrays for three-dimensional thin-film photovoltaic applications. ACS Nano. 2013;7:2725–2732. doi: 10.1021/nn400160n. PubMed DOI

Fan Z., Razavi H., Do J.-W., Moriwaki A., Ergen O., Chueh Y.-L., Leu P.W., Ho J.C., Takahashi T., Reichertz L.A. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 2009;8:648–653. doi: 10.1038/nmat2493. PubMed DOI

Kapadia R., Fan Z., Takei K., Javey A. Nanopillar photovoltaics: Materials, processes, and devices. Nano Energy. 2012;1:132–144. doi: 10.1016/j.nanoen.2011.11.002. DOI

Leung S.-F., Yu M., Lin Q., Kwon K., Ching K.-L., Gu L., Yu K., Fan Z. Efficient photon capturing with ordered three-dimensional nanowell arrays. Nano Lett. 2012;12:3682–3689. doi: 10.1021/nl3014567. PubMed DOI

Han S.E., Chen G. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 2010;10:1012–1015. doi: 10.1021/nl904187m. PubMed DOI

Peng K.-Q., Wang X., Li L., Wu X.-L., Lee S.-T. High-performance silicon nanohole solar cells. J. Am. Chem. Soc. 2010;132:6872–6873. doi: 10.1021/ja910082y. PubMed DOI

Mavrokefalos A., Han S.E., Yerci S., Branham M.S., Chen G. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 2012;12:2792–2796. doi: 10.1021/nl2045777. PubMed DOI

Li G., Li H., Ho J.Y., Wong M., Kwok H.S. Nanopyramid structure for ultrathin c-Si tandem solar cells. Nano Lett. 2014;14:2563–2568. doi: 10.1021/nl500366c. PubMed DOI

Gaucher A., Cattoni A., Dupuis C., Chen W., Cariou R., Foldyna M., Lalouat L.C., Drouard E., Seassal C., Roca i Cabarrocas P. Ultrathin epitaxial silicon solar cells with inverted nanopyramid arrays for efficient light trapping. Nano Lett. 2016;16:5358–5364. doi: 10.1021/acs.nanolett.6b01240. PubMed DOI

Amalathas A.P., Alkaisi M.M. Periodic upright nanopyramid fabricated by ultraviolet curable nanoimprint lithography for thin film solar cells. Int. J. Nanotechnol. 2017;14:3–14. doi: 10.1504/IJNT.2017.082435. DOI

Amalathas A.P., Alkaisi M.M. Enhancing the performance of solar cells with inverted nanopyramid structures fabricated by UV nanoimprint lithography; Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC); Portland, OR, USA. 5–10 June 2016; pp. 0346–0349.

Amalathas A.P., Alkaisi M.M. Micro/Nanolithography-A Heuristic Aspect on the Enduring Technology. IntechOpen; London, UK: 2018. Fabrication and Replication of Periodic Nanopyramid Structures by Laser Interference Lithography and UV Nanoimprint Lithography for Solar Cells Applications.

Sivasubramaniam S., Alkaisi M.M. Inverted nanopyramid texturing for silicon solar cells using interference lithography. Microelectron. Eng. 2014;119:146–150. doi: 10.1016/j.mee.2014.04.004. DOI

Grandidier J., Callahan D.M., Munday J.N., Atwater H.A. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv. Mater. 2011;23:1272–1276. doi: 10.1002/adma.201004393. PubMed DOI

Yao Y., Yao J., Narasimhan V.K., Ruan Z., Xie C., Fan S., Cui Y. Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat. Commun. 2012;3:664. doi: 10.1038/ncomms1664. PubMed DOI

Naughton M., Kempa K., Ren Z., Gao Y., Rybczynski J., Argenti N., Gao W., Wang Y., Peng Y., Naughton J. Efficient nanocoax-based solar cells. Phys. Status Solidi Rapid Res. Lett. 2010;4:181–183. doi: 10.1002/pssr.201004154. DOI

Cao L., White J.S., Park J.-S., Schuller J.A., Clemens B.M., Brongersma M.L. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 2009;8:643. doi: 10.1038/nmat2477. PubMed DOI

Tseng P.C., Tsai M.A., Yu P., Kuo H.C. Antireflection and light trapping of subwavelength surface structures formed by colloidal lithography on thin film solar cells. Prog. Photovolt. Res. Appl. 2012;20:135–142. doi: 10.1002/pip.1123. DOI

Cole R., Sugawara Y., Baumberg J., Mahajan S., Abdelsalam M., Bartlett P. Easily coupled whispering gallery plasmons in dielectric nanospheres embedded in gold films. Phys. Rev. Lett. 2006;97:137401. doi: 10.1103/PhysRevLett.97.137401. PubMed DOI

Yu X., Shi L., Han D., Zi J., Braun P.V. High quality factor metallodielectric hybrid plasmonic–photonic crystals. Adv. Funct. Mater. 2010;20:1910–1916. doi: 10.1002/adfm.201000135. DOI

Spinelli P., Verschuuren M.A., Polman A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 2012;3:692. doi: 10.1038/ncomms1691. PubMed DOI PMC

Zhang Y., Xu Y., Chen S., Lu H., Chen K., Cao Y., Miroshnichenko A.E., Gu M., Li X. Ultra-broadband directional scattering by colloidally lithographed high-index Mie resonant oligomers and their energy-harvesting applications. ACS Appl. Mater. Interfaces. 2018;10:16776–16782. doi: 10.1021/acsami.8b03718. PubMed DOI

Zhang Y., Chen S., Hu D., Xu Y., Wang S., Qin F., Cao Y., Guan B.-O., Miroshnichenko A., Gu M. Coloring solar cells with simultaneously high efficiency by low-index dielectric nanoparticles. Nano Energy. 2019;65:682–690. doi: 10.1016/j.nanoen.2019.05.065. DOI

Spinelli P., Macco B., Verschuuren M., Kessels W., Polman A. Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination. Appl. Phys. Lett. 2013;102:233902. doi: 10.1063/1.4810970. DOI

Konedana S.S.P., Vaida E., Viller V., Shalev G. Optical absorption beyond the Yablonovitch limit with light funnel arrays. Nano Energy. 2019;59:321–326. doi: 10.1016/j.nanoen.2019.02.039. DOI

Prajapati A., Nissan Y., Gabay T., Shalev G. Broadband absorption of the solar radiation with surface arrays of subwavelength light funnels. Nano Energy. 2018;54:447–452. doi: 10.1016/j.nanoen.2018.10.046. DOI

Song T., Lee S.-T., Sun B. Silicon nanowires for photovoltaic applications: The progress and challenge. Nano Energy. 2012;1:654–673. doi: 10.1016/j.nanoen.2012.07.023. DOI

Hall A.S., Friesen S.A., Mallouk T.E. Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography. Nano Lett. 2013;13:2623–2627. doi: 10.1021/nl400755a. PubMed DOI

Trompoukis C., El Daif O., Depauw V., Gordon I., Poortmans J. Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography. Appl. Phys. Lett. 2012;101:103901. doi: 10.1063/1.4749810. DOI

Sheng P., Bloch A., Stepleman R. Wavelength-selective absorption enhancement in thin-film solar cells. Appl. Phys. Lett. 1983;43:579–581. doi: 10.1063/1.94432. DOI

Haase C., Stiebig H. Optical properties of thin-film silicon solar cells with grating couplers. Prog. Photovolt. Res. Appl. 2006;14:629–641. doi: 10.1002/pip.694. DOI

Sai H., Fujiwara H., Kondo M., Kanamori Y. Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern. Appl. Phys. Lett. 2008;93:143501. doi: 10.1063/1.2993351. DOI

Sai H., Kondo M. Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells. J. Appl. Phys. 2009;105:094511.

Wang K.X., Yu Z., Liu V., Cui Y., Fan S. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 2012;12:1616–1619. doi: 10.1021/nl204550q. PubMed DOI

Kayes B.M., Atwater H.A., Lewis N.S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 2005;97:114302. doi: 10.1063/1.1901835. DOI

Kelzenberg M.D., Boettcher S.W., Petykiewicz J.A., Turner-Evans D.B., Putnam M.C., Warren E.L., Spurgeon J.M., Briggs R.M., Lewis N.S., Atwater H.A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 2010;9:239. doi: 10.1038/nmat2635. PubMed DOI

Garnett E.C., Yang P. Silicon nanowire radial p− n junction solar cells. J. Am. Chem. Soc. 2008;130:9224–9225. doi: 10.1021/ja8032907. PubMed DOI

Kelzenberg M.D., Turner-Evans D.B., Kayes B.M., Filler M.A., Putnam M.C., Lewis N.S., Atwater H.A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 2008;8:710–714. doi: 10.1021/nl072622p. PubMed DOI

Putnam M.C., Turner-Evans D.B., Kelzenberg M.D., Boettcher S.W., Lewis N.S., Atwater H.A. 10 μ m minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth. Appl. Phys. Lett. 2009;95:163116. doi: 10.1063/1.3247969. DOI

Deceglie M.G., Ferry V.E., Alivisatos A.P., Atwater H.A. Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett. 2012;12:2894–2900. doi: 10.1021/nl300483y. PubMed DOI

Wang K.X., Yu Z., Liu V., Raman A., Cui Y., Fan S. Light trapping in photonic crystals. Energy Environ. Sci. 2014;7:2725–2738. doi: 10.1039/C4EE00839A. DOI

Callahan D.M., Munday J.N., Atwater H.A. Solar cell light trapping beyond the ray optic limit. Nano Lett. 2012;12:214–218. doi: 10.1021/nl203351k. PubMed DOI

Wang P., Menon R. Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states. Opt. Express. 2014;22:A99–A110. doi: 10.1364/OE.22.000A99. PubMed DOI

Tsakalakos L., Balch J.E., Fronheiser J., Shih M.-Y., LeBoeuf S.F., Pietrzykowski M., Codella P.J., Korevaar B.A., Sulima O., Rand J. Strong broadband optical absorption in silicon nanowire films. J. Nanophotonics. 2007;1:013552. doi: 10.1117/1.2768999. DOI

Meng X., Depauw V., Gomard G., El Daif O., Trompoukis C., Drouard E., Jamois C., Fave A., Dross F., Gordon I. Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells. Opt. Express. 2012;20:A465–A475. doi: 10.1364/OE.20.00A465. PubMed DOI

Chutinan A., Kherani N.P., Zukotynski S. High-efficiency photonic crystal solar cell architecture. Opt. Express. 2009;17:8871–8878. doi: 10.1364/OE.17.008871. PubMed DOI

Park Y., Drouard E., El Daif O., Letartre X., Viktorovitch P., Fave A., Kaminski A., Lemiti M., Seassal C. Absorption enhancement using photonic crystals for silicon thin film solar cells. Opt. Express. 2009;17:14312–14321. doi: 10.1364/OE.17.014312. PubMed DOI

Maier S.A. Plasmonics: Fundamentals and Applications. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2007.

Schaadt D., Feng B., Yu E. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 2005;86:063106. doi: 10.1063/1.1855423. DOI

Pillai S., Catchpole K., Trupke T., Green M. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 2007;101:093105. doi: 10.1063/1.2734885. DOI

Haug F.-J., Söderström T., Cubero O., Terrazzoni-Daudrix V., Ballif C. Plasmonic absorption in textured silver back reflectors of thin film solar cells. J. Appl. Phys. 2008;104:064509. doi: 10.1063/1.2981194. DOI

Paetzold U.W., Moulin E., Pieters B.E., Carius R., Rau U. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. Opt. Express. 2011;19:A1219–A1230. doi: 10.1364/OE.19.0A1219. PubMed DOI

Atwater H.A., Polman A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010;9:205. doi: 10.1038/nmat2629. PubMed DOI

Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. John Wiley & Sons; Hoboken, NJ, USA: 2008.

Mertz J. Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: A unified description. J. Opt. Soc. Am. B. 2000;17:1906–1913. doi: 10.1364/JOSAB.17.001906. DOI

Stuart H.R., Hall D.G. Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl. Phys. Lett. 1996;69:2327–2329. doi: 10.1063/1.117513. DOI

Stuart H.R., Hall D.G. Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 1998;73:3815–3817. doi: 10.1063/1.122903. DOI

Catchpole K.A., Polman A. Plasmonic solar cells. Opt. Express. 2008;16:21793–21800. doi: 10.1364/OE.16.021793. PubMed DOI

Derkacs D., Chen W., Matheu P., Lim S., Yu P., Yu E. Nanoparticle-induced light scattering for improved performance of quantum-well solar cells. Appl. Phys. Lett. 2008;93:091107. doi: 10.1063/1.2973988. DOI

Nakayama K., Tanabe K., Atwater H.A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 2008;93:121904. doi: 10.1063/1.2988288. DOI

El Daif O., Tong L., Figeys B., Van Nieuwenhuysen K., Dmitriev A., Van Dorpe P., Gordon I., Dross F. Front side plasmonic effect on thin silicon epitaxial solar cells. Sol. Energy Mater. Sol. Cells. 2012;104:58–63. doi: 10.1016/j.solmat.2012.05.009. DOI

Vedraine S., Torchio P., Duché D., Flory F., Simon J.-J., Le Rouzo J., Escoubas L. Intrinsic absorption of plasmonic structures for organic solar cells. Sol. Energy Mater. Sol. Cells. 2011;95:S57–S64. doi: 10.1016/j.solmat.2010.12.045. DOI

Derkacs D., Lim S., Matheu P., Mar W., Yu E. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 2006;89:093103. doi: 10.1063/1.2336629. DOI

Disney C.E., Pillai S., Green M.A. The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors. Sci. Rep. 2017;7:12826. doi: 10.1038/s41598-017-12896-1. PubMed DOI PMC

Schuster C.S., Morawiec S., Mendes M.J., Patrini M., Martins E.R., Lewis L., Crupi I., Krauss T.F. Plasmonic and diffractive nanostructures for light trapping—An experimental comparison. Optica. 2015;2:194–200. doi: 10.1364/OPTICA.2.000194. DOI

Morawiec S., Holovský J., Mendes M.J., Müller M., Ganzerová K., Vetushka A., Ledinský M., Priolo F., Fejfar A., Crupi I. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application. Sci. Rep. 2016;6:22481. doi: 10.1038/srep22481. PubMed DOI PMC

Gentile A., Ruffino F., Grimaldi M. Complex-morphology metal-based nanostructures: Fabrication, characterization, and applications. Nanomaterials. 2016;6:110. doi: 10.3390/nano6060110. PubMed DOI PMC

Zhang Y., Stokes N., Jia B., Fan S., Gu M. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Sci. Rep. 2014;4:4939. doi: 10.1038/srep04939. PubMed DOI PMC

Hylton N.P., Li X.F., Giannini V., Lee K.H., Ekins-Daukes N.J., Loo J., Vercruysse D., Van Dorpe P., Sodabanlu H., Sugiyama M., et al. Loss mitigation in plasmonic solar cells: Aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes. Sci. Rep. 2013;3:2874. doi: 10.1038/srep02874. PubMed DOI PMC

Zhang Y., Cai B., Jia B. Ultraviolet plasmonic aluminium nanoparticles for highly efficient light incoupling on silicon solar cells. Nanomaterials. 2016;6:95. doi: 10.3390/nano6060095. PubMed DOI PMC

Zhang Y., Ouyang Z., Stokes N., Jia B., Shi Z., Gu M. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Appl. Phys. Lett. 2012;100:151101. doi: 10.1063/1.3703121. DOI

Mukti R.J., Hossain M.R., Islam A., Mekhilef S., Horan B. Increased Absorption with Al Nanoparticle at Front Surface of Thin Film Silicon Solar Cell. Energies. 2019;12:2602. doi: 10.3390/en12132602. DOI

Zhang Y., Chen X., Ouyang Z., Lu H., Jia B., Shi Z., Gu M. Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Opt. Mater. Express. 2013;3:489–495. doi: 10.1364/OME.3.000489. DOI

Cai B., Li X., Zhang Y., Jia B. Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles. Nanot. 2016;27:195401. doi: 10.1088/0957-4484/27/19/195401. PubMed DOI

Catchpole K., Polman A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 2008;93:191113. doi: 10.1063/1.3021072. DOI

Shen H., Bienstman P., Maes B. Plasmonic absorption enhancement in organic solar cells with thin active layers. J. Appl. Phys. 2009;106:073109. doi: 10.1063/1.3243163. DOI

Spinelli P., Polman A. Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. Opt. Express. 2012;20:A641–A654. doi: 10.1364/OE.20.00A641. PubMed DOI

Tcherniak A., Ha J., Dominguez-Medina S., Slaughter L., Link S. Probing a century old prediction one plasmonic particle at a time. Nano Lett. 2010;10:1398–1404. doi: 10.1021/nl100199h. PubMed DOI

Noguez C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C. 2007;111:3806–3819. doi: 10.1021/jp066539m. DOI

Rycenga M., Cobley C.M., Zeng J., Li W., Moran C.H., Zhang Q., Qin D., Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011;111:3669–3712. doi: 10.1021/cr100275d. PubMed DOI PMC

Henry A.-I., Bingham J.M., Ringe E., Marks L.D., Schatz G.C., Van Duyne R.P. Correlated structure and optical property studies of plasmonic nanoparticles. J. Phys. Chem. C. 2011;115:9291–9305. doi: 10.1021/jp2010309. DOI

Duche D., Torchio P., Escoubas L., Monestier F., Simon J.-J., Flory F., Mathian G. Improving light absorption in organic solar cells by plasmonic contribution. Sol. Energy Mater. Sol. Cells. 2009;93:1377–1382. doi: 10.1016/j.solmat.2009.02.028. DOI

Rand B.P., Peumans P., Forrest S.R. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 2004;96:7519–7526. doi: 10.1063/1.1812589. DOI

Konda R., Mundle R., Mustafa H., Bamiduro O., Pradhan A., Roy U., Cui Y., Burger A. Surface plasmon excitation via Au nanoparticles in n-Cd Se∕p-Si heterojunction diodes. Appl. Phys. Lett. 2007;91:191111. doi: 10.1063/1.2807277. DOI

Kim S.-S., Na S.-I., Jo J., Kim D.-Y., Nah Y.-C. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 2008;93:305. doi: 10.1063/1.2967471. DOI

Morfa A.J., Rowlen K.L., Reilly T.H., III, Romero M.J., van de Lagemaat J. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 2008;92:013504. doi: 10.1063/1.2823578. DOI

Hägglund C., Zäch M., Kasemo B. Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl. Phys. Lett. 2008;92:013113. doi: 10.1063/1.2830817. DOI

Brown M.D., Suteewong T., Kumar R.S.S., D’Innocenzo V., Petrozza A., Lee M.M., Wiesner U., Snaith H.J. Plasmonic dye-sensitized solar cells using core− shell metal− insulator nanoparticles. Nano Lett. 2010;11:438–445. doi: 10.1021/nl1031106. PubMed DOI

Rho W.-Y., Yang H.-Y., Kim H.-S., Son B.S., Suh J.S., Jun B.-H. Recent advances in plasmonic dye-sensitized solar cells. J. Solid State Chem. 2018;258:271–282. doi: 10.1016/j.jssc.2017.10.018. DOI

Cai B., Jia B., Shi Z., Gu M. Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells. Appl. Phys. Lett. 2013;102:093107. doi: 10.1063/1.4794420. DOI

Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer; Berlin/Heidelberg, Germany: 1988. Surface plasmons on smooth surfaces; pp. 4–39.

Mapel J., Singh M., Baldo M., Celebi K. Plasmonic excitation of organic double heterostructure solar cells. Appl. Phys. Lett. 2007;90:121102. doi: 10.1063/1.2714193. DOI

Tvingstedt K., Persson N.-K., Inganäs O., Rahachou A., Zozoulenko I.V. Surface plasmon increase absorption in polymer photovoltaic cells. Appl. Phys. Lett. 2007;91:113514. doi: 10.1063/1.2782910. DOI

Heidel T., Mapel J., Singh M., Celebi K., Baldo M. Surface plasmon polariton mediated energy transfer in organic photovoltaic devices. Appl. Phys. Lett. 2007;91:093506. doi: 10.1063/1.2772173. DOI

Jin Y., Feng J., Zhang X.-L., Xu M., Bi Y.-G., Chen Q.-D., Wang H.-Y., Sun H.-B. Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode. Appl. Phys. Lett. 2012;101:163303. doi: 10.1063/1.4761947. DOI

Abass A., Le K.Q., Alu A., Burgelman M., Maes B. Dual-interface gratings for broadband absorption enhancement in thin-film solar cells. Phys. Rev. B. 2012;85:115449. doi: 10.1103/PhysRevB.85.115449. DOI

Ferry V.E., Verschuuren M.A., Li H.B., Schropp R.E., Atwater H.A., Polman A. Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors. Appl. Phys. Lett. 2009;95:183503. doi: 10.1063/1.3256187. DOI

Lee S., In S., Mason D.R., Park N. Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells. Opt. Express. 2013;21:4055–4060. doi: 10.1364/OE.21.004055. PubMed DOI

Zhang Y., Jia B., Gu M. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells. Opt. Express. 2016;24:A506–A514. doi: 10.1364/OE.24.00A506. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...