Nanostructures for Light Trapping in Thin Film Solar Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31533261
PubMed Central
PMC6780776
DOI
10.3390/mi10090619
PII: mi10090619
Knihovny.cz E-zdroje
- Klíčová slova
- light trapping, photonic nanostructures, plasmonic nanostructures, solar cells, thin films,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Thin film solar cells are one of the important candidates utilized to reduce the cost of photovoltaic production by minimizing the usage of active materials. However, low light absorption due to low absorption coefficient and/or insufficient active layer thickness can limit the performance of thin film solar cells. Increasing the absorption of light that can be converted into electrical current in thin film solar cells is crucial for enhancing the overall efficiency and in reducing the cost. Therefore, light trapping strategies play a significant role in achieving this goal. The main objectives of light trapping techniques are to decrease incident light reflection, increase the light absorption, and modify the optical response of the device for use in different applications. Nanostructures utilize key sets of approaches to achieve these objectives, including gradual refractive index matching, and coupling incident light into guided modes and localized plasmon resonances, as well as surface plasmon polariton modes. In this review, we discuss some of the recent developments in the design and implementation of nanostructures for light trapping in solar cells. These include the development of solar cells containing photonic and plasmonic nanostructures. The distinct benefits and challenges of these schemes are also explained and discussed.
Zobrazit více v PubMed
Lewis N.S. Research opportunities to advance solar energy utilization. Science. 2016;351:aad1920. doi: 10.1126/science.aad1920. PubMed DOI
Agency I.E. Renewables 2018. [(accessed on 1 September 2019)]; Available online: https://www.iea.org/renewables2018/power/
ITRPV International Technology Roadmap for Photovoltaic(ITRPV): Results 2017 including Maturity Report (2018) [(accessed on 1 September 2019)]; Available online: https://itrpv.vdma.org/
Battaglia C., Hsu C.-M., Söderström K., Escarré J., Haug F.-J., Charrière M., Boccard M., Despeisse M., Alexander D.T., Cantoni M. Light trapping in solar cells: Can periodic beat random? ACS Nano. 2012;6:2790–2797. doi: 10.1021/nn300287j. PubMed DOI
Zhu J., Hsu C.-M., Yu Z., Fan S., Cui Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 2009;10:1979–1984. doi: 10.1021/nl9034237. PubMed DOI
Garnett E., Yang P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010;10:1082–1087. doi: 10.1021/nl100161z. PubMed DOI
Kuang Y., Van der Werf K.H., Houweling Z.S., Schropp R.E. Nanorod solar cell with an ultrathin a-Si: H absorber layer. Appl. Phys. Lett. 2011;98:113111. doi: 10.1063/1.3567527. DOI
Chang H.-C., Lai K.-Y., Dai Y.-A., Wang H.-H., Lin C.-A., He J.-H. Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency. Energy Environ. Sci. 2011;4:2863–2869. doi: 10.1039/c0ee00595a. DOI
Cho K.S., Mandal P., Kim K., Baek I.H., Lee S., Lim H., Cho D.J., Kim S., Lee J., Rotermund F. Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography. Opt. Commun. 2011;284:2608–2612. doi: 10.1016/j.optcom.2011.01.042. DOI
Kim J., Hong A.J., Nah J.-W., Shin B., Ross F.M., Sadana D.K. Three-dimensional a-Si: H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres. ACS Nano. 2011;6:265–271. doi: 10.1021/nn203536x. PubMed DOI
Battaglia C., Escarré J., Söderström K., Charriere M., Despeisse M., Haug F.-J., Ballif C. Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nat. Photonics. 2011;5:535. doi: 10.1038/nphoton.2011.198. DOI
Taretto K., Rau U. Modeling extremely thin absorber solar cells for optimized design. Prog. Photovolt. Res. Appl. 2004;12:573–591. doi: 10.1002/pip.549. DOI
Shah A., Schade H., Vanecek M., Meier J., Vallat-Sauvain E., Wyrsch N., Kroll U., Droz C., Bailat J. Thin-film silicon solar cell technology. Prog. Photovolt. Res. Appl. 2004;12:113–142. doi: 10.1002/pip.533. DOI
Mallick S.B., Agrawal M., Peumans P. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Opt. Express. 2010;18:5691–5706. doi: 10.1364/OE.18.005691. PubMed DOI
Lin C.-A., Tsai M.-L., Wei W.-R., Lai K.-Y., He J.-H. Packaging Glass with a Hierarchically Nanostructured Surface: A Universal Method to Achieve Self-Cleaning Omnidirectional Solar Cells. ACS Nano. 2015;10:549–555. doi: 10.1021/acsnano.5b05564. PubMed DOI
Gwon H.J., Park Y., Moon C.W., Nahm S., Yoon S.-J., Kim S.Y., Jang H.W. Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells. Nano Res. 2014;7:670–678. doi: 10.1007/s12274-014-0427-x. DOI
Song Y., Nair R.P., Zou M., Wang Y. Superhydrophobic surfaces produced by applying a self-assembled monolayer to silicon micro/nano-textured surfaces. Nano Res. 2009;2:143–150. doi: 10.1007/s12274-009-9012-0. DOI
Park Y.-B., Im H., Im M., Choi Y.-K. Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. J. Mater. Chem. 2011;21:633–636. doi: 10.1039/C0JM02463E. DOI
Verma L.K., Sakhuja M., Son J., Danner A., Yang H., Zeng H., Bhatia C. Self-cleaning and antireflective packaging glass for solar modules. Renew. Energy. 2011;36:2489–2493. doi: 10.1016/j.renene.2011.02.017. DOI
Amalathas A.P., Alkaisi M.M. Upright nanopyramid structured cover glass with light harvesting and self-cleaning effects for solar cell applications. J. Phys. D Appl. Phys. 2016;49:465601. doi: 10.1088/0022-3727/49/46/465601. DOI
Amalathas A.P., Alkaisi M.M. Emerging Solar Energy Materials. IntechOpen; London, UK: 2018. Nanopyramid Structures with Light Harvesting and Self-Cleaning Properties for Solar Cells; p. 25.
Amalathas A.P., Alkaisi M.M. Enhanced Light Scattering and Hydrophobicity of Glass with Upright Nanopyramid Structure for Solar Cells Using UV Nanoimprint Lithography; Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC 2016; Munich, Germany. 20–24 June 2016; pp. 245–248.
Campbell P., Green M.A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 1987;62:243–249. doi: 10.1063/1.339189. DOI
Smith A., Rohatgi A. Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells. 1993;29:37–49. doi: 10.1016/0927-0248(93)90090-P. DOI
Kim K., Dhungel S., Jung S., Mangalaraj D., Yi J. Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication. Sol. Energy Mater. Sol. Cells. 2008;92:960–968. doi: 10.1016/j.solmat.2008.02.036. DOI
Macdonald D., Cuevas A., Kerr M.J., Samundsett C., Ruby D., Winderbaum S., Leo A. Texturing industrial multicrystalline silicon solar cells. Sol. Energy. 2004;76:277–283. doi: 10.1016/j.solener.2003.08.019. DOI
Kumaravelu G., Alkaisi M., Bittar A., MacDonald D., Zhao J. Damage studies in dry etched textured silicon surfaces. Curr. Appl. Phys. 2004;4:108–110. doi: 10.1016/j.cap.2003.10.008. DOI
Chattopadhyay S., Huang Y., Jen Y.-J., Ganguly A., Chen K., Chen L. Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R Rep. 2010;69:1–35. doi: 10.1016/j.mser.2010.04.001. DOI
Li Y., Zhang J., Yang B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today. 2010;5:117–127. doi: 10.1016/j.nantod.2010.03.001. DOI
Chiu W., Alkaisi M., Kumaravelu G., Blaikie R., Reeves R., Bittar A. Sub-wavelength texturing for solar cells using interferometric lithography. Adv. Sci. Technol. 2006;51:115–120. doi: 10.4028/www.scientific.net/AST.51.115. DOI
Yu Z., Raman A., Fan S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. USA. 2010;107:17491–17496. doi: 10.1073/pnas.1008296107. PubMed DOI PMC
Eisele C., Nebel C., Stutzmann M. Periodic light coupler gratings in amorphous thin film solar cells. J. Appl. Phys. 2001;89:7722–7726. doi: 10.1063/1.1370996. DOI
Zeng L., Yi Y., Hong C., Liu J., Feng N., Duan X., Kimerling L., Alamariu B. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector. Appl. Phys. Lett. 2006;89:111111. doi: 10.1063/1.2349845. DOI
Sheng X., Johnson S.G., Michel J., Kimerling L.C. Optimization-based design of surface textures for thin-film Si solar cells. Opt. Express. 2011;19:A841–A850. doi: 10.1364/OE.19.00A841. PubMed DOI
Amalathas A.P., Alkaisi M.M. Efficient light trapping nanopyramid structures for solar cells patterned using UV nanoimprint lithography. Mater. Sci. Semicond. Process. 2017;57:54–58. doi: 10.1016/j.mssp.2016.09.032. DOI
Biswas R., Bhattacharya J., Lewis B., Chakravarty N., Dalal V. Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector. Sol. Energy Mater. Sol. Cells. 2010;94:2337–2342. doi: 10.1016/j.solmat.2010.08.007. DOI
Sheng X., Liu J., Kozinsky I., Agarwal A.M., Michel J., Kimerling L.C. Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells. Adv. Mater. 2011;23:843–847. doi: 10.1002/adma.201003217. PubMed DOI
Li J., Yu H., Li Y., Wang F., Yang M., Wong S.M. Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells. Appl. Phys. Lett. 2011;98:021905. doi: 10.1063/1.3537810. DOI
Bermel P., Luo C., Zeng L., Kimerling L.C., Joannopoulos J.D. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt. Express. 2007;15:16986–17000. doi: 10.1364/OE.15.016986. PubMed DOI
Law M., Greene L.E., Johnson J.C., Saykally R., Yang P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005;4:455–459. doi: 10.1038/nmat1387. PubMed DOI
Wallentin J., Anttu N., Asoli D., Huffman M., Åberg I., Magnusson M.H., Siefer G., Fuss-Kailuweit P., Dimroth F., Witzigmann B. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science. 2013;339:1057–1060. doi: 10.1126/science.1230969. PubMed DOI
Muskens O.L., Rivas J.G., Algra R.E., Bakkers E.P., Lagendijk A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 2008;8:2638–2642. doi: 10.1021/nl0808076. PubMed DOI
Battaglia C., Söderström K., Escarre J., Haug F.-J., Domine D., Cuony P., Boccard M., Bugnon G., Denizot C., Despeisse M. Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting. Appl. Phys. Lett. 2010;96:213504. doi: 10.1063/1.3432739. DOI
Zaidi S.H., Ruby D.S., Gee J.M. Characterization of random reactive ion etched-textured silicon solar cells. IEEE Trans. Electron Devices. 2001;48:1200–1206. doi: 10.1109/16.925248. DOI
Ferry V.E., Sweatlock L.A., Pacifici D., Atwater H.A. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 2008;8:4391–4397. doi: 10.1021/nl8022548. PubMed DOI
Pala R.A., White J., Barnard E., Liu J., Brongersma M.L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 2009;21:3504–3509. doi: 10.1002/adma.200900331. DOI
Mendes M.J., Morawiec S., Mateus T., Lyubchyk A., Águas H., Ferreira I., Fortunato E., Martins R., Priolo F., Crupi I. Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids. Nanotechnology. 2015;26:135202. doi: 10.1088/0957-4484/26/13/135202. PubMed DOI
Wu F., Shi G., Xu H., Liu L., Wang Y., Qi D., Lu N. Fabrication of antireflective compound eyes by imprinting. ACS Appl. Mater. Interfaces. 2013;5:12799–12803. doi: 10.1021/am404168d. PubMed DOI
Mokkapati S., Catchpole K. Nanophotonic light trapping in solar cells. J. Appl. Phys. 2012;112:101101. doi: 10.1063/1.4747795. DOI
Kanamori Y., Sasaki M., Hane K. Broadband antireflection gratings fabricated upon silicon substrates. Opt. Lett. 1999;24:1422–1424. doi: 10.1364/OL.24.001422. PubMed DOI
Tsui K.H., Lin Q., Chou H., Zhang Q., Fu H., Qi P., Fan Z. Low-Cost, Flexible, and Self-Cleaning 3D Nanocone Anti-Reflection Films for High-Efficiency Photovoltaics. Adv. Mater. 2014;26:2805–2811. doi: 10.1002/adma.201304938. PubMed DOI
Jeong S., Garnett E.C., Wang S., Yu Z., Fan S., Brongersma M.L., McGehee M.D., Cui Y. Hybrid silicon nanocone–polymer solar cells. Nano Lett. 2012;12:2971–2976. doi: 10.1021/nl300713x. PubMed DOI
Jeong S., McGehee M.D., Cui Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nat. Commun. 2013;4:2950. doi: 10.1038/ncomms3950. PubMed DOI
Wang B., Leu P.W. Enhanced absorption in silicon nanocone arrays for photovoltaics. Nanotechnology. 2012;23:194003. doi: 10.1088/0957-4484/23/19/194003. PubMed DOI
Lu Y., Lal A. High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett. 2010;10:4651–4656. doi: 10.1021/nl102867a. PubMed DOI
Tsai D.-S., Lin C.-A., Lien W.-C., Chang H.-C., Wang Y.-L., He J.-H. Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays. ACS Nano. 2011;5:7748–7753. doi: 10.1021/nn203357e. PubMed DOI
Lin Y.-R., Wang H.-P., Lin C.-A., He J.-H. Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings. J. Appl. Phys. 2009;106:114310. doi: 10.1063/1.3267147. PubMed DOI PMC
Lin Q., Hua B., Leung S.-F., Duan X., Fan Z. Efficient light absorption with integrated nanopillar/nanowell arrays for three-dimensional thin-film photovoltaic applications. ACS Nano. 2013;7:2725–2732. doi: 10.1021/nn400160n. PubMed DOI
Fan Z., Razavi H., Do J.-W., Moriwaki A., Ergen O., Chueh Y.-L., Leu P.W., Ho J.C., Takahashi T., Reichertz L.A. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 2009;8:648–653. doi: 10.1038/nmat2493. PubMed DOI
Kapadia R., Fan Z., Takei K., Javey A. Nanopillar photovoltaics: Materials, processes, and devices. Nano Energy. 2012;1:132–144. doi: 10.1016/j.nanoen.2011.11.002. DOI
Leung S.-F., Yu M., Lin Q., Kwon K., Ching K.-L., Gu L., Yu K., Fan Z. Efficient photon capturing with ordered three-dimensional nanowell arrays. Nano Lett. 2012;12:3682–3689. doi: 10.1021/nl3014567. PubMed DOI
Han S.E., Chen G. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 2010;10:1012–1015. doi: 10.1021/nl904187m. PubMed DOI
Peng K.-Q., Wang X., Li L., Wu X.-L., Lee S.-T. High-performance silicon nanohole solar cells. J. Am. Chem. Soc. 2010;132:6872–6873. doi: 10.1021/ja910082y. PubMed DOI
Mavrokefalos A., Han S.E., Yerci S., Branham M.S., Chen G. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 2012;12:2792–2796. doi: 10.1021/nl2045777. PubMed DOI
Li G., Li H., Ho J.Y., Wong M., Kwok H.S. Nanopyramid structure for ultrathin c-Si tandem solar cells. Nano Lett. 2014;14:2563–2568. doi: 10.1021/nl500366c. PubMed DOI
Gaucher A., Cattoni A., Dupuis C., Chen W., Cariou R., Foldyna M., Lalouat L.C., Drouard E., Seassal C., Roca i Cabarrocas P. Ultrathin epitaxial silicon solar cells with inverted nanopyramid arrays for efficient light trapping. Nano Lett. 2016;16:5358–5364. doi: 10.1021/acs.nanolett.6b01240. PubMed DOI
Amalathas A.P., Alkaisi M.M. Periodic upright nanopyramid fabricated by ultraviolet curable nanoimprint lithography for thin film solar cells. Int. J. Nanotechnol. 2017;14:3–14. doi: 10.1504/IJNT.2017.082435. DOI
Amalathas A.P., Alkaisi M.M. Enhancing the performance of solar cells with inverted nanopyramid structures fabricated by UV nanoimprint lithography; Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC); Portland, OR, USA. 5–10 June 2016; pp. 0346–0349.
Amalathas A.P., Alkaisi M.M. Micro/Nanolithography-A Heuristic Aspect on the Enduring Technology. IntechOpen; London, UK: 2018. Fabrication and Replication of Periodic Nanopyramid Structures by Laser Interference Lithography and UV Nanoimprint Lithography for Solar Cells Applications.
Sivasubramaniam S., Alkaisi M.M. Inverted nanopyramid texturing for silicon solar cells using interference lithography. Microelectron. Eng. 2014;119:146–150. doi: 10.1016/j.mee.2014.04.004. DOI
Grandidier J., Callahan D.M., Munday J.N., Atwater H.A. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv. Mater. 2011;23:1272–1276. doi: 10.1002/adma.201004393. PubMed DOI
Yao Y., Yao J., Narasimhan V.K., Ruan Z., Xie C., Fan S., Cui Y. Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat. Commun. 2012;3:664. doi: 10.1038/ncomms1664. PubMed DOI
Naughton M., Kempa K., Ren Z., Gao Y., Rybczynski J., Argenti N., Gao W., Wang Y., Peng Y., Naughton J. Efficient nanocoax-based solar cells. Phys. Status Solidi Rapid Res. Lett. 2010;4:181–183. doi: 10.1002/pssr.201004154. DOI
Cao L., White J.S., Park J.-S., Schuller J.A., Clemens B.M., Brongersma M.L. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 2009;8:643. doi: 10.1038/nmat2477. PubMed DOI
Tseng P.C., Tsai M.A., Yu P., Kuo H.C. Antireflection and light trapping of subwavelength surface structures formed by colloidal lithography on thin film solar cells. Prog. Photovolt. Res. Appl. 2012;20:135–142. doi: 10.1002/pip.1123. DOI
Cole R., Sugawara Y., Baumberg J., Mahajan S., Abdelsalam M., Bartlett P. Easily coupled whispering gallery plasmons in dielectric nanospheres embedded in gold films. Phys. Rev. Lett. 2006;97:137401. doi: 10.1103/PhysRevLett.97.137401. PubMed DOI
Yu X., Shi L., Han D., Zi J., Braun P.V. High quality factor metallodielectric hybrid plasmonic–photonic crystals. Adv. Funct. Mater. 2010;20:1910–1916. doi: 10.1002/adfm.201000135. DOI
Spinelli P., Verschuuren M.A., Polman A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 2012;3:692. doi: 10.1038/ncomms1691. PubMed DOI PMC
Zhang Y., Xu Y., Chen S., Lu H., Chen K., Cao Y., Miroshnichenko A.E., Gu M., Li X. Ultra-broadband directional scattering by colloidally lithographed high-index Mie resonant oligomers and their energy-harvesting applications. ACS Appl. Mater. Interfaces. 2018;10:16776–16782. doi: 10.1021/acsami.8b03718. PubMed DOI
Zhang Y., Chen S., Hu D., Xu Y., Wang S., Qin F., Cao Y., Guan B.-O., Miroshnichenko A., Gu M. Coloring solar cells with simultaneously high efficiency by low-index dielectric nanoparticles. Nano Energy. 2019;65:682–690. doi: 10.1016/j.nanoen.2019.05.065. DOI
Spinelli P., Macco B., Verschuuren M., Kessels W., Polman A. Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination. Appl. Phys. Lett. 2013;102:233902. doi: 10.1063/1.4810970. DOI
Konedana S.S.P., Vaida E., Viller V., Shalev G. Optical absorption beyond the Yablonovitch limit with light funnel arrays. Nano Energy. 2019;59:321–326. doi: 10.1016/j.nanoen.2019.02.039. DOI
Prajapati A., Nissan Y., Gabay T., Shalev G. Broadband absorption of the solar radiation with surface arrays of subwavelength light funnels. Nano Energy. 2018;54:447–452. doi: 10.1016/j.nanoen.2018.10.046. DOI
Song T., Lee S.-T., Sun B. Silicon nanowires for photovoltaic applications: The progress and challenge. Nano Energy. 2012;1:654–673. doi: 10.1016/j.nanoen.2012.07.023. DOI
Hall A.S., Friesen S.A., Mallouk T.E. Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography. Nano Lett. 2013;13:2623–2627. doi: 10.1021/nl400755a. PubMed DOI
Trompoukis C., El Daif O., Depauw V., Gordon I., Poortmans J. Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography. Appl. Phys. Lett. 2012;101:103901. doi: 10.1063/1.4749810. DOI
Sheng P., Bloch A., Stepleman R. Wavelength-selective absorption enhancement in thin-film solar cells. Appl. Phys. Lett. 1983;43:579–581. doi: 10.1063/1.94432. DOI
Haase C., Stiebig H. Optical properties of thin-film silicon solar cells with grating couplers. Prog. Photovolt. Res. Appl. 2006;14:629–641. doi: 10.1002/pip.694. DOI
Sai H., Fujiwara H., Kondo M., Kanamori Y. Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern. Appl. Phys. Lett. 2008;93:143501. doi: 10.1063/1.2993351. DOI
Sai H., Kondo M. Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells. J. Appl. Phys. 2009;105:094511.
Wang K.X., Yu Z., Liu V., Cui Y., Fan S. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 2012;12:1616–1619. doi: 10.1021/nl204550q. PubMed DOI
Kayes B.M., Atwater H.A., Lewis N.S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 2005;97:114302. doi: 10.1063/1.1901835. DOI
Kelzenberg M.D., Boettcher S.W., Petykiewicz J.A., Turner-Evans D.B., Putnam M.C., Warren E.L., Spurgeon J.M., Briggs R.M., Lewis N.S., Atwater H.A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 2010;9:239. doi: 10.1038/nmat2635. PubMed DOI
Garnett E.C., Yang P. Silicon nanowire radial p− n junction solar cells. J. Am. Chem. Soc. 2008;130:9224–9225. doi: 10.1021/ja8032907. PubMed DOI
Kelzenberg M.D., Turner-Evans D.B., Kayes B.M., Filler M.A., Putnam M.C., Lewis N.S., Atwater H.A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 2008;8:710–714. doi: 10.1021/nl072622p. PubMed DOI
Putnam M.C., Turner-Evans D.B., Kelzenberg M.D., Boettcher S.W., Lewis N.S., Atwater H.A. 10 μ m minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth. Appl. Phys. Lett. 2009;95:163116. doi: 10.1063/1.3247969. DOI
Deceglie M.G., Ferry V.E., Alivisatos A.P., Atwater H.A. Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett. 2012;12:2894–2900. doi: 10.1021/nl300483y. PubMed DOI
Wang K.X., Yu Z., Liu V., Raman A., Cui Y., Fan S. Light trapping in photonic crystals. Energy Environ. Sci. 2014;7:2725–2738. doi: 10.1039/C4EE00839A. DOI
Callahan D.M., Munday J.N., Atwater H.A. Solar cell light trapping beyond the ray optic limit. Nano Lett. 2012;12:214–218. doi: 10.1021/nl203351k. PubMed DOI
Wang P., Menon R. Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states. Opt. Express. 2014;22:A99–A110. doi: 10.1364/OE.22.000A99. PubMed DOI
Tsakalakos L., Balch J.E., Fronheiser J., Shih M.-Y., LeBoeuf S.F., Pietrzykowski M., Codella P.J., Korevaar B.A., Sulima O., Rand J. Strong broadband optical absorption in silicon nanowire films. J. Nanophotonics. 2007;1:013552. doi: 10.1117/1.2768999. DOI
Meng X., Depauw V., Gomard G., El Daif O., Trompoukis C., Drouard E., Jamois C., Fave A., Dross F., Gordon I. Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells. Opt. Express. 2012;20:A465–A475. doi: 10.1364/OE.20.00A465. PubMed DOI
Chutinan A., Kherani N.P., Zukotynski S. High-efficiency photonic crystal solar cell architecture. Opt. Express. 2009;17:8871–8878. doi: 10.1364/OE.17.008871. PubMed DOI
Park Y., Drouard E., El Daif O., Letartre X., Viktorovitch P., Fave A., Kaminski A., Lemiti M., Seassal C. Absorption enhancement using photonic crystals for silicon thin film solar cells. Opt. Express. 2009;17:14312–14321. doi: 10.1364/OE.17.014312. PubMed DOI
Maier S.A. Plasmonics: Fundamentals and Applications. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2007.
Schaadt D., Feng B., Yu E. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 2005;86:063106. doi: 10.1063/1.1855423. DOI
Pillai S., Catchpole K., Trupke T., Green M. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 2007;101:093105. doi: 10.1063/1.2734885. DOI
Haug F.-J., Söderström T., Cubero O., Terrazzoni-Daudrix V., Ballif C. Plasmonic absorption in textured silver back reflectors of thin film solar cells. J. Appl. Phys. 2008;104:064509. doi: 10.1063/1.2981194. DOI
Paetzold U.W., Moulin E., Pieters B.E., Carius R., Rau U. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. Opt. Express. 2011;19:A1219–A1230. doi: 10.1364/OE.19.0A1219. PubMed DOI
Atwater H.A., Polman A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010;9:205. doi: 10.1038/nmat2629. PubMed DOI
Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. John Wiley & Sons; Hoboken, NJ, USA: 2008.
Mertz J. Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: A unified description. J. Opt. Soc. Am. B. 2000;17:1906–1913. doi: 10.1364/JOSAB.17.001906. DOI
Stuart H.R., Hall D.G. Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl. Phys. Lett. 1996;69:2327–2329. doi: 10.1063/1.117513. DOI
Stuart H.R., Hall D.G. Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 1998;73:3815–3817. doi: 10.1063/1.122903. DOI
Catchpole K.A., Polman A. Plasmonic solar cells. Opt. Express. 2008;16:21793–21800. doi: 10.1364/OE.16.021793. PubMed DOI
Derkacs D., Chen W., Matheu P., Lim S., Yu P., Yu E. Nanoparticle-induced light scattering for improved performance of quantum-well solar cells. Appl. Phys. Lett. 2008;93:091107. doi: 10.1063/1.2973988. DOI
Nakayama K., Tanabe K., Atwater H.A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 2008;93:121904. doi: 10.1063/1.2988288. DOI
El Daif O., Tong L., Figeys B., Van Nieuwenhuysen K., Dmitriev A., Van Dorpe P., Gordon I., Dross F. Front side plasmonic effect on thin silicon epitaxial solar cells. Sol. Energy Mater. Sol. Cells. 2012;104:58–63. doi: 10.1016/j.solmat.2012.05.009. DOI
Vedraine S., Torchio P., Duché D., Flory F., Simon J.-J., Le Rouzo J., Escoubas L. Intrinsic absorption of plasmonic structures for organic solar cells. Sol. Energy Mater. Sol. Cells. 2011;95:S57–S64. doi: 10.1016/j.solmat.2010.12.045. DOI
Derkacs D., Lim S., Matheu P., Mar W., Yu E. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 2006;89:093103. doi: 10.1063/1.2336629. DOI
Disney C.E., Pillai S., Green M.A. The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors. Sci. Rep. 2017;7:12826. doi: 10.1038/s41598-017-12896-1. PubMed DOI PMC
Schuster C.S., Morawiec S., Mendes M.J., Patrini M., Martins E.R., Lewis L., Crupi I., Krauss T.F. Plasmonic and diffractive nanostructures for light trapping—An experimental comparison. Optica. 2015;2:194–200. doi: 10.1364/OPTICA.2.000194. DOI
Morawiec S., Holovský J., Mendes M.J., Müller M., Ganzerová K., Vetushka A., Ledinský M., Priolo F., Fejfar A., Crupi I. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application. Sci. Rep. 2016;6:22481. doi: 10.1038/srep22481. PubMed DOI PMC
Gentile A., Ruffino F., Grimaldi M. Complex-morphology metal-based nanostructures: Fabrication, characterization, and applications. Nanomaterials. 2016;6:110. doi: 10.3390/nano6060110. PubMed DOI PMC
Zhang Y., Stokes N., Jia B., Fan S., Gu M. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Sci. Rep. 2014;4:4939. doi: 10.1038/srep04939. PubMed DOI PMC
Hylton N.P., Li X.F., Giannini V., Lee K.H., Ekins-Daukes N.J., Loo J., Vercruysse D., Van Dorpe P., Sodabanlu H., Sugiyama M., et al. Loss mitigation in plasmonic solar cells: Aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes. Sci. Rep. 2013;3:2874. doi: 10.1038/srep02874. PubMed DOI PMC
Zhang Y., Cai B., Jia B. Ultraviolet plasmonic aluminium nanoparticles for highly efficient light incoupling on silicon solar cells. Nanomaterials. 2016;6:95. doi: 10.3390/nano6060095. PubMed DOI PMC
Zhang Y., Ouyang Z., Stokes N., Jia B., Shi Z., Gu M. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Appl. Phys. Lett. 2012;100:151101. doi: 10.1063/1.3703121. DOI
Mukti R.J., Hossain M.R., Islam A., Mekhilef S., Horan B. Increased Absorption with Al Nanoparticle at Front Surface of Thin Film Silicon Solar Cell. Energies. 2019;12:2602. doi: 10.3390/en12132602. DOI
Zhang Y., Chen X., Ouyang Z., Lu H., Jia B., Shi Z., Gu M. Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Opt. Mater. Express. 2013;3:489–495. doi: 10.1364/OME.3.000489. DOI
Cai B., Li X., Zhang Y., Jia B. Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles. Nanot. 2016;27:195401. doi: 10.1088/0957-4484/27/19/195401. PubMed DOI
Catchpole K., Polman A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 2008;93:191113. doi: 10.1063/1.3021072. DOI
Shen H., Bienstman P., Maes B. Plasmonic absorption enhancement in organic solar cells with thin active layers. J. Appl. Phys. 2009;106:073109. doi: 10.1063/1.3243163. DOI
Spinelli P., Polman A. Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. Opt. Express. 2012;20:A641–A654. doi: 10.1364/OE.20.00A641. PubMed DOI
Tcherniak A., Ha J., Dominguez-Medina S., Slaughter L., Link S. Probing a century old prediction one plasmonic particle at a time. Nano Lett. 2010;10:1398–1404. doi: 10.1021/nl100199h. PubMed DOI
Noguez C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C. 2007;111:3806–3819. doi: 10.1021/jp066539m. DOI
Rycenga M., Cobley C.M., Zeng J., Li W., Moran C.H., Zhang Q., Qin D., Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011;111:3669–3712. doi: 10.1021/cr100275d. PubMed DOI PMC
Henry A.-I., Bingham J.M., Ringe E., Marks L.D., Schatz G.C., Van Duyne R.P. Correlated structure and optical property studies of plasmonic nanoparticles. J. Phys. Chem. C. 2011;115:9291–9305. doi: 10.1021/jp2010309. DOI
Duche D., Torchio P., Escoubas L., Monestier F., Simon J.-J., Flory F., Mathian G. Improving light absorption in organic solar cells by plasmonic contribution. Sol. Energy Mater. Sol. Cells. 2009;93:1377–1382. doi: 10.1016/j.solmat.2009.02.028. DOI
Rand B.P., Peumans P., Forrest S.R. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 2004;96:7519–7526. doi: 10.1063/1.1812589. DOI
Konda R., Mundle R., Mustafa H., Bamiduro O., Pradhan A., Roy U., Cui Y., Burger A. Surface plasmon excitation via Au nanoparticles in n-Cd Se∕p-Si heterojunction diodes. Appl. Phys. Lett. 2007;91:191111. doi: 10.1063/1.2807277. DOI
Kim S.-S., Na S.-I., Jo J., Kim D.-Y., Nah Y.-C. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 2008;93:305. doi: 10.1063/1.2967471. DOI
Morfa A.J., Rowlen K.L., Reilly T.H., III, Romero M.J., van de Lagemaat J. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 2008;92:013504. doi: 10.1063/1.2823578. DOI
Hägglund C., Zäch M., Kasemo B. Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl. Phys. Lett. 2008;92:013113. doi: 10.1063/1.2830817. DOI
Brown M.D., Suteewong T., Kumar R.S.S., D’Innocenzo V., Petrozza A., Lee M.M., Wiesner U., Snaith H.J. Plasmonic dye-sensitized solar cells using core− shell metal− insulator nanoparticles. Nano Lett. 2010;11:438–445. doi: 10.1021/nl1031106. PubMed DOI
Rho W.-Y., Yang H.-Y., Kim H.-S., Son B.S., Suh J.S., Jun B.-H. Recent advances in plasmonic dye-sensitized solar cells. J. Solid State Chem. 2018;258:271–282. doi: 10.1016/j.jssc.2017.10.018. DOI
Cai B., Jia B., Shi Z., Gu M. Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells. Appl. Phys. Lett. 2013;102:093107. doi: 10.1063/1.4794420. DOI
Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer; Berlin/Heidelberg, Germany: 1988. Surface plasmons on smooth surfaces; pp. 4–39.
Mapel J., Singh M., Baldo M., Celebi K. Plasmonic excitation of organic double heterostructure solar cells. Appl. Phys. Lett. 2007;90:121102. doi: 10.1063/1.2714193. DOI
Tvingstedt K., Persson N.-K., Inganäs O., Rahachou A., Zozoulenko I.V. Surface plasmon increase absorption in polymer photovoltaic cells. Appl. Phys. Lett. 2007;91:113514. doi: 10.1063/1.2782910. DOI
Heidel T., Mapel J., Singh M., Celebi K., Baldo M. Surface plasmon polariton mediated energy transfer in organic photovoltaic devices. Appl. Phys. Lett. 2007;91:093506. doi: 10.1063/1.2772173. DOI
Jin Y., Feng J., Zhang X.-L., Xu M., Bi Y.-G., Chen Q.-D., Wang H.-Y., Sun H.-B. Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode. Appl. Phys. Lett. 2012;101:163303. doi: 10.1063/1.4761947. DOI
Abass A., Le K.Q., Alu A., Burgelman M., Maes B. Dual-interface gratings for broadband absorption enhancement in thin-film solar cells. Phys. Rev. B. 2012;85:115449. doi: 10.1103/PhysRevB.85.115449. DOI
Ferry V.E., Verschuuren M.A., Li H.B., Schropp R.E., Atwater H.A., Polman A. Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors. Appl. Phys. Lett. 2009;95:183503. doi: 10.1063/1.3256187. DOI
Lee S., In S., Mason D.R., Park N. Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells. Opt. Express. 2013;21:4055–4060. doi: 10.1364/OE.21.004055. PubMed DOI
Zhang Y., Jia B., Gu M. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells. Opt. Express. 2016;24:A506–A514. doi: 10.1364/OE.24.00A506. PubMed DOI