Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
881882
Austrian Research Promotion Agency
905123
Austrian Research Promotion Agency
Josef Ressel Center for Phytogenic Drug Research
Christian Doppler Research Association
PubMed
40863639
PubMed Central
PMC12387151
DOI
10.3390/md23080322
PII: md23080322
Knihovny.cz E-zdroje
- Klíčová slova
- Ascophyllum nodosum, C. elegans, Fucus vesiculosus, ROS, antioxidant, brown algae, gene expression, oxidative stress, phlorotannins,
- MeSH
- antioxidancia * farmakologie chemie izolace a purifikace MeSH
- Ascophyllum * chemie MeSH
- Caco-2 buňky MeSH
- Caenorhabditis elegans účinky léků MeSH
- epitelové buňky účinky léků metabolismus MeSH
- fenoly farmakologie MeSH
- Fucus * chemie MeSH
- lidé MeSH
- oxidační stres * účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné extrakty * farmakologie chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- fenoly MeSH
- reaktivní formy kyslíku MeSH
- rostlinné extrakty * MeSH
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo model Caenorhabditis elegans (C. elegans). Aqueous AN and FV extracts were characterized for total phenolic content (TPC), antioxidant capacity (TEAC, FRAP), and phlorotannin composition using LC-HRMS/MS. Antioxidant effects were assessed in vitro, measuring AAPH-induced ROS production in Caco-2 and IPEC-J2 cells via H2DCF-DA, and in vivo, evaluating the effects of paraquat-induced oxidative stress and AN or FV treatment on worm motility, GST-4::GFP reporter expression, and gene expression in C. elegans. FV exhibited higher total phenolic content, antioxidant capacity (TEAC, FRAP), and a broader phlorotannin profile (degree of polymerization [DP] 2-9) than AN (DP 2-7), as determined by LC-HRMS/MS. Both extracts attenuated AAPH-induced oxidative stress in epithelial cells, with FV showing greater efficacy. In C. elegans, pre-treatment with AN and FV significantly mitigated a paraquat-induced motility decline by 22% and 11%, respectively, compared to PQ-stressed controls. Under unstressed conditions, both extracts enhanced nematode healthspan, with significant effects observed at 400 µg/g for AN and starting at 100 µg/g for FV. Gene expression analysis indicated that both extracts modulated antioxidant pathways in unstressed worms. Under oxidative stress, pre-treatment with AN and FV significantly reduced GST-4::GFP expression. In the nematode, AN was more protective under acute stress, whereas FV better supported physiological function in the absence of stressors. These findings demonstrate that AN and FV counteract oxidative stress in intestinal epithelial cells and in C. elegans, highlighting their potential as stress-reducing agents in animal feed.
Zobrazit více v PubMed
Zhou Y., Zhang A., van Klinken R.D., Jones D., Wang J. Consumers’ perspectives on antibiotic use and antibiotic resistance in food animals: A systematic review. npj Sci. Food. 2025;9:29. doi: 10.1038/s41538-025-00381-3. PubMed DOI PMC
Yang C., Chowdhury M.A.K., Huo Y., Gong J. Phytogenic compounds as alternatives to in-feed antibiotics: Potentials and challenges in application. Pathogens. 2015;4:137–156. doi: 10.3390/pathogens4010137. PubMed DOI PMC
Rahman M.R.T., Fliss I., Biron E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics. 2022;11:766. doi: 10.3390/antibiotics11060766. PubMed DOI PMC
Peng M., Salaheen S., Biswas D. Animal Health: Global Antibiotic Issues. In: van Alfen N.K., editor. Encyclopedia of Agriculture and Food Systems. Academic Press; Oxford, UK: 2014. pp. 346–357.
Ismail M.M., El Zokm G.M., Miranda Lopez J.M. Nutritional, bioactive compounds content, and antioxidant activity of brown seaweeds from the Red Sea. Front. Nutr. 2023;10:1210934. doi: 10.3389/fnut.2023.1210934. PubMed DOI PMC
Gupta S., Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011;22:315–326. doi: 10.1016/j.tifs.2011.03.011. DOI
Jang H., Lee J., Park Y.-K., Lee J.-Y. Exploring the health benefits and concerns of brown seaweed consumption: A comprehensive review of bioactive compounds in brown seaweed and its potential therapeutic effects. J. Agric. Food Res. 2024;17:101215. doi: 10.1016/j.jafr.2024.101215. DOI
Meng W., Mu T., Sun H., Garcia-Vaquero M. Phlorotannins: A review of extraction methods, structural characteristics, bioactivities, bioavailability, and future trends. Algal Res. 2021;60:102484. doi: 10.1016/j.algal.2021.102484. DOI
Ford L., Theodoridou K., Sheldrake G.N., Walsh P.J. A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds. Phytochem. Anal. 2019;30:587–599. doi: 10.1002/pca.2851. PubMed DOI PMC
Michalak I., Tiwari R., Dhawan M., Alagawany M., Farag M.R., Sharun K., Emran T.B., Dhama K. Antioxidant effects of seaweeds and their active compounds on animal health and production—A review. Vet. Q. 2022;42:48–67. doi: 10.1080/01652176.2022.2061744. PubMed DOI PMC
González-Meza G.M., Elizondo-Luevano J.H., Cuellar-Bermudez S.P., Sosa-Hernández J.E., Iqbal H.M.N., Melchor-Martínez E.M., Parra-Saldívar R. New Perspective for Macroalgae-Based Animal Feeding in the Context of Challenging Sustainable Food Production. Plants. 2023;12:3609. doi: 10.3390/plants12203609. PubMed DOI PMC
Catarino M.D., Silva A.M.S., Cardoso S.M. Fucaceae: A Source of Bioactive Phlorotannins. Int. J. Mol. Sci. 2017;18:1327. doi: 10.3390/ijms18061327. PubMed DOI PMC
Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006. PubMed DOI PMC
Bae Y.S., Oh H., Rhee S.G., Yoo Y.D. Regulation of reactive oxygen species generation in cell signaling. Mol. Cells. 2011;32:491–509. doi: 10.1007/s10059-011-0276-3. PubMed DOI PMC
Lauritzen B., Lykkesfeldt J., Skaanild M.T., Angen Ø., Nielsen J.P., Friis C. Putative biomarkers for evaluating antibiotic treatment: An experimental model of porcine Actinobacillus pleuropneumoniae infection. Res. Vet. Sci. 2003;74:261–270. doi: 10.1016/S0034-5288(03)00028-6. PubMed DOI
Lauritzen B., Lykkesfeldt J., Friis C. Evaluation of a single dose versus a divided dose regimen of danofloxacin in treatment of Actinobacillus pleuropneumoniae infection in pigs. Res. Vet. Sci. 2003;74:271–277. doi: 10.1016/S0034-5288(03)00029-8. PubMed DOI
Basu S., Eriksson M. Oxidative injury and survival during endotoxemia. FEBS Lett. 1998;438:159–160. doi: 10.1016/S0014-5793(98)01290-3. PubMed DOI
Deaton C.M., Marlin D.J., Smith N.C., Roberts C.A., Harris P.A., Schroter R.C., Kelly F.J. Antioxidant and inflammatory responses of healthy horses and horses affected by recurrent airway obstruction to inhaled ozone. Equine Vet. J. 2005;37:243–249. doi: 10.2746/0425164054530605. PubMed DOI
Circu M.L., Aw T.Y. Intestinal redox biology and oxidative stress. Semin. Cell Dev. Biol. 2012;23:729–737. doi: 10.1016/j.semcdb.2012.03.014. PubMed DOI PMC
Ponnampalam E.N., Kiani A., Santhiravel S., Holman B.W.B., Lauridsen C., Dunshea F.R. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality-Invited Review. Animals. 2022;12:3279. doi: 10.3390/ani12233279. PubMed DOI PMC
Hejna M., Dell’Anno M., Liu Y., Rossi L., Aksmann A., Pogorzelski G., Jóźwik A. Assessment of the antibacterial and antioxidant activities of seaweed-derived extracts. Sci. Rep. 2024;14:21044. doi: 10.1038/s41598-024-71961-8. PubMed DOI PMC
Quéguineur B., Goya L., Ramos S., Martín M.A., Mateos R., Guiry M.D., Bravo L. Effect of phlorotannin-rich extracts of Ascophyllum nodosum and Himanthalia elongata (Phaeophyceae) on cellular oxidative markers in human HepG2 cells. J. Appl. Phycol. 2013;25:1–11. doi: 10.1007/s10811-012-9832-2. DOI
O’Sullivan A.M., O’Callaghan Y.C., O’Grady M.N., Hayes M., Kerry J.P., O’Brien N.M. The effect of solvents on the antioxidant activity in Caco-2 cells of Irish brown seaweed extracts prepared using accelerated solvent extraction (ASE®) J. Funct. Foods. 2013;5:940–948. doi: 10.1016/j.jff.2013.02.007. DOI
Dutot M., Fagon R., Hemon M., Rat P. Antioxidant, anti-inflammatory, and anti-senescence activities of a phlorotannin-rich natural extract from brown seaweed Ascophyllum nodosum. Appl. Biochem. Biotechnol. 2012;167:2234–2240. doi: 10.1007/s12010-012-9761-1. PubMed DOI
Husain A., Meenakshi D.U., Ahmad A., Shrivastava N., Khan S.A. A Review on Alternative Methods to Experimental Animals in Biological Testing: Recent Advancement and Current Strategies. J. Pharm. Bioallied Sci. 2023;15:165–171. doi: 10.4103/jpbs.jpbs_380_23. PubMed DOI PMC
Zarroug S.H.O. Caenorhabditis elegans as in vivo model for the screening of natural plants-derived novel anti-aging compounds: A short introduction. J. Asian Nat. Prod. Res. 2025;27:577–590. doi: 10.1080/10286020.2024.2414189. PubMed DOI
Braeckman B.P., Smolders A., Back P., de Henau S. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans. Antioxid. Redox Signal. 2016;25:577–592. doi: 10.1089/ars.2016.6751. PubMed DOI PMC
Kandasamy S., Fan D., Sangha J.S., Khan W., Evans F., Critchley A.T., Prithiviraj B. Tasco®, a product of Ascophyllum nodosum, imparts thermal stress tolerance in Caenorhabditis elegans. Mar. Drugs. 2011;9:2256–2282. doi: 10.3390/md9112256. PubMed DOI PMC
Kandasamy S., Khan W., Evans F.D., Critchley A.T., Zhang J., Fitton J.H., Stringer D.N., Gardiner V.-A., Prithiviraj B. A fucose containing polymer-rich fraction from the brown alga Ascophyllum nodosum mediates lifespan increase and thermal-tolerance in Caenorhabditis elegans, by differential effects on gene and protein expression. Food Funct. 2014;5:275–284. doi: 10.1039/C3FO60050E. PubMed DOI
Keith S.A., Amrit F.R.G., Ratnappan R., Ghazi A. The C. elegans healthspan and stress-resistance assay toolkit. Methods. 2014;68:476–486. doi: 10.1016/j.ymeth.2014.04.003. PubMed DOI
Ferguson G.D., Bridge W.J. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol. 2019;24:101171. doi: 10.1016/j.redox.2019.101171. PubMed DOI PMC
Monroy-García I.N., Torres-Romero S., Castro-Ochoa L.D., Mendoza-Acosta A., Viveros-Valdez E., Ayala-Zavala F. Bioactive Compounds from Marine Macroalgae: A Natural Defense Against Oxidative Stress-Related Diseases. Stresses. 2025;5:22. doi: 10.3390/stresses5010022. DOI
Salehi B., Azzini E., Zucca P., Maria Varoni E., Anil Kumar N.V., Dini L., Panzarini E., Rajkovic J., Valere Tsouh Fokou P., Peluso I., et al. Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. Appl. Sci. 2020;10:947. doi: 10.3390/app10030947. DOI
Agregán R., Munekata P.E.S., Franco D., Carballo J., Barba F.J., Lorenzo J.M. Antioxidant Potential of Extracts Obtained from Macro- (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata) and Micro-Algae (Chlorella vulgaris and Spirulina platensis) Assisted by Ultrasound. Medicines. 2018;5:33. doi: 10.3390/medicines5020033. PubMed DOI PMC
Gisbert M., Barcala M., Rosell C.M., Sineiro J., Moreira R. Aqueous extracts characteristics obtained by ultrasound-assisted extraction from Ascophyllum nodosum seaweeds: Effect of operation conditions. J. Appl. Phycol. 2021;33:3297–3308. doi: 10.1007/s10811-021-02546-5. DOI
Silva M.M.C.L., Dos Santos Lisboa L., Paiva W.S., Batista L.A.N.C., Luchiari A.C., Rocha H.A.O., Camara R.B.G. Comparison of in vitro and in vivo antioxidant activities of commercial fucoidans from Macrocystis pyrifera, Undaria pinnatifida, and Fucus vesiculosus. Int. J. Biol. Macromol. 2022;216:757–767. doi: 10.1016/j.ijbiomac.2022.07.110. PubMed DOI
Catarino M.D., Silva A.M.S., Mateus N., Cardoso S.M. Optimization of Phlorotannins Extraction from Fucus vesiculosus and Evaluation of Their Potential to Prevent Metabolic Disorders. Mar. Drugs. 2019;17:162. doi: 10.3390/md17030162. PubMed DOI PMC
Obluchinskaya E.D., Pozharitskaya O.N., Shevyrin V.A., Kovaleva E.G., Flisyuk E.V., Shikov A.N. Optimization of Extraction of Phlorotannins from the Arctic Fucus vesiculosus Using Natural Deep Eutectic Solvents and Their HPLC Profiling with Tandem High-Resolution Mass Spectrometry. Mar. Drugs. 2023;21:263. doi: 10.3390/md21050263. PubMed DOI PMC
Allwood J.W., Evans H., Austin C., McDougall G.J. Extraction, Enrichment, and LC-MSn-Based Characterization of Phlorotannins and Related Phenolics from the Brown Seaweed, Ascophyllum nodosum. Mar. Drugs. 2020;18:448. doi: 10.3390/md18090448. PubMed DOI PMC
Apostolova E., Lukova P., Baldzhieva A., Katsarov P., Nikolova M., Iliev I., Peychev L., Trica B., Oancea F., Delattre C., et al. Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers. 2020;12:2338. doi: 10.3390/polym12102338. PubMed DOI PMC
Ye S., Xie C., Agar O.T., Barrow C.J., Dunshea F.R., Suleria H.A. Alginates from Brown Seaweeds as a Promising Natural Source: A Review of Its Properties and Health Benefits. Food Rev. Int. 2024;40:2682–2710. doi: 10.1080/87559129.2023.2279583. DOI
Sellimi S., Maalej H., Rekik D.M., Benslima A., Ksouda G., Hamdi M., Sahnoun Z., Li S., Nasri M., Hajji M. Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed. Int. J. Biol. Macromol. 2018;119:633–644. doi: 10.1016/j.ijbiomac.2018.07.171. PubMed DOI
Kotha R.R., Tareq F.S., Yildiz E., Luthria D.L. Oxidative Stress and Antioxidants-A Critical Review on In Vitro Antioxidant Assays. Antioxidants. 2022;11:2388. doi: 10.3390/antiox11122388. PubMed DOI PMC
Tawe W.N., Eschbach M.L., Walter R.D., Henkle-Dührsen K. Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res. 1998;26:1621–1627. doi: 10.1093/nar/26.7.1621. PubMed DOI PMC
Hernández-Cruz E.Y., Eugenio-Pérez D., Ramírez-Magaña K.J., Pedraza-Chaverri J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS Omega. 2023;8:8936–8959. doi: 10.1021/acsomega.2c07025. PubMed DOI PMC
Zavagno G., Raimundo A., Kirby A., Saunter C., Weinkove D. Rapid measurement of ageing by automated monitoring of movement of C. elegans populations. GeroScience. 2024;46:2281–2293. doi: 10.1007/s11357-023-00998-w. PubMed DOI PMC
Xing M., Li G., Liu Y., Yang L., Zhang Y., Zhang Y., Ding J., Lu M., Yu G., Hu G. Fucoidan from Fucus vesiculosus prevents the loss of dopaminergic neurons by alleviating mitochondrial dysfunction through targeting ATP5F1a. Carbohydr. Polym. 2023;303:120470. doi: 10.1016/j.carbpol.2022.120470. PubMed DOI
Lin Y., Lin C., Cao Y., Chen Y. Caenorhabditis elegans as an in vivo model for the identification of natural antioxidants with anti-aging actions. Biomed. Pharmacother. 2023;167:115594. doi: 10.1016/j.biopha.2023.115594. PubMed DOI
Murphy C.T., McCarroll S.A., Bargmann C.I., Fraser A., Kamath R.S., Ahringer J., Li H., Kenyon C. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003;424:277–283. doi: 10.1038/nature01789. PubMed DOI
Wang Y., Branicky R., Noë A., Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018;217:1915–1928. doi: 10.1083/jcb.201708007. PubMed DOI PMC
Blackwell T.K., Steinbaugh M.J., Hourihan J.M., Ewald C.Y., Isik M. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic. Biol. Med. 2015;88:290–301. doi: 10.1016/j.freeradbiomed.2015.06.008. PubMed DOI PMC
Lüersen K., Stegehake D., Daniel J., Drescher M., Ajonina I., Ajonina C., Hertel P., Woltersdorf C., Liebau E. The glutathione reductase GSR-1 determines stress tolerance and longevity in Caenorhabditis elegans. PLoS ONE. 2013;8:e60731. doi: 10.1371/journal.pone.0060731. PubMed DOI PMC
McCallum K.C., Liu B., Fierro-González J.C., Swoboda P., Arur S., Miranda-Vizuete A., Garsin D.A. TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans. Genetics. 2016;203:387–402. doi: 10.1534/genetics.115.185272. PubMed DOI PMC
Singleton V.L., Orthofer R., Lamuela-Raventós R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999;299:152–178.
Wang Y., Jing Y., Leng F., Wang S., Wang F., Zhuang Y., Liu X., Wang X., Ma X. Establishment and Application of a Method for Rapid Determination of Total Sugar Content Based on Colorimetric Microplate. Sugar Tech. 2017;19:424–431. doi: 10.1007/s12355-016-0473-7. DOI
Miller N.J., Rice-Evans C., Davies M.J., Gopinathan V., Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993;84:407–412. doi: 10.1042/cs0840407. PubMed DOI
Rice-Evans C., Miller N.J. Total antioxidant status in plasma and body fluids. Methods Enzymol. 1994;234:279–293. doi: 10.1016/0076-6879(94)34095-1. PubMed DOI
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI
Stratil P., Klejdus B., Kubán V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables-evaluation of spectrophotometric methods. J. Agric. Food Chem. 2006;54:607–616. doi: 10.1021/jf052334j. PubMed DOI
Shrestha S., Zhang W., Smid S.D. Phlorotannins: A review on biosynthesis, chemistry and bioactivity. Food Biosci. 2021;39:100832. doi: 10.1016/j.fbio.2020.100832. DOI
Furger C. Live Cell Assays for the Assessment of Antioxidant Activities of Plant Extracts. Antioxidants. 2021;10:944. doi: 10.3390/antiox10060944. PubMed DOI PMC
Wan H., Liu D., Yu X., Sun H., Li Y. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants. Food Chem. 2015;175:601–608. doi: 10.1016/j.foodchem.2014.11.128. PubMed DOI
Stiernagle T. WormBook: The Online Review of C. elegans Biology. WormBook; Pasadena, CA, USA: 2006. Maintenance of C. elegans; pp. 1–11. PubMed DOI PMC
Ly K., Reid S.J., Snell R.G. Rapid RNA analysis of individual Caenorhabditis elegans. MethodsX. 2015;2:59–63. doi: 10.1016/j.mex.2015.02.002. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Schurr J., Sandner G., Haghofer A., Hangweirer K., Scharinger J., Winkler S. International Conference on Computer Aided Systems Theory. Springer; Cham, Switzerland: 2025. Analysis of Fluorescence Images of C. elegans; pp. 399–410.