Associations Between Genetic Variants in MCT2 (rs3763980, rs995343, rs3763979) and MCT4 (rs11323780) with Blood Lactate Kinetics Before and After Supramaximal Exercise
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
Miniatura 6
National Science Center
UPB No.12
Ministry of Science and Higher Education
PubMed
40869186
PubMed Central
PMC12386412
DOI
10.3390/ijms26167865
PII: ijms26167865
Knihovny.cz E-resources
- Keywords
- athletic training, elite athletes, genetic variants, genotype, lactate kinetics, physical activity, sprint, sub-elite athletes,
- MeSH
- Exercise * physiology MeSH
- Adult MeSH
- Polymorphism, Single Nucleotide * MeSH
- Kinetics MeSH
- Lactic Acid * blood MeSH
- Humans MeSH
- Young Adult MeSH
- Monocarboxylic Acid Transporters * genetics MeSH
- Athletes MeSH
- Muscle Proteins * genetics MeSH
- Symporters genetics MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Lactic Acid * MeSH
- Monocarboxylic Acid Transporters * MeSH
- SLC16A2 protein, human MeSH Browser
- SLC16A4 protein, human MeSH Browser
- Muscle Proteins * MeSH
- Symporters MeSH
Despite progress in understanding the role of monocarboxylate transporters (MCTs) in lactate (LA) accumulation and removal, it remains unclear whether MCT2 and MCT4 variants enhance LA utilization. This study assessed associations between MCT2 (rs3763980, rs995343, rs3763979) and MCT4 (rs11323780) polymorphisms and LA concentration. A total of 337 male athletes from the Czech Republic and Poland, divided into elite, sub-elite, and physically active individuals, completed two all-out Wingate tests. Before these tests, DNA was collected and analyzed for single-nucleotide polymorphisms (SNPs). LA concentrations were measured before and after the tests. MCT2 rs995343 showed the broadest associations. It was significantly associated with resting LA (LArest) in the overall cohort (codominant: false discovery rate (FDR)-adjusted p = 0.04; dominant: FDR-adjusted p = 0.03) and with peak LA concentration (LAmax), accumulation (ACC), and clearance (DCC) in the physically active group (all models: FDR-adjusted p = 0.02-0.04). MCT2 rs3763980 was associated with LArest in the overall group (codominant and recessive: FDR-adjusted p = 0.04). MCT2 rs3763979 was associated with LArest (FDR-adjusted p = 0.009-0.003) and LA30' (FDR-adjusted p = 0.003-0.04) in the overall and physically active cohorts. MCT4 rs11323780 was associated with LArest in elite athletes (recessive: FDR-adjusted p = 0.03) and with ACC in the physically active group (codominant and recessive: FDR-adjusted p = 0.03). These findings indicate that MCT polymorphisms contribute to variability in LA metabolism, influencing anaerobic performance and recovery.
Department of Laboratory Diagnostics Military Institute of Aviation Medicine 01 755 Warsaw Poland
Faculty of Animal Genetics and Conservation Warsaw University of Life Sciences 02 787 Warsaw Poland
Faculty of Physical Education and Sport Charles University 162 52 Prague Czech Republic
Faculty of Physical Education Gdansk University of Physical Education and Sport 80 336 Gdansk Poland
See more in PubMed
Ginevičienė V., Utkus A., Pranckevičienė E., Semenova E.A., Hall E.C.R., Ahmetov I.I. Perspectives in Sports Genomics. Biomedicines. 2022;10:298. doi: 10.3390/biomedicines10020298. PubMed DOI PMC
Semenova E.A., Hall E.C.R., Ahmetov I.I. Genes and Athletic Performance: The 2023 Update. Genes. 2023;14:1235. doi: 10.3390/genes14061235. PubMed DOI PMC
Mandadzhiev N. The contemporary role of lactate in exercise physiology and exercise prescription—A review of the literature. Folia Med. 2025;67:e144693. doi: 10.3897/folmed.67.e144693. PubMed DOI
Spriet L.L., Howlett R.A., Heigenhauser G.J.F. An enzymatic approach to lactate production in human skeletal muscle during exercise. Med. Sci. Sports Exerc. 2000;32:756–763. doi: 10.1097/00005768-200004000-00007. PubMed DOI
Jones R., Morris M. Monocarboxylate Transporters: Therapeutic Targets and Prognostic. Clin. Pharmacol. Ther. 2016;100:454–463. doi: 10.1002/cpt.418. PubMed DOI PMC
Halestrap A.P. The SLC16 gene family-Structure, role and regulation in health and disease. Mol. Asp. Med. 2013;34:337–349. doi: 10.1016/j.mam.2012.05.003. PubMed DOI
Juel C., Halestrap A.P. Lactate transport in skeletal muscle—Role and regulation of the monocarboxylate transporter. J. Physiol. 1999;517:633–642. doi: 10.1111/j.1469-7793.1999.0633s.x. PubMed DOI PMC
Grollman E.F., Philp N.J., McPhie P., Ward R.D., Sauer B. Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast. Biochemistry. 2000;39:9351–9357. doi: 10.1021/bi000464+. PubMed DOI
Talbot J., Mavez L. Skeletal muscle fiber type: Using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip. Rev. Dev. Biol. 2016;5:518–534. doi: 10.1002/wdev.230. PubMed DOI PMC
Plotkin D.L., Roberts M.D., Haun C.T., Schoenfeld B.J. Muscle fiber type transitions with exercise training: Shifting perspectives. Sport. 2021;9:127. doi: 10.3390/sports9090127. PubMed DOI PMC
Van Hall G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol. 2010;199:499–508. doi: 10.1111/j.1748-1716.2010.02122.x. PubMed DOI
Van Hall G., Jensen-Urstad M., Rosdahl H., Holmberg H.C., Saltin B., Calbet J.A.L. Leg and arm lactate and substrate kinetics during exercise. Am. J. Physiol.-Endocrinol. Metab. 2003;284:193–205. doi: 10.1152/ajpendo.00273.2002. PubMed DOI
Yoshida Y., Holloway G.P., Ljubicic V., Hatta H., Spriet L.L., Hood D.A., Bonen A. Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle. J. Physiol. 2007;582:1317–1335. doi: 10.1113/jphysiol.2007.135095. PubMed DOI PMC
Gladden L.B. Lactate metabolism during exercise. In: Poortmans J.R., editor. Principles of Exercise Biochemistry. Karger; Basel, Switzerland: 2003. pp. 152–196.
Brooks G.A. Bioenergetics of exercising humans. Compr. Physiol. 2012;2:537–562. doi: 10.1002/j.2040-4603.2012.tb00407.x. PubMed DOI
Billat L.V. Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sports Med. 1996;22:157–175. doi: 10.2165/00007256-199622030-00003. PubMed DOI
Goodwin M.L., Harris J.E., Hernández A., Gladden L.B. Blood lactate measurements and analysis during exercise: A guide for clinicians. J. Diabetes Sci. Technol. 2007;1:558–569. doi: 10.1177/193229680700100414. PubMed DOI PMC
Beneke R., Leithäuser R.M., Ochentel O. Blood lactate diagnostics in exercise testing and training. Int. J. Sports Physiol. Perform. 2011;6:8–24. doi: 10.1123/ijspp.6.1.8. PubMed DOI
Gurovich A.N., Heiser B., Hayes C., Marshall E., Roath S., Kabous N.G. Clinical Markers of Exercise Intensity as a Surrogate for Blood Lactate Levels Only During Low-Intensity Exercise in Patients With Coronary Artery Disease. Cardiopulm. Phys. Ther. J. 2018;29:144–151. doi: 10.1097/CPT.0000000000000082. DOI
Lacour J.R., Bouvat E., Barthélémy J.C. Post-competition blood lactate concentrations as indicators of anaerobic energy expenditure during 400-m and 800-m races. Eur. J. Appl. Physiol. Occup. Physiol. 1990;61:172–176. doi: 10.1007/BF00357594. PubMed DOI
Maculewicz E., Mastalerz A., Garbacz A., Mróz A., Stastny P., Petr M., Kolinger D., Vostatková P., Bojarczuk A. The interactions between monocarboxylate transporter genes MCT1, MCT2, and MCT4 and the kinetics of blood lactate production and removal after high-intensity efforts in elite males: A cross-sectional study. BMC Genom. 2025;26:133. doi: 10.1186/s12864-025-11307-4. PubMed DOI PMC
Gene [Internet]. National Library of Medicine (US) NC for BI: Bethesda, MD, USA. [(accessed on 10 November 2024)];2004 Available online: https://www.ncbi.nlm.nih.gov/gene/9123.
Guo X., Chen C., Liu B., Wu Y., Chen Y., Zhou X., Huang X., Li X., Yang H., Chen Z., et al. Genetic variations in monocarboxylate transporter genes as predictors of clinical outcomes in non-small cell lung cancer. Tumor Biol. 2015;36:3931–3939. doi: 10.1007/s13277-014-3036-0. PubMed DOI
Fei F., Guo X., Chen Y., Liu X., Tu J., Xing J., Chen Z., Ji J., He X. Polymorphisms of monocarboxylate transporter genes are associated with clinical outcomes in patients with colorectal cancer. J. Cancer Res. Clin. Oncol. 2015;141:1095–1102. doi: 10.1007/s00432-014-1877-y. PubMed DOI PMC
Van Dijkhuizen P., Wulffraat N. Prediction of methotrexate efficacy and adverse events in patients with juvenile idiopathic arthritis: A systematic literature review. Pediatr. Rheumatol. 2014;12:51. doi: 10.1186/1546-0096-12-51. PubMed DOI PMC
Moncrieffe H., Hinks A., Ursu S., Kassoumeri L., Etheridge A., Hubank M., Martin P., Weiler T., Glass D.N., Thompson S.D., et al. Generation of novel pharmacogenomic candidates in response to methotrexate in juvenile idiopathic arthritis: Correlation between gene expression and genotype. Pharmacogenet. Genom. 2010;20:665–676. doi: 10.1097/FPC.0b013e32833f2cd0. PubMed DOI PMC
Jorfeldt L., Juhlin-Dannfelt A., Karlsson J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J. Appl. Physiol. Respir. Env. Exerc. Physiol. 1978;44:350–352. doi: 10.1152/jappl.1978.44.3.350. PubMed DOI
Thomas C., Perrey S., Lambert K., Hugon G., Mornet D., Mercier J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. J. Appl. Physiol. 2005;98:804–809. doi: 10.1152/japplphysiol.01057.2004. PubMed DOI PMC
Maciejewski H., Bourdin M., Féasson L., Dubouchaud H., Denis C., Freund H., Messonnier L.A. Muscle MCT4 content is correlated with the lactate removal ability during recovery following all-out supramaximal exercise in highly-trained rowers. Front. Physiol. 2016;7:1–10. doi: 10.3389/fphys.2016.00223. PubMed DOI PMC
Gladden L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004;558:5–30. doi: 10.1113/jphysiol.2003.058701. PubMed DOI PMC
Menzies P., Menzies C., McIntyre L., Paterson P., Wilson J., Kemi O.J. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J. Sports Sci. 2010;28:975–982. doi: 10.1080/02640414.2010.481721. PubMed DOI
Bangsbo J., Hellsten Y. Muscle blood flow and oxygen uptake in recovery from exercise. Acta Physiol. Scand. 1998;162:305–312. doi: 10.1046/j.1365-201X.1998.0331e.x. PubMed DOI
Merezhinskaya N., Fishbein W.N. Monocarboxylate transporters: Past, present, and future. Histol. Histopathol. 2009;24:243–264. doi: 10.14670/HH-24.243. PubMed DOI
Lund J., Aas V., Tingstad R.H., Van Hees A., Nikolić N. Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism. Sci. Rep. 2018;8:9814. doi: 10.1038/s41598-018-28249-5. PubMed DOI PMC
Fishbein W.N., Merezhinskaya N., Foellmer J.W. Relative distribution of three major lactate transporters in frozen human tissues and their localization in unfixed skeletal muscle. Muscle Nerve. 2002;26:101–112. doi: 10.1002/mus.10168. PubMed DOI
Hashimoto T., Masuda S., Taguchi S., Brooks G.A. Immunohistochemical analysis of MCT1, MCT2 and MCT4 expression in rat plantaris muscle. J. Physiol. 2005;567:121–129. doi: 10.1113/jphysiol.2005.087411. PubMed DOI PMC
Psychogios N., Hau D.D., Peng J., Guo A.C., Mandal R., Bouatra S., Sinelnikov I., Krishnamurthy R., Eisner R., Gautam B., et al. The human serum metabolome. PLoS ONE. 2011;6:e16957. doi: 10.1371/journal.pone.0016957. PubMed DOI PMC
Brooks G.A., Curl C.C., Leija R.G., Osmond A.D., Duong J.J., Arevalo J.A. Tracing the lactate shuttle to the mitochondrial reticulum. Exp. Mol. Med. 2022;54:1332–1347. doi: 10.1038/s12276-022-00802-3. PubMed DOI PMC
Halestrap A.P., Wilson M.C. The monocarboxylate transporter family-Role and regulation. IUBMB Life. 2012;64:109–119. doi: 10.1002/iub.572. PubMed DOI
Petr M., Štastný P., Pecha O., Šteffl M., Šeda O., Kohlíková E. PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test. PLoS ONE. 2014;10:e0134424. doi: 10.1371/journal.pone.0107171. PubMed DOI PMC
MacIntosh B.R., Rishaug P., Svedahl K. Assessment of peak power and short-term work capacity. Eur. J. Appl. Physiol. 2003;88:572–579. doi: 10.1007/s00421-002-0742-x. PubMed DOI
Lopez E.I.D., Smoliga J.M., Zavorsky G.S. The effect of passive versus active recovery on power output over six repeated Wingate sprints. Res. Q. Exerc. Sport. 2014;85:519–526. doi: 10.1080/02701367.2014.961055. PubMed DOI