• This record comes from PubMed

Associations Between Genetic Variants in MCT2 (rs3763980, rs995343, rs3763979) and MCT4 (rs11323780) with Blood Lactate Kinetics Before and After Supramaximal Exercise

. 2025 Aug 14 ; 26 (16) : . [epub] 20250814

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
Miniatura 6 National Science Center
UPB No.12 Ministry of Science and Higher Education

Despite progress in understanding the role of monocarboxylate transporters (MCTs) in lactate (LA) accumulation and removal, it remains unclear whether MCT2 and MCT4 variants enhance LA utilization. This study assessed associations between MCT2 (rs3763980, rs995343, rs3763979) and MCT4 (rs11323780) polymorphisms and LA concentration. A total of 337 male athletes from the Czech Republic and Poland, divided into elite, sub-elite, and physically active individuals, completed two all-out Wingate tests. Before these tests, DNA was collected and analyzed for single-nucleotide polymorphisms (SNPs). LA concentrations were measured before and after the tests. MCT2 rs995343 showed the broadest associations. It was significantly associated with resting LA (LArest) in the overall cohort (codominant: false discovery rate (FDR)-adjusted p = 0.04; dominant: FDR-adjusted p = 0.03) and with peak LA concentration (LAmax), accumulation (ACC), and clearance (DCC) in the physically active group (all models: FDR-adjusted p = 0.02-0.04). MCT2 rs3763980 was associated with LArest in the overall group (codominant and recessive: FDR-adjusted p = 0.04). MCT2 rs3763979 was associated with LArest (FDR-adjusted p = 0.009-0.003) and LA30' (FDR-adjusted p = 0.003-0.04) in the overall and physically active cohorts. MCT4 rs11323780 was associated with LArest in elite athletes (recessive: FDR-adjusted p = 0.03) and with ACC in the physically active group (codominant and recessive: FDR-adjusted p = 0.03). These findings indicate that MCT polymorphisms contribute to variability in LA metabolism, influencing anaerobic performance and recovery.

See more in PubMed

Ginevičienė V., Utkus A., Pranckevičienė E., Semenova E.A., Hall E.C.R., Ahmetov I.I. Perspectives in Sports Genomics. Biomedicines. 2022;10:298. doi: 10.3390/biomedicines10020298. PubMed DOI PMC

Semenova E.A., Hall E.C.R., Ahmetov I.I. Genes and Athletic Performance: The 2023 Update. Genes. 2023;14:1235. doi: 10.3390/genes14061235. PubMed DOI PMC

Mandadzhiev N. The contemporary role of lactate in exercise physiology and exercise prescription—A review of the literature. Folia Med. 2025;67:e144693. doi: 10.3897/folmed.67.e144693. PubMed DOI

Spriet L.L., Howlett R.A., Heigenhauser G.J.F. An enzymatic approach to lactate production in human skeletal muscle during exercise. Med. Sci. Sports Exerc. 2000;32:756–763. doi: 10.1097/00005768-200004000-00007. PubMed DOI

Jones R., Morris M. Monocarboxylate Transporters: Therapeutic Targets and Prognostic. Clin. Pharmacol. Ther. 2016;100:454–463. doi: 10.1002/cpt.418. PubMed DOI PMC

Halestrap A.P. The SLC16 gene family-Structure, role and regulation in health and disease. Mol. Asp. Med. 2013;34:337–349. doi: 10.1016/j.mam.2012.05.003. PubMed DOI

Juel C., Halestrap A.P. Lactate transport in skeletal muscle—Role and regulation of the monocarboxylate transporter. J. Physiol. 1999;517:633–642. doi: 10.1111/j.1469-7793.1999.0633s.x. PubMed DOI PMC

Grollman E.F., Philp N.J., McPhie P., Ward R.D., Sauer B. Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast. Biochemistry. 2000;39:9351–9357. doi: 10.1021/bi000464+. PubMed DOI

Talbot J., Mavez L. Skeletal muscle fiber type: Using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip. Rev. Dev. Biol. 2016;5:518–534. doi: 10.1002/wdev.230. PubMed DOI PMC

Plotkin D.L., Roberts M.D., Haun C.T., Schoenfeld B.J. Muscle fiber type transitions with exercise training: Shifting perspectives. Sport. 2021;9:127. doi: 10.3390/sports9090127. PubMed DOI PMC

Van Hall G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol. 2010;199:499–508. doi: 10.1111/j.1748-1716.2010.02122.x. PubMed DOI

Van Hall G., Jensen-Urstad M., Rosdahl H., Holmberg H.C., Saltin B., Calbet J.A.L. Leg and arm lactate and substrate kinetics during exercise. Am. J. Physiol.-Endocrinol. Metab. 2003;284:193–205. doi: 10.1152/ajpendo.00273.2002. PubMed DOI

Yoshida Y., Holloway G.P., Ljubicic V., Hatta H., Spriet L.L., Hood D.A., Bonen A. Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle. J. Physiol. 2007;582:1317–1335. doi: 10.1113/jphysiol.2007.135095. PubMed DOI PMC

Gladden L.B. Lactate metabolism during exercise. In: Poortmans J.R., editor. Principles of Exercise Biochemistry. Karger; Basel, Switzerland: 2003. pp. 152–196.

Brooks G.A. Bioenergetics of exercising humans. Compr. Physiol. 2012;2:537–562. doi: 10.1002/j.2040-4603.2012.tb00407.x. PubMed DOI

Billat L.V. Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sports Med. 1996;22:157–175. doi: 10.2165/00007256-199622030-00003. PubMed DOI

Goodwin M.L., Harris J.E., Hernández A., Gladden L.B. Blood lactate measurements and analysis during exercise: A guide for clinicians. J. Diabetes Sci. Technol. 2007;1:558–569. doi: 10.1177/193229680700100414. PubMed DOI PMC

Beneke R., Leithäuser R.M., Ochentel O. Blood lactate diagnostics in exercise testing and training. Int. J. Sports Physiol. Perform. 2011;6:8–24. doi: 10.1123/ijspp.6.1.8. PubMed DOI

Gurovich A.N., Heiser B., Hayes C., Marshall E., Roath S., Kabous N.G. Clinical Markers of Exercise Intensity as a Surrogate for Blood Lactate Levels Only During Low-Intensity Exercise in Patients With Coronary Artery Disease. Cardiopulm. Phys. Ther. J. 2018;29:144–151. doi: 10.1097/CPT.0000000000000082. DOI

Lacour J.R., Bouvat E., Barthélémy J.C. Post-competition blood lactate concentrations as indicators of anaerobic energy expenditure during 400-m and 800-m races. Eur. J. Appl. Physiol. Occup. Physiol. 1990;61:172–176. doi: 10.1007/BF00357594. PubMed DOI

Maculewicz E., Mastalerz A., Garbacz A., Mróz A., Stastny P., Petr M., Kolinger D., Vostatková P., Bojarczuk A. The interactions between monocarboxylate transporter genes MCT1, MCT2, and MCT4 and the kinetics of blood lactate production and removal after high-intensity efforts in elite males: A cross-sectional study. BMC Genom. 2025;26:133. doi: 10.1186/s12864-025-11307-4. PubMed DOI PMC

Gene [Internet]. National Library of Medicine (US) NC for BI: Bethesda, MD, USA. [(accessed on 10 November 2024)];2004 Available online: https://www.ncbi.nlm.nih.gov/gene/9123.

Guo X., Chen C., Liu B., Wu Y., Chen Y., Zhou X., Huang X., Li X., Yang H., Chen Z., et al. Genetic variations in monocarboxylate transporter genes as predictors of clinical outcomes in non-small cell lung cancer. Tumor Biol. 2015;36:3931–3939. doi: 10.1007/s13277-014-3036-0. PubMed DOI

Fei F., Guo X., Chen Y., Liu X., Tu J., Xing J., Chen Z., Ji J., He X. Polymorphisms of monocarboxylate transporter genes are associated with clinical outcomes in patients with colorectal cancer. J. Cancer Res. Clin. Oncol. 2015;141:1095–1102. doi: 10.1007/s00432-014-1877-y. PubMed DOI PMC

Van Dijkhuizen P., Wulffraat N. Prediction of methotrexate efficacy and adverse events in patients with juvenile idiopathic arthritis: A systematic literature review. Pediatr. Rheumatol. 2014;12:51. doi: 10.1186/1546-0096-12-51. PubMed DOI PMC

Moncrieffe H., Hinks A., Ursu S., Kassoumeri L., Etheridge A., Hubank M., Martin P., Weiler T., Glass D.N., Thompson S.D., et al. Generation of novel pharmacogenomic candidates in response to methotrexate in juvenile idiopathic arthritis: Correlation between gene expression and genotype. Pharmacogenet. Genom. 2010;20:665–676. doi: 10.1097/FPC.0b013e32833f2cd0. PubMed DOI PMC

Jorfeldt L., Juhlin-Dannfelt A., Karlsson J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J. Appl. Physiol. Respir. Env. Exerc. Physiol. 1978;44:350–352. doi: 10.1152/jappl.1978.44.3.350. PubMed DOI

Thomas C., Perrey S., Lambert K., Hugon G., Mornet D., Mercier J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. J. Appl. Physiol. 2005;98:804–809. doi: 10.1152/japplphysiol.01057.2004. PubMed DOI PMC

Maciejewski H., Bourdin M., Féasson L., Dubouchaud H., Denis C., Freund H., Messonnier L.A. Muscle MCT4 content is correlated with the lactate removal ability during recovery following all-out supramaximal exercise in highly-trained rowers. Front. Physiol. 2016;7:1–10. doi: 10.3389/fphys.2016.00223. PubMed DOI PMC

Gladden L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004;558:5–30. doi: 10.1113/jphysiol.2003.058701. PubMed DOI PMC

Menzies P., Menzies C., McIntyre L., Paterson P., Wilson J., Kemi O.J. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J. Sports Sci. 2010;28:975–982. doi: 10.1080/02640414.2010.481721. PubMed DOI

Bangsbo J., Hellsten Y. Muscle blood flow and oxygen uptake in recovery from exercise. Acta Physiol. Scand. 1998;162:305–312. doi: 10.1046/j.1365-201X.1998.0331e.x. PubMed DOI

Merezhinskaya N., Fishbein W.N. Monocarboxylate transporters: Past, present, and future. Histol. Histopathol. 2009;24:243–264. doi: 10.14670/HH-24.243. PubMed DOI

Lund J., Aas V., Tingstad R.H., Van Hees A., Nikolić N. Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism. Sci. Rep. 2018;8:9814. doi: 10.1038/s41598-018-28249-5. PubMed DOI PMC

Fishbein W.N., Merezhinskaya N., Foellmer J.W. Relative distribution of three major lactate transporters in frozen human tissues and their localization in unfixed skeletal muscle. Muscle Nerve. 2002;26:101–112. doi: 10.1002/mus.10168. PubMed DOI

Hashimoto T., Masuda S., Taguchi S., Brooks G.A. Immunohistochemical analysis of MCT1, MCT2 and MCT4 expression in rat plantaris muscle. J. Physiol. 2005;567:121–129. doi: 10.1113/jphysiol.2005.087411. PubMed DOI PMC

Psychogios N., Hau D.D., Peng J., Guo A.C., Mandal R., Bouatra S., Sinelnikov I., Krishnamurthy R., Eisner R., Gautam B., et al. The human serum metabolome. PLoS ONE. 2011;6:e16957. doi: 10.1371/journal.pone.0016957. PubMed DOI PMC

Brooks G.A., Curl C.C., Leija R.G., Osmond A.D., Duong J.J., Arevalo J.A. Tracing the lactate shuttle to the mitochondrial reticulum. Exp. Mol. Med. 2022;54:1332–1347. doi: 10.1038/s12276-022-00802-3. PubMed DOI PMC

Halestrap A.P., Wilson M.C. The monocarboxylate transporter family-Role and regulation. IUBMB Life. 2012;64:109–119. doi: 10.1002/iub.572. PubMed DOI

Petr M., Štastný P., Pecha O., Šteffl M., Šeda O., Kohlíková E. PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test. PLoS ONE. 2014;10:e0134424. doi: 10.1371/journal.pone.0107171. PubMed DOI PMC

MacIntosh B.R., Rishaug P., Svedahl K. Assessment of peak power and short-term work capacity. Eur. J. Appl. Physiol. 2003;88:572–579. doi: 10.1007/s00421-002-0742-x. PubMed DOI

Lopez E.I.D., Smoliga J.M., Zavorsky G.S. The effect of passive versus active recovery on power output over six repeated Wingate sprints. Res. Q. Exerc. Sport. 2014;85:519–526. doi: 10.1080/02701367.2014.961055. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...