Adult Type Lipoblastoma With a Predominantly Fibroblastic Morphology and a Novel DLEU2::PLAG1 Gene Rearrangement: Two Cases of a Rare Entity
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, kazuistiky
PubMed
40879377
DOI
10.1002/gcc.70064
Knihovny.cz E-zdroje
- Klíčová slova
- DLEU2, PLAG1, adult lipoblastoma, lipoblastoma, mature lipoblastoma,
- MeSH
- DNA vazebné proteiny * genetika MeSH
- dospělí MeSH
- fibroblasty patologie MeSH
- fúzní onkogenní proteiny genetika MeSH
- genová přestavba * MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipoblastom * genetika patologie MeSH
- nádorové supresorové proteiny * genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- DNA vazebné proteiny * MeSH
- fúzní onkogenní proteiny MeSH
- nádorové supresorové proteiny * MeSH
- PLAG1 protein, human MeSH Prohlížeč
Lipoblastoma is a benign adipocytic lesion with embryonal fat cell differentiation. The tumors most commonly occur in children, however, rare cases have been reported to occur in adults and are generally considered to represent "maturing" or long-standing lipoblastomas. Approximately 60%-80% of these tumors harbor a gene fusion involving the PLAG1 gene, which is known to rearrange with numerous unique fusion partners. Herein, we present two additional cases of so-called maturing lipoblastoma with a review of the literature. Both tumors occurred in adult females and both harbored a yet-unreported DLEU2::PLAG1 fusion transcript. Clinically, both tumors behaved in a benign fashion. The histology was characterized by a prominence of fibroblastic growth with only partial or minimal lipomatous components. This report serves to provide additional characterization of the clinical, histologic, and molecular features of this rare tumor type.
Bioptická Laboratoř Ltd Plzen Czech Republic
Department of Pathology Faculty of Medicine in Plzen Charles University Prague Czech Republic
Department of Pathology Rutgers University New Jersey Medical School Newark New Jersey USA
Zobrazit více v PubMed
K. Fritchie, L. Wang, Z. Yin, et al., “Lipoblastomas Presenting in Older Children and Adults: Analysis of 22 Cases With Identification of Novel PLAG1 Fusion Partners,” Modern Pathology 34 (2021): 584–591.
E. Ameloot, F. Cordier, J. Van Dorpe, and D. Creytens, “Update of Pediatric Lipomatous Lesions: A Clinicopathological, Immunohistochemical and Molecular Overview,” Journal of Clinical Medicine 11 (2022): 1938.
MCSRC, Overview: MayoComplete Comprehensive Sarcoma Panel, Next‐Generation Sequencing, Tumor (2025), accessed March 20, 2025, https://www.mayocliniclabs.com/test‐catalog/Overview/616492.
N. Klubíčková, J. K. Dermawan, E. Mosaieby, et al., “Comprehensive Clinicopathological, Molecular, and Methylation Analysis of Mesenchymal Tumors With and Other Kinase Gene Aberrations,” Journal of Pathology 263 (2024): 61–73.
J. Abdul‐Ghafar, Z. Ahmad, M. U. Tariq, N. Kayani, and N. Uddin, “Lipoblastoma: A Clinicopathologic Review of 23 Cases From a Major Tertiary Care Center Plus Detailed Review of Literature,” BMC Research Notes 11 (2018): 42.
N. De Saint Aubain Somerhausen, J. M. Coindre, M. Debiec‐Rychter, J. Delplace, and R. Sciot, “Lipoblastoma in Adolescents and Young Adults: Report of Six Cases With FISH Analysis,” Histopathology 52 (2008): 294–298.
M. Jiménez Fuertes, V. Domínguez Prieto, S. Qian, P. Pastor Riquelme, and P. Villarejo Campos, “Adult Retroperitoneal Lipoblastoma: A Rare Entity With Atypical Presentation,” Cirugía Española 102 (2024): 348 (English Edition).
J. S. Silverman, J. Hamilton, and A. Tamsen, “Benign Recurring Lipoblastoma in an Adult Versus Well Differentiated Subcutaneous Myxoid Liposarcoma: Clinicopathologic, Immunohistochemical and Molecular Analysis of a Unique Case,” Pathology, Research and Practice 195 (1999): 787–792.
I. Brčić, J. Igrec, I. Halbwedl, C. Viertler, and B. Liegl‐Atzwanger, “Expanding the Spectrum of PLAG1‐Rearranged Lipoblastomas Arising in Patients Over 45, With Identification of Novel Fusion Partners,” Modern Pathology 35 (2022): 283–285.
C. Ganzert, A. Popov, E. Lücke, et al., “Fatal Course of a Benign Mediastinal Lipoblastoma in a 20‐Year‐Old Woman,” Pathology, Research and Practice 239 (2022): 154161.
F. L. Sanchez, G. Olvera, R. J. Arreola Peralta, and C. R. Barrera, “Fetal Lipoblastoma Presenting as a Retroperitoneal Tumor in Adults: A Case Report,” Cureus 15 (2023): e48075.
M. J. Pereira‐Lourenço, D. Vieira‐Brito, J. P. Peralta, and N. Castelo‐Branco, “Intrascrotal Lipoblastoma in Adulthood,” BML Case Reports 12 (2019): e231320.
R. Sciot, I. De Wever, and M. Debiec‐Rychter, “Lipoblastoma in a 23‐Year‐Old Male: Distinction From Atypical Lipomatous Tumor Using Cytogenetic and Fluorescence In‐Situ Hybridization Analysis,” Virchows Archiv 442 (2003): 468–471.
W. Zhang, S. Zhang, Z. Yang, Y. Zhang, and Z. Wang, “Lipoblastoma in One Adult and 35 Pediatric Patients: Retrospective Analysis of 36 Cases,” Experimental and Therapeutic Medicine 25, no. 1 (2022): 11.
H. A. Alghanmi, A. Bokhari, A. Zeeneldin, M. Y. Almaghrabi, E. Sadek, and F. Saba, “Retroperitoneal Lipoblastoma With Cord Compression in an Adult Patient: A Case Report,” Cureus 14 (2022): e29292.
A. Mariño‐Enriquez, A. F. Nascimento, A. H. Ligon, C. Liang, and C. D. M. Fletcher, “Atypical Spindle Cell Lipomatous Tumor: Clinicopathologic Characterization of 232 Cases Demonstrating a Morphologic Spectrum,” American Journal of Surgical Pathology 41 (2017): 234–244.
D. Creytens, T. Mentzel, L. Ferdinande, et al., “‘Atypical’ Pleomorphic Lipomatous Tumor: A Clinicopathologic, Immunohistochemical and Molecular Study of 21 Cases, Emphasizing Its Relationship to Atypical Spindle Cell Lipomatous Tumor and Suggesting a Morphologic Spectrum (Atypical Spindle Cell/Pleomorphic Lipomatous Tumor),” American Journal of Surgical Pathology 41 (2017): 1443–1455.
A. Qorbani and A. Horvai, “Atypical Spindle Cell/Pleomorphic Lipomatous Tumor,” Surgical Pathology Clinics 17 (2024): 97–104.
J. V. Scapa, J. M. Cloutier, S. S. Raghavan, G. Peters‐Schulze, S. Varma, and G. W. Charville, “DDIT3 Immunohistochemistry Is a Useful Tool for the Diagnosis of Myxoid Liposarcoma,” American Journal of Surgical Pathology 45 (2021): 230–239.
D. S. Graham, A. Qorbani, M. A. Eckardt, et al., “Does ‘Low‐Grade’ Dedifferentiated Liposarcoma Exist? The Role of Mitotic Index in Separating Dedifferentiated Liposarcoma From Cellular Well‐Differentiated Liposarcoma,” American Journal of Surgical Pathology 47 (2023): 649–660.
M. E. Lae, P. F. Pereira, G. L. Keeney, and A. G. Nascimento, “Lipoblastoma‐Like Tumour of the Vulva: Report of Three Cases of a Distinctive Mesenchymal Neoplasm of Adipocytic Differentiation,” Histopathology 40 (2002): 505–509.
J. Mirkovic and C. D. M. Fletcher, “Lipoblastoma‐Like Tumor of the Vulva: Further Characterization in 8 New Cases,” American Journal of Surgical Pathology 39 (2015): 1290–1295.
J. K. Schoolmeester, M. Michal, P. Steiner, M. Michal, A. L. Folpe, and W. R. Sukov, “Lipoblastoma‐Like Tumor of the Vulva: A Clinicopathologic, Immunohistochemical, Fluorescence In Situ Hybridization and Genomic Copy Number Profiling Study of Seven Cases,” Modern Pathology 31 (2018): 1862–1868.
C. T. Chung, C. R. Antonescu, B. C. Dickson, et al., “Pediatric Fibromyxoid Soft Tissue Tumor With PLAG1 Fusion: A Novel Entity?,” Genes, Chromosomes & Cancer 60 (2021): 263–271.
S. Santisukwongchote, P. S. Thorner, T. Desudchit, et al., “Pediatric Fibromyxoid Tumor With PLAG1 Fusion: An Emerging Entity With a Novel Intracranial Location,” Neuropathology 42 (2022): 315–322.
G. Stenman, M. K. Andersson, and Y. Andren, “New Tricks From an Old Oncogene: Gene Fusion and Copy Number Alterations of MYB in Human Cancer,” Cell Cycle 9 (2010): 3058–3067.
M. Mehine, E. Kaasinen, H. R. Heinonen, et al., “Integrated Data Analysis Reveals Uterine Leiomyoma Subtypes With Distinct Driver Pathways and Biomarkers,” Proceedings of the National Academy of Sciences of the United States of America 113 (2016): 1315–1320.
M. Michal, A. Agaimy, S. Croce, et al., “PLAG1‐Rearranged Uterine Sarcomas: A Study of 11 Cases Showing a Wide Phenotypical Spectrum Not Limited to Myxoid Leiomyosarcoma‐Like Morphology,” Modern Pathology 37 (2024): 100552.
N. Katabi, B. Xu, A. A. Jungbluth, et al., “PLAG1 Immunohistochemistry Is a Sensitive Marker for Pleomorphic Adenoma: A Comparative Study With PLAG1 Genetic Abnormalities,” Histopathology 72 (2018): 285–293.
K. Kosemehmetoglu, E. Mosaieby, P. Šteiner, T. Vaněček, V. Baranovska‐Andrigo, and M. Michal, “Calcifying Spindle Cell Soft Tissue Tumor With SOX10::PLAG1 Fusion: A Case Report of a Morphologically Distinctive and Potentially Novel Soft Tissue Tumor,” Genes, Chromosomes & Cancer 63 (2024): e23249.
G. Stenman, “Fusion Oncogenes and Tumor Type Specificity—Insights From Salivary Gland Tumors,” Seminars in Cancer Biology 15 (2005): 224–235.
K. Kas, M. L. Voz, E. Röijer, et al., “Promoter Swapping Between the Genes for a Novel Zinc Finger Protein and Beta‐Catenin in Pleiomorphic Adenomas With t(3;8) (p21;q12) Translocations,” Nature Genetics 15 (1997): 170–174.
A. Garding, N. Bhattacharya, R. Claus, et al., “Epigenetic Upregulation of lncRNAs at 13q14.3 in Leukemia Is Linked to the in Cis Downregulation of a Gene Cluster That Targets NF‐kB,” PLoS Genetics 9 (2013): e1003373.
L. Morenos, Z. Chatterton, J. L. Ng, et al., “Hypermethylation and Down‐Regulation of DLEU2 in Paediatric Acute Myeloid Leukaemia Independent of Embedded Tumour Suppressor miR‐15a/16‐1,” Molecular Cancer 13 (2014): 123.
W. Ma, C. Q. Zhang, C. X. Dang, et al., “Upregulated Long‐Non‐Coding RNA DLEU2 Exon 9 Expression Was an Independent Indicator of Unfavorable Overall Survival in Patients With Esophageal Adenocarcinoma,” Biomedicine & Pharmacotherapy 113 (2019): 108655.
B. Xu, X. Gong, L. Zi, et al., “Silencing of DLEU2 Suppresses Pancreatic Cancer Cell Proliferation and Invasion by Upregulating microRNA‐455,” Cancer Science 110 (2019): 1676–1685.
P. Dong, Y. Xiong, Y. Konno, et al., “Long Non‐Coding RNA DLEU2 Drives EMT and Glycolysis in Endometrial Cancer Through HK2 by Competitively Binding With miR‐455 and by Modulating the EZH2/miR‐181a Pathway,” Journal of Experimental & Clinical Cancer Research 40 (2021): 216.
D. Mertens, A. Philippen, M. Ruppel, et al., “Chronic Lymphocytic Leukemia and 13q14: miRs and More,” Leukemia & Lymphoma 50 (2009): 502–505.
X. Qu, Y. X. Cao, Y. X. Xing, et al., “Deleted in Lymphocytic Leukemia 2 (DLEU2): A Possible Biomarker That Holds Promise for Future Diagnosis and Treatment of Cancer,” Clinical & Translational Oncology 25 (2023): 2772–2782.
F. Mitelman, B. Johansson, and F. Mertens, Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (2025), accessed March 26, 2025, https://mitelmandatabase.isb‐cgc.org.
NCBI, DLEU2L Deleted in Lymphocytic Leukemia 2 Like [Homo sapiens (Human)]‐Gene‐NCBI (2000), accessed March 26, 2025, https://www.ncbi.nlm.nih.gov/gene/79469.
F. Xu, H. Wu, J. Xiong, and T. Peng, “Long Non‐Coding RNA DLEU2L Targets miR‐210‐3p to Suppress Gemcitabine Resistance in Pancreatic Cancer Cells via BRCA2 Regulation,” Frontiers in Molecular Biosciences 8 (2021): 645365.
Y. Shi, D. D. Zhang, J. B. Liu, et al., “Comprehensive Analysis to Identify DLEU2L/TAOK1 Axis as a Prognostic Biomarker in Hepatocellular Carcinoma,” Molecular Therapy ‐ Nucleic Acids 23 (2021): 702–718.
Y. Cui, X. Zhou, P. Meng, et al., “Identifying Potential Therapeutic Targets for Ischemic Stroke Through Immune Infiltration Analysis and Construction of a Programmed Cell Death‐Related ceRNA Network,” Experimental and Therapeutic Medicine 24 (2022): 680.