Analysis of Gene Expression Profiles Regulating Phenotypic Transformation of Vascular Smooth Muscle Cells by Endothelial Cell-Derived Exosomes

. 2025 Aug 31 ; 74 (4) : 589-599.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40886368

To establish a co-culture cell model and implement high-throughput gene sequencing of exosomes, we preliminarily demonstrated that endothelial cell-derived exosomes play a role in modulating the phenotypic transformation of vascular smooth muscle cells (VSMCs) by means of differentially expressed long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). Primary rat aortic endothelial cells (ECs) and VSMCs were cultured for morphological observation, immunofluorescence (IF), and western blotting (WB). A co-culture model was established using a transwell system. A comparative analysis of ?-smooth muscle actin (?-SM actin), a marker of the contractile phenotype, and vimentin, indicative of the synthetic phenotype, was conducted to assess the expression levels in both co-culture and control setups. Isolated exosomes were obtained using an exosome-specific isolation kit, followed by detailed characterization using transmission electron microscopy (TEM) for morphological assessment, nanoparticle tracking analysis (NTA) for size distribution, and WB for protein profiling. Primary aortic ECs were isolated, cultured, and characterized. In the Transwell co-culture model, VSMCs transitioned to a contractile phenotype, exhibiting increased alpha-smooth muscle actin (?-SMA, contractile marker) and decreased Vimentin (synthetic marker). Exosomes were extracted, purified, and characterized by their morphology, diameter, concentration, and marker proteins (CD9, CD63, and CD81). RNA-seq and bioinformatic analyses were conducted on muscle cells before and after treatment. The Transwell-based ECs-VSMCs co-culture model significantly upregulates contractile phenotype protein expression in VSMCs, promoting their transition to a contractile state. Differentially expressed exosomal genes, including lncRNAs and circRNAs, modulate proliferation, differentiation, and phenotypic transformation of VSMCs.

Zobrazit více v PubMed

Basatemur GL, Jorgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16:727–744. doi: 10.1038/s41569-019-0227-9. PubMed DOI

Grootaert MOJ, Bennett MR. Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovasc Res. 2021;117:2326–2339. doi: 10.1093/cvr/cvab046. PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2014:10. doi: 10.14806/ej.17.1.200. DOI

Lilly B. We have contact: endothelial cell-smooth muscle cell interactions. Physiology (Bethesda) 2014;29:234–241. doi: 10.1152/physiol.00047.2013. PubMed DOI

Poursaleh A, Esfandiari G, Sadegh Beigee F, Eshghifar N, Najafi M. Isolation of intimal endothelial cells from the human thoracic aorta: Study protocol. Med J Islam Repub Iran. 2019;33:51. doi: 10.47176/mjiri.33.51. PubMed DOI PMC

Montezano AC, Neves KB, Lopes RA, Rios F. Isolation and culture of endothelial cells from large vessels. Methods Mol Biol. 2017;1527:345–348. doi: 10.1007/978-1-4939-6625-7_26. PubMed DOI

Yang W, Lu C, Chu F, Bu K, Ma H, Wang Q, Jiao Z, Wang S, Yang X, Gao Y, Sun D, Sun H. Fluoride-induced hypertension by regulating RhoA/ROCK pathway and phenotypic transformation of vascular smooth muscle cells: In vitro and in vivo evidence. Ecotoxicol Environ Saf. 2024;281:116681. doi: 10.1016/j.ecoenv.2024.116681. PubMed DOI

Li YS, Yang RR, Li XY, Liu WW, Zhao YM, Zu MM, Gao YH, Huo MQ, Jiang YT, Li BY. Fluoride impairs vascular smooth muscle A7R5 cell lines via disrupting amino acids metabolism. J Transl Med. 2024;22:528. doi: 10.1186/s12967-024-05350-0. PubMed DOI PMC

Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767–801. doi: 10.1152/physrev.00041.2003. PubMed DOI

Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007;15:100–108. doi: 10.1007/BF03085963. PubMed DOI PMC

San Sebastián-Jaraba I, Fernández-Gómez MJ, Blázquez-Serra R, Sanz-Andrea S, Blanco-Colio LM, Méndez-Barbero N. In vitro 3D co-culture model of human endothelial and smooth muscle cells to study pathological vascular remodeling. Clinica e investigacion en arteriosclerosis: publicacion oficial de la Sociedad Espanola de Arteriosclerosis. 2024;36:356–363. doi: 10.1016/j.artere.2024.11.004. PubMed DOI

Charla E, Mercer J, Maffia P, Nicklin SA. Extracellular vesicle signalling in atherosclerosis. Cell Signal. 2020;75:109751. doi: 10.1016/j.cellsig.2020.109751. PubMed DOI PMC

Konkoth A, Saraswat R, Dubrou C, Sabatier F, Leroyer AS, Lacroix R, Duchez AC, Dignat-George F. Multifaceted role of extracellular vesicles in atherosclerosis. Atherosclerosis. 2021;319:121–131. doi: 10.1016/j.atherosclerosis.2020.11.006. PubMed DOI

Boyer MJ, Kimura Y, Akiyama T, Baggett AY, Preston KJ, Scalia R, Eguchi S, Rizzo V. Endothelial cell-derived extracellular vesicles alter vascular smooth muscle cell phenotype through high-mobility group box proteins. J Extracell Vesicles. 2020;9:1781427. doi: 10.1080/20013078.2020.1781427. PubMed DOI PMC

Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750. PubMed DOI PMC

Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14:249–256. doi: 10.1038/ncb2441. PubMed DOI

Loyer X, Zlatanova I, Devue C, Yin M, Howangyin KY, Klaihmon P, Guerin CL, Kheloufi M, Vilar J, Zannis K, Fleischmann BK, Hwang DW, Park J, Lee H, Menasche P, Silvestre JS, Boulanger CM. Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ Res. 2018;123:100–106. doi: 10.1161/CIRCRESAHA.117.311326. PubMed DOI PMC

Boada C, Sukhovershin R, Pettigrew R, Cooke JP. RNA therapeutics for cardiovascular disease. Curr Opin Cardiol. 2021;36:256–263. doi: 10.1097/HCO.0000000000000850. PubMed DOI PMC

Liu Y, Cui X, Wang C, Zhao S. LncRNA HCG11 regulates proliferation and apoptosis of vascular smooth muscle cell through targeting miR-144-3p/FOXF1 axis in atherosclerosis. Biol Res. 2020;53:44. doi: 10.1186/s40659-020-00306-2. PubMed DOI PMC

Zhang C, Ge S, Gong W, Xu J, Guo Z, Liu Z, Gao X, Wei X, Ge S. LncRNA ANRIL acts as a modular scaffold of WDR5 and HDAC3 complexes and promotes alteration of the vascular smooth muscle cell phenotype. Cell Death Dis. 2020;11:435. doi: 10.1038/s41419-020-2645-3. PubMed DOI PMC

Mao YY, Wang JQ, Guo XX, Bi Y, Wang CX. Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939. Biochem Biophys Res Commun. 2018;505:119–125. doi: 10.1016/j.bbrc.2018.09.069. PubMed DOI

Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, Ma P, Jiang H, Wu X, Shu Y, Xu T. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 2020;19:112. doi: 10.1186/s12943-020-01208-3. PubMed DOI PMC

Boon RA, Hofmann P, Michalik KM, Lozano-Vidal N, Berghauser D, Fischer A, Knau A, Jae N, Schurmann C, Dimmeler S. Long Noncoding RNA Meg3 controls endothelial cell aging and function: implications for regenerative angiogenesis. J Am Coll Cardiol. 2016;68:2589–2591. doi: 10.1016/j.jacc.2016.09.949. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...