Live-cell imaging of mammary organoids using light sheet microscopy
Status In-Process Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MITI-SECC
Baden-Württemberg Stiftung
MUNI/G/1775/2020
Grant Agency of Masaryk University
LL2323
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
40888933
PubMed Central
PMC12401754
DOI
10.1007/s10911-025-09587-3
PII: 10.1007/s10911-025-09587-3
Knihovny.cz E-zdroje
- Klíčová slova
- 3D cell culture, Epithelium, Light sheet microscopy, Mammary gland, Time-lapse,
- Publikační typ
- časopisecké články MeSH
The mammary gland is a dynamic organ whose parenchyma undergoes major development during puberty and extensive remodeling with each estrous cycle. These processes can be modelled and investigated in vitro via 3D cell culture techniques that employ specialized extracellular matrices and appropriate growth factors. The resulting mammary organoid cultures faithfully represent the mammary gland with respect to cellular heterogeneity, cell-cell contacts, overall architecture as well as response to growth factor stimuli and are amendable to a variety of molecular methods as well as microscopy techniques. Among the imaging techniques, light sheet microscopy (single plane illumination microscopy; SPIM) represents a useful method for longitudinal monitoring of morphological changes and cell behavior during the establishment of mammary gland ductal systems. In contrast to other fluorescence microscopy techniques such as widefield- and confocal-microscopy, SPIM exerts minimal phototoxicity while allowing fast acquisition of different fluorophores within organoids arranged in a 3D matrix under optimized environmental conditions. Here, we provide a detailed protocol for organoid acquisition and culture and describe two sample mounting variants for use with multiview and inverted light sheet microscopes.
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Watson CJ, Khaled WT. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development. 2008;135:995–1003. PubMed
Watson CJ, Khaled WT. Mammary development in the embryo and adult: new insights into the journey of morphogenesis and commitment. Development. 2020;147:dev169862. PubMed
Goodwin K, Nelson CM. Branching morphogenesis. Development. 2020;147:dev184499. PubMed
Sumbal J, Budkova Z, Traustadóttir GÁ, Koledova Z. Mammary organoids and 3D cell cultures: old dogs with new tricks. J Mammary Gland Biol Neoplasia. 2020;25:273–88. PubMed
Mohan SC, Lee T-Y, Giuliano AE, Cui X. Current status of breast organoid models. Front Bioeng Biotechnol. 2021;9:745943. PubMed PMC
Konishi Y, Terai K, Furuta Y, Kiyonari H, Abe T, Ueda Y, et al. Live-cell FRET imaging reveals a role of extracellular signal-regulated kinase activity dynamics in thymocyte motility. iScience. 2018;10:98–113. PubMed PMC
Brezak M, Sumbalova Koledova Z. Defective mammary epithelial outgrowth in transgenic EKAREV-NLS mice: correction via estrogen supplementation and genetic background modification. J Mammary Gland Biol Neoplasia. 2025;30:1. PubMed PMC
Santi PA. Light sheet fluorescence microscopy: a review. J Histochem Cytochem. 2011;59:129–38. PubMed PMC
Stelzer EHK, Strobl F, Chang B-J, Preusser F, Preibisch S, McDole K, et al. Light sheet fluorescence microscopy. Nat Rev Methods Primers. 2021;1:73.
Huisken J, Stainier DYR. Selective plane illumination microscopy techniques in developmental biology. Development. 2009;136:1963–75. PubMed PMC
Power RM, Huisken J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Methods. 2017;14:360–73. PubMed
Weber M, Mickoleit M, Huisken J. Light sheet microscopy. Methods Cell Biol. 2014;123:193–215. PubMed
Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 2004;305:1007–9. PubMed
Light Sheet. In: Li D, editor. Encyclopedia of microfluidics and nanofluidics. New York, NY: Springer; 2015. p. 1633. 10.1007/978-1-4614-5491-5_200141
Koledova Z. 3D coculture of mammary organoids with fibrospheres: a model for studying epithelial-stromal interactions during mammary branching morphogenesis. Methods Mol Biol. 2017;1612:107–24. PubMed
Koledova Z, Lu P. A 3D fibroblast-epithelium co-culture model for understanding microenvironmental role in branching morphogenesis of the mammary gland. Methods Mol Biol. 2017;1501:217–31. PubMed
Charifou E, Sumbal J, Koledova Z, Li H, Chiche A. A robust mammary organoid system to model lactation and involution-like processes. Bio-protocol. 2021;11: e3996. PubMed PMC
Jechlinger M, Podsypanina K, Varmus H. Regulation of transgenes in three-dimensional cultures of primary mouse mammary cells demonstrates oncogene dependence and identifies cells that survive deinduction. Genes Dev. 2009;23:1677–88. PubMed PMC
Del Valle LG, Montero MG, Jechlinger M. Modification of single cells within mouse mammary gland derived acini via viral transduction. Methods Mol Biol. 2022;2471:185–94. PubMed
Jechlinger M. Organotypic culture of untransformed and tumorigenic primary mammary epithelial cells. Cold Spring Harb Protoc. 2015;2015:457–61. PubMed
Sumbal J, Koledova Z. Single organoids droplet-based staining method for high-end 3D imaging of mammary organoids. In: Vivanco MM, editor. Mammary stem cells: Methods and protocols. New York, NY: Springer US; 2022. pp. 259–69. PubMed
Alladin A, Chaible L, Reither S, Löschinger M, Wachsmuth M, Hériché JK, et al. Tracking the cells of tumor origin in breast organoids by light sheet microscopy. Elife. 2020;9:e54066. PubMed PMC