Carfilzomib-specific proteasome β5/β2 inhibition drives cardiotoxicity via remodeling of protein homeostasis and the renin-angiotensin-system
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40894880
PubMed Central
PMC12392329
DOI
10.1016/j.isci.2025.113228
PII: S2589-0042(25)01489-0
Knihovny.cz E-resources
- Keywords
- Biological sciences, Natural sciences, Pharmacology, Physiology,
- Publication type
- Journal Article MeSH
Compared to bortezomib treatment, multiple myeloma (MM) treatment with the proteasome inhibitor carfilzomib is associated with a higher incidence of cardiovascular adverse events. However, the mechanism underlying such cardiopathogenic side effects in MM patients remains elusive. Here, we show that carfilzomib-specific proteasome inhibition profoundly impairs cardiomyocyte contractility. Using an unbiased multiomics approach in vitro and in vivo, followed by in vitro validation, we elucidated carfilzomib-related changes in contractility proteins and cellular translation, retinol oxidative metabolism, and the angiotensin II derivative, angiotensin A. Subsequently, all-trans retinoic acid and angiotensin II type 1 receptor inhibitor prevented cardiomyocytes from experiencing carfilzomib-induced toxicity in human and murine in vitro and in vivo models through stabilization of protein and metabolic homeostasis. Our data reveal a mechanism underlying carfilzomib-induced cardiotoxicity that closely mirrors clinical observations and may open new avenues for management of such potentially lethal side effects in patients with MM.
CEITEC Masaryk University 62500 Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University 62500 Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Department of Internal Medicine 2 University Hospital of Würzburg 97080 Würzburg Germany
Gorlaeus Building Leiden Institute of Chemistry 2333 Leiden the Netherlands
ICRC St Anne's University Hospital 65691 Brno Czech Republic
Mildred Scheel Early Career Center University Hospital of Würzburg 97080 Würzburg Germany
See more in PubMed
Kumar S.K., Rajkumar V., Kyle R.A., van Duin M., Sonneveld P., Mateos M.V., Gay F., Anderson K.C. Multiple myeloma. Nat. Rev. Dis. Primers. 2017;3 doi: 10.1038/nrdp.2017.46. PubMed DOI
Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 1998;17:7151–7160. doi: 10.1093/emboj/17.24.7151. PubMed DOI PMC
Moreau P., San Miguel J., Sonneveld P., Mateos M.V., Zamagni E., Avet-Loiseau H., Hajek R., Dimopoulos M.A., Ludwig H., Einsele H., et al. Multiple myeloma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017;28:iv52–iv61. doi: 10.1093/annonc/mdx096. PubMed DOI
Besse A., Besse L., Kraus M., Mendez-Lopez M., Bader J., Xin B.T., de Bruin G., Maurits E., Overkleeft H.S., Driessen C. Proteasome inhibition in multiple myeloma: head-to-head comparison of currently available proteasome inhibitors. Cell Chem. Biol. 2019;26:340–351.e3. doi: 10.1016/j.chembiol.2018.11.007. PubMed DOI
Kumar S.K., Jacobus S.J., Cohen A.D., Weiss M., Callander N., Singh A.K., Parker T.L., Menter A., Yang X., Parsons B., et al. Carfilzomib or bortezomib in combination with lenalidomide and dexamethasone for patients with newly diagnosed multiple myeloma without intention for immediate autologous stem-cell transplantation (ENDURANCE): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2020;21:1317–1330. doi: 10.1016/S1470-2045(20)30452-6. PubMed DOI PMC
Zhou X., Besse A., Peter J., Steinhardt M.J., Vogt C., Nerreter S., Teufel E., Stanojkovska E., Xiao X., Hornburger H., et al. High-dose carfilzomib achieves superior anti-tumor activity over lowdose and recaptures response in relapsed/refractory multiple myeloma resistant to low-dose carfilzomib by co-inhibiting the beta2 and beta1 subunits of the proteasome complex. Haematologica. 2023;108:1628–1639. doi: 10.3324/haematol.2022.282225. PubMed DOI PMC
Saavedra-Garcia P., Roman-Trufero M., Al-Sadah H.A., Blighe K., Lopez-Jimenez E., Christoforou M., Penfold L., Capece D., Xiong X., Miao Y., et al. Systems level profiling of chemotherapy-induced stress resolution in cancer cells reveals druggable trade-offs. Proc. 2021;118 doi: 10.1073/pnas.2018229118. PubMed DOI PMC
Dimopoulos M.A., Moreau P., Palumbo A., Joshua D., Pour L., Hájek R., Facon T., Ludwig H., Oriol A., Goldschmidt H., et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol. 2016;17:27–38. doi: 10.1016/S1470-2045(15)00464-7. PubMed DOI
Cornell R.F., Ky B., Weiss B.M., Dahm C.N., Gupta D.K., Du L., Carver J.R., Cohen A.D., Engelhardt B.G., Garfall A.L., et al. Prospective study of cardiac events during proteasome inhibitor therapy for relapsed multiple myeloma. J. Clin. Oncol. 2019;37:1946–1955. doi: 10.1200/JCO.19.00231. PubMed DOI PMC
Russell S.D., Lyon A., Lenihan D.J., Moreau P., Joshua D., Chng W.-J., Palumbo A., Goldschmidt H., Hájek R., Facon T., et al. Serial echocardiographic assessment of patients (Pts) with relapsed multiple myeloma (RMM) receiving carfilzomib and dexamethasone (Kd) Vs bortezomib and dexamethasone (Vd): a substudy of the phase 3 endeavor trial (NCT01568866) Blood. 2015;126:4250.
Dimopoulos M.A., Roussou M., Gavriatopoulou M., Psimenou E., Ziogas D., Eleutherakis-Papaiakovou E., Fotiou D., Migkou M., Kanellias N., Panagiotidis I., et al. Cardiac and renal complications of carfilzomib in patients with multiple myeloma. Blood Adv. 2017;1:449–454. doi: 10.1182/bloodadvances.2016003269. PubMed DOI PMC
Efentakis P., Kremastiotis G., Varela A., Nikolaou P.E., Papanagnou E.D., Davos C.H., Tsoumani M., Agrogiannis G., Konstantinidou A., Kastritis E., et al. Molecular mechanisms of carfilzomib-induced cardiotoxicity in mice and the emerging cardioprotective role of metformin. Blood. 2019;133:710–723. doi: 10.1182/blood-2018-06-858415. PubMed DOI
Efentakis P., Psarakou G., Varela A., Papanagnou E.D., Chatzistefanou M., Nikolaou P.E., Davos C.H., Gavriatopoulou M., Trougakos I.P., Dimopoulos M.A., et al. Elucidating carfilzomib's induced cardiotoxicity in an in vivo model of aging: prophylactic potential of metformin. Int. J. Mol. Sci. 2021;22 doi: 10.3390/ijms222010956. PubMed DOI PMC
George M.Y., Dabour M.S., Rashad E., Zordoky B.N. Empagliflozin alleviates carfilzomib-induced cardiotoxicity in mice by modulating oxidative stress, inflammatory response, endoplasmic reticulum stress, and autophagy. Antioxidants. 2024;13 doi: 10.3390/antiox13060671. PubMed DOI PMC
Forghani P., Rashid A., Sun F., Liu R., Li D., Lee M.R., Hwang H., Maxwell J.T., Mandawat A., Wu R., et al. Carfilzomib treatment causes molecular and functional alterations of human induced pluripotent stem cell-derived cardiomyocytes. J. Am. Heart Assoc. 2021;10 doi: 10.1161/JAHA.121.022247. PubMed DOI PMC
Currie J., Manda V., Robinson S.K., Lai C., Agnihotri V., Hidalgo V., Ludwig R.W., Zhang K., Pavelka J., Wang Z.V., et al. Simultaneous proteome localization and turnover analysis reveals spatiotemporal features of protein homeostasis disruptions. Nat. Commun. 2024;15:2207. doi: 10.1038/s41467-024-46600-5. PubMed DOI PMC
Cole D.C., Frishman W.H. Cardiovascular complications of proteasome inhibitors used in multiple myeloma. Cardiol. Rev. 2018;26:122–129. doi: 10.1097/crd.0000000000000183. PubMed DOI
Demo S.D., Kirk C.J., Aujay M.A., Buchholz T.J., Dajee M., Ho M.N., Jiang J., Laidig G.J., Lewis E.R., Parlati F., et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 2007;67:6383–6391. doi: 10.1158/0008-5472.CAN-06-4086. PubMed DOI
Drews O., Taegtmeyer H. Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies. Antioxid. Redox Signal. 2014;21:2322–2343. doi: 10.1089/ars.2013.5823. PubMed DOI PMC
Ranek M.J., Zheng H., Huang W., Kumarapeli A.R., Li J., Liu J., Wang X. Genetically induced moderate inhibition of 20S proteasomes in cardiomyocytes facilitates heart failure in mice during systolic overload. J. Mol. Cell. Cardiol. 2015;85:273–281. doi: 10.1016/j.yjmcc.2015.06.014. PubMed DOI PMC
Hein S., Arnon E., Kostin S., Schönburg M., Elsässer A., Polyakova V., Bauer E.P., Klövekorn W.P., Schaper J. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart. Circulation. 2003;107:984–991. doi: 10.1161/01.cir.0000051865.66123.b7. PubMed DOI
Tannous P., Zhu H., Nemchenko A., Berry J.M., Johnstone J.L., Shelton J.M., Miller F.J., Rothermel B.A., Hill J.A. Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation. 2008;117:3070–3078. PubMed PMC
Berenson J.R., Cartmell A., Bessudo A., Lyons R.M., Harb W., Tzachanis D., Agajanian R., Boccia R., Coleman M., Moss R.A., et al. CHAMPION-1: a phase 1/2 study of once-weekly carfilzomib and dexamethasone for relapsed or refractory multiple myeloma. Blood. 2016;127:3360–3368. doi: 10.1182/blood-2015-11-683854. PubMed DOI PMC
van der Linden W.A., Willems L.I., Shabaneh T.B., Li N., Ruben M., Florea B.I., van der Marel G.A., Kaiser M., Kisselev A.F., Overkleeft H.S. Discovery of a potent and highly beta1 specific proteasome inhibitor from a focused library of urea-containing peptide vinyl sulfones and peptide epoxyketones. Org. Biomol. Chem. 2012;10:181–194. doi: 10.1039/c1ob06554h. PubMed DOI PMC
Geurink P.P., van der Linden W.A., Mirabella A.C., Gallastegui N., de Bruin G., Blom A.E.M., Voges M.J., Mock E.D., Florea B.I., van der Marel G.A., et al. Incorporation of non-natural amino acids improves cell permeability and potency of specific inhibitors of proteasome trypsin-like sites. J. Med. Chem. 2013;56:1262–1275. doi: 10.1021/jm3016987. PubMed DOI PMC
Britton M., Lucas M.M., Downey S.L., Screen M., Pletnev A.A., Verdoes M., Tokhunts R.A., Amir O., Goddard A.L., Pelphrey P.M., et al. Selective inhibitor of proteasome's caspase-like sites sensitizes cells to specific inhibition of chymotrypsin-like sites. Chem. Biol. 2009;16:1278–1289. doi: 10.1016/j.chembiol.2009.11.015. PubMed DOI PMC
Shabaneh T.B., Downey S.L., Goddard A.L., Screen M., Lucas M.M., Eastman A., Kisselev A.F. Molecular basis of differential sensitivity of myeloma cells to clinically relevant bolus treatment with bortezomib. PLoS One. 2013;8 doi: 10.1371/journal.pone.0056132. PubMed DOI PMC
Bessen J.L., Afeyan L.K., Dančík V., Koblan L.W., Thompson D.B., Leichner C., Clemons P.A., Liu D.R. High-resolution specificity profiling and off-target prediction for site-specific DNA recombinases. Nat. Commun. 2019;10:1937. doi: 10.1038/s41467-019-09987-0. PubMed DOI PMC
Dantuma N.P., Lindsten K., Glas R., Jellne M., Masucci M.G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat. Biotechnol. 2000;18:538–543. doi: 10.1038/75406. PubMed DOI
Ehler E., Moore-Morris T., Lange S. Isolation and culture of neonatal mouse cardiomyocytes. J. Vis. Exp. 2013;79 doi: 10.3791/50154. PubMed DOI PMC
Huebsch N., Loskill P., Mandegar M.A., Marks N.C., Sheehan A.S., Ma Z., Mathur A., Nguyen T.N., Yoo J.C., Judge L.M., et al. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng. Part C, Methods. 2015;21:467–479. doi: 10.1089/ten.TEC.2014.0283. PubMed DOI PMC
Beauchamp P., Jackson C.B., Ozhathil L.C., Agarkova I., Galindo C.L., Sawyer D.B., Suter T.M., Zuppinger C. 3D co-culture of hiPSC-derived cardiomyocytes with cardiac fibroblasts improves tissue-like features of cardiac spheroids. Front. Mol. Biosci. 2020;7:14. doi: 10.3389/fmolb.2020.00014. PubMed DOI PMC
Pesl M., Pribyl J., Acimovic I., Vilotic A., Jelinkova S., Salykin A., Lacampagne A., Dvorak P., Meli A.C., Skladal P., Rotrekl V. Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing. Biosens. Bioelectron. 2016;85:751–757. doi: 10.1016/j.bios.2016.05.073. PubMed DOI
Liu C., Vyas A., Kassab M.A., Singh A.K., Yu X. The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res. 2017;45:8129–8141. doi: 10.1093/nar/gkx565. PubMed DOI PMC
Makia N.L., Bojang P., Falkner K.C., Conklin D.J., Prough R.A. Murine hepatic aldehyde dehydrogenase 1a1 is a major contributor to oxidation of aldehydes formed by lipid peroxidation. Chem. Biol. Interact. 2011;191:278–287. doi: 10.1016/j.cbi.2011.01.013. PubMed DOI PMC
Yang Y., Reid M.A., Hanse E.A., Li H., Li Y., Ruiz B.I., Fan Q., Kong M. SAPS3 subunit of protein phosphatase 6 is an AMPK inhibitor and controls metabolic homeostasis upon dietary challenge in male mice. Nat. Commun. 2023;14:1368. doi: 10.1038/s41467-023-36809-1. PubMed DOI PMC
Orfali N., O'Donovan T.R., Nyhan M.J., Britschgi A., Tschan M.P., Cahill M.R., Mongan N.P., Gudas L.J., McKenna S.L. Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacologic modulation. Exp. Hematol. 2015;43:781–793.e2. doi: 10.1016/j.exphem.2015.04.012. PubMed DOI PMC
Radhakrishnan S.K., Lee C.S., Young P., Beskow A., Chan J.Y., Deshaies R.J. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell. 2010;38:17–28. doi: 10.1016/j.molcel.2010.02.029. PubMed DOI PMC
Luo M., Anderson M.E. Mechanisms of altered Ca(2)(+) handling in heart failure. Circ. Res. 2013;113:690–708. doi: 10.1161/CIRCRESAHA.113.301651. PubMed DOI PMC
Coyle K.M., Maxwell S., Thomas M.L., Marcato P. Profiling of the transcriptional response to all-trans retinoic acid in breast cancer cells reveals RARE-independent mechanisms of gene expression. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-16687-6. PubMed DOI PMC
Gachon F., Olela F.F., Schaad O., Descombes P., Schibler U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006;4:25–36. doi: 10.1016/j.cmet.2006.04.015. PubMed DOI
Lai C.W., Aronson D.E., Snapp E.L. BiP availability distinguishes states of homeostasis and stress in the endoplasmic reticulum of living cells. Mol. Biol. Cell. 2010;21:1909–1921. doi: 10.1091/mbc.e09-12-1066. PubMed DOI PMC
Jankowski V., Vanholder R., Van Der Giet M., Tölle M., Karadogan S., Gobom J., Furkert J., Oksche A., Krause E., Tran T.N.A., et al. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler. Thromb. Vasc. Biol. 2007;27:297–302. doi: 10.1161/01.atv.0000253889.09765.5f. PubMed DOI
Yang R., Smolders I., Vanderheyden P., Demaegdt H., Van Eeckhaut A., Vauquelin G., Lukaszuk A., Tourwé D., Chai S.Y., Albiston A.L., et al. Pressor and renal hemodynamic effects of the novel angiotensin a peptide are angiotensin II type 1A receptor dependent. Hypertension. 2011;57:956–964. doi: 10.1161/hypertensionaha.110.161836. PubMed DOI
Da Dalt L., Cabodevilla A.G., Goldberg I.J., Norata G.D. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc. Res. 2023;119:1905–1914. doi: 10.1093/cvr/cvad100. PubMed DOI PMC
Bazoukis G., Saplaouras A., Efthymiou P., Yiannikourides A., Liu T., Letsas K.P., Efremidis M., Lampropoulos K., Xydonas S., Tse G., Armoundas A.A. Cardiac contractility modulation in patients with heart failure - a review of the literature. Heart Fail. Rev. 2024;29:689–705. doi: 10.1007/s10741-024-10390-1. PubMed DOI
Grandin E.W., Ky B., Cornell R.F., Carver J., Lenihan D.J. Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. J. Card. Fail. 2015;21:138–144. doi: 10.1016/j.cardfail.2014.11.008. PubMed DOI
Gupta A., Akki A., Wang Y., Leppo M.K., Chacko V.P., Foster D.B., Caceres V., Shi S., Kirk J.A., Su J., et al. Creatine kinase–mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. J. Clin. Investig. 2012;122:291–302. doi: 10.1172/jci57426. PubMed DOI PMC
Neubauer S. The failing heart — an engine out of fuel. N. Engl. J. Med. 2007;356:1140–1151. doi: 10.1056/nejmra063052. PubMed DOI
Yang N., Parker L.E., Yu J., Jones J.W., Liu T., Papanicolaou K.N., Talbot C.C., Jr., Margulies K.B., O'Rourke B., Kane M.A., Foster D.B. Cardiac retinoic acid levels decline in heart failure. JCI Insight. 2021;6 doi: 10.1172/jci.insight.137593. PubMed DOI PMC
Zhu Z., Zhu J., Zhao X., Yang K., Lu L., Zhang F., Shen W., Zhang R. All-trans retinoic acid ameliorates myocardial ischemia/reperfusion injury by reducing cardiomyocyte apoptosis. PLoS One. 2015;10 doi: 10.1371/journal.pone.0133414. PubMed DOI PMC
Goldsmith J., Marsh T., Asthana S., Leidal A.M., Suresh D., Olshen A., Debnath J. Ribosome profiling reveals a functional role for autophagy in mRNA translational control. Commun. Biol. 2020;3:388. doi: 10.1038/s42003-020-1090-2. PubMed DOI PMC
Van Kats J.P., Danser A.H., Van Meegen J.R., Sassen L.M., Verdouw P.D., Schalekamp M.A. Angiotensin production by the heart. Circulation. 1998;98:73–81. doi: 10.1161/01.cir.98.1.73. PubMed DOI
Sadoshima J., Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ. Res. 1993;73:413–423. doi: 10.1161/01.res.73.3.413. PubMed DOI
Uhal B.D., Li X., Xue A., Gao X., Abdul-Hafez A. Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1-7/Mas axis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011;301:L269–L274. doi: 10.1152/ajplung.00222.2010. PubMed DOI PMC
Zhong J., Basu R., Guo D., Chow F.L., Byrns S., Schuster M., Loibner H., Wang X.-H., Penninger J.M., Kassiri Z., Oudit G.Y. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation. 2010;122:717–728. doi: 10.1161/circulationaha.110.955369. PubMed DOI
Jain T., Narayanasamy H., Mikhael J., Reeder C.B., Bergsagel P.L., Mayo A., Stewart A.K., Mookadam F., Fonseca R. Systolic dysfunction associated with carfilzomib use in patients with multiple myeloma. Blood Cancer J. 2017;7:642. doi: 10.1038/s41408-017-0026-7. PubMed DOI PMC
Takeda K., Ichiki T., Funakoshi Y., Ito K., Takeshita A. Downregulation of angiotensin II type 1 receptor by all-trans retinoic acid in vascular smooth muscle cells. Hypertension. 2000;35:297–302. doi: 10.1161/01.hyp.35.1.297. PubMed DOI
Zhong J.C., Huang D.Y., Yang Y.M., Li Y.F., Liu G.F., Song X.H., Du K. Upregulation of angiotensin-converting enzyme 2 by all-trans retinoic acid in spontaneously hypertensive rats. Hypertension. 2004;44:907–912. doi: 10.1161/01.HYP.0000146400.57221.74. PubMed DOI
Wang Q., Lin Z., Wang Z., Ye L., Xian M., Xiao L., Su P., Bi E., Huang Y.-H., Qian J., et al. RARγ activation sensitizes human myeloma cells to carfilzomib treatment through OAS-RNase L innate immune pathway. Blood. 2022;139:59–72. doi: 10.1182/blood.2020009856. PubMed DOI
Shah C., Bishnoi R., Jain A., Bejjanki H., Xiong S., Wang Y., Zou F., Moreb J.S. Cardiotoxicity associated with carfilzomib: systematic review and meta-analysis. Leuk. Lymphoma. 2018;59:2557–2569. doi: 10.1080/10428194.2018.1437269. PubMed DOI
Waxman A.J., Clasen S., Hwang W.T., Garfall A., Vogl D.T., Carver J., O'Quinn R., Cohen A.D., Stadtmauer E.A., Ky B., Weiss B.M. Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis. JAMA Oncol. 2018;4 doi: 10.1001/jamaoncol.2017.4519. PubMed DOI PMC
de Bruin G., Xin B.T., Kraus M., van der Stelt M., van der Marel G.A., Kisselev A.F., Driessen C., Florea B.I., Overkleeft H.S. A set of activity-based probes to visualize human (immuno)proteasome activities. Angew. Chem. Int. Ed. Engl. 2016;55:4199–4203. doi: 10.1002/anie.201509092. PubMed DOI
Pesl M., Acimovic I., Pribyl J., Hezova R., Vilotic A., Fauconnier J., Vrbsky J., Kruzliak P., Skladal P., Kara T., et al. Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells. Heart Vessel. 2014;29:834–846. doi: 10.1007/s00380-013-0436-9. PubMed DOI
Soriano G.P., Besse L., Li N., Kraus M., Besse A., Meeuwenoord N., Bader J., Everts B., den Dulk H., Overkleeft H.S., et al. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia. 2016;30:2198–2207. doi: 10.1038/leu.2016.102. PubMed DOI PMC
Sala L., van Meer B.J., Tertoolen L.G.J., Bakkers J., Bellin M., Davis R.P., Denning C., Dieben M.A.E., Eschenhagen T., Giacomelli E., et al. MUSCLEMOTION: a versatile open software tool to quantify cardiomyocyte and cardiac muscle contraction in vitro and in vivo. Circ. Res. 2018;122:e5–e16. doi: 10.1161/CIRCRESAHA.117.312067. PubMed DOI PMC
Zheng G.X.Y., Terry J.M., Belgrader P., Ryvkin P., Bent Z.W., Wilson R., Ziraldo S.B., Wheeler T.D., McDermott G.P., Zhu J., et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 2017;8 doi: 10.1038/ncomms14049. PubMed DOI PMC
McCarthy D.J., Campbell K.R., Lun A.T.L., Wills Q.F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017;33:1179–1186. doi: 10.1093/bioinformatics/btw777. PubMed DOI PMC
Stuart T., Butler A., Hoffman P., Hafemeister C., Papalexi E., Mauck W.M., Hao Y., Stoeckius M., Smibert P., Satija R. Comprehensive integration of single-cell data. Cell. 2019;177:1888–1902.e21. doi: 10.1016/j.cell.2019.05.031. PubMed DOI PMC
Pages H.,C.M., Falcon S., Li N. AnnotationDbi: Manipulation of SQLite-based Annotations in Bioconductor. 2021. https://bioconductor.org/packages/AnnotationDbi R package version 1.54.0.
Yu G., Wang L.-G., Han Y., He Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
Kang J.X., Leaf A. Protective effects of All-trans-retinoic acid against cardiac arrhythmias induced by isoproterenol, lysophosphatidylcholine or ischemia and reperfusion. J. Cardiovasc. Pharmacol. 1995;26:943–948. PubMed
Cai W., Wang J., Hu M., Chen X., Lu Z., Bellanti J.A., Zheng S.G. All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling. J. Neuroinflammation. 2019;16 doi: 10.1186/s12974-019-1557-6. PubMed DOI PMC
Weber K., Thomaschewski M., Benten D., Fehse B. RGB marking with lentiviral vectors for multicolor clonal cell tracking. Nat. Protoc. 2012;7:839–849. doi: 10.1038/nprot.2012.026. PubMed DOI
Wang J., Vasaikar S., Shi Z., Greer M., Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45:W130–W137. doi: 10.1093/nar/gkx356. PubMed DOI PMC
Liu J., Ji H., Zheng W., Wu X., Zhu J.J., Arnold A.P., Sandberg K. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17beta-oestradiol-dependent and sex chromosome-independent. Biol. Sex Differ. 2010;1:6. doi: 10.1186/2042-6410-1-6. PubMed DOI PMC
Xia J., Psychogios N., Young N., Wishart D.S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37:W652–W660. doi: 10.1093/nar/gkp356. PubMed DOI PMC
Macosko E.Z., Basu A., Satija R., Nemesh J., Shekhar K., Goldman M., Tirosh I., Bialas A.R., Kamitaki N., Martersteck E.M., et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–1214. doi: 10.1016/j.cell.2015.05.002. PubMed DOI PMC
figshare
10.6084/m9.figshare.c.6716034.v1