Results in pediatric T-ALL patients treated in trial AIEOP-BFM ALL 2009: Prognostic factors in the context of modern risk-adapted therapy

. 2025 Sep ; 9 (9) : e70206. [epub] 20250902

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40904487

To improve the outcome of pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients, the AIEOP-BFM ALL 2009 trial modified T-ALL stratification and treatment based on AIEOP-BFM ALL 2000 and other pediatric ALL groups' results. This report aims to describe the outcome of T-ALL patients in trial AIEOP-BFM ALL 2009 and evaluate prognostic features defined within the end of induction (EOI) therapy, for future protocols stratification and interventions. From 06/2010 to 02/2017, 872 T-ALL patients, aged 1-17, were enrolled. High risk (HR) criteria were prednisone poor response (PPR), Day 15 flow cytometry minimal residual disease (MRD) ≥ 10%, no complete remission at EOI, or polymerase chain reaction (PCR)-MRD ≥ 5 × 10-4 at end of consolidation (EOC). Three Cox regression models on event-free survival (EFS) evaluated prognostic factors. Overall, 5-year EFS and survival were 79.9% ± 1.4% and 84.9% ± 1.2% with cumulative incidence of relapse (CIR) and death of 13.0% ± 1.2% and 5.9% ± 0.8%. Five-year EFS and CIR were 86.8% ± 1.6% and 8.7% ± 1.3% in non-HR patients (n = 470); 71.9% ± 2.3% and 18.0% ± 1.9% in HR patients (n = 402). High PCR-MRD levels at EOI and EOC were prognostic in all models, with EOC-MRD ≥ 5 × 10-3 related to a hazard ratio of 6.22 (P < 0.001). When a model considered factors identified at EOI only, central nervous system (CNS)3 (hazard ratio = 2.3, P < 0.001), PPR (hazard ratio = 1.74, P = 0.02), and high EOI-MRD (hazard ratio 4.71 for ≥5 × 10-2 vs. negative, P < 0.001) significantly impacted EFS. Results of T-ALL patients in AIEOP-BFM ALL 2009 were favorable. While EOC-MRD remained the strongest prognostic predictor, PPR, CNS3 disease, and EOI-MRD showed relevant prognostic value, with CNS3 and EOI-MRD ≥ 5 × 10-2 being candidate criteria for early stratification and intervention modifications.

Biostatistics and Clinical Epidemiology Fondazione IRCCS San Gerardo dei Tintori Monza Italy

Cancer Center for Children The Children's Hospital Westmead Sydney New South Wales Australia

Catholic University of the Sacred Heart Rome Italy

Department of Hematology Oncology and Cell and Gene Therapy IRCCS Bambino Gesù Children's Hospital Rome Italy

Department of Paediatric Haematology and Oncology 2nd Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic

Department of Pediatric Hematology and Oncology Clinic and Lab University of Padova Padua Italy

Department of Pediatric Hematology and Oncology Hannover Medical School Hannover Germany

Department of Pediatric Hematology and Oncology Schneider Children's Medical Center and Faculty of Medicine Tel Aviv University Tel Aviv Israel

Department of Pediatric Hematology and Oncology St Anna Children's Hospital Medical University of Vienna Vienna Austria

Department of Pediatric Oncology Hematology and Immunology Heidelberg University Heidelberg Germany

Department of Pediatric Oncology University Children's Hospital Zürich Zürich Switzerland

Department of Pediatrics 1 Pediatric Hematology and Oncology ALL BFM Study Group University Medical Center Schleswig Holstein Campus Kiel Kiel Germany

Department of Pediatrics and Adolescent Medicine St Anna Children's Hospital Medical University of Vienna Vienna Austria

Department of Women's and Children's Health Padua Italy

Kids Cancer Centre Sydney Children's Hospital Randwick New South Wales Australia

Pediatric Oncology Department Regina Margherita Children's Hospital Città della Salute e della Scienza University Hospital Torino Italy

Pediatrics Fondazione IRCCS San Gerardo dei Tintori Monza Italy

School of Clinical Medicine UNSW Sydney Sydney New South Wales Australia

School of Medicine and Surgery University of Milan Bicocca Monza Italy

St Anna Children's Cancer Research Institute Vienna Austria

Tettamanti Center Fondazione IRCCS San Gerardo dei Tintori Monza Italy

Zobrazit více v PubMed

Teachey DT, Pui C‐H. Comparative features and outcomes between paediatric T‐cell and B‐cell acute lymphoblastic leukaemia. Lancet Oncol. 2019;20(3):e142‐e154. 10.1016/S1470-2045(19)30031-2 PubMed DOI PMC

Möricke A, Reiter A, Zimmermann M, et al. Risk‐adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL‐BFM 95. Blood. 2008;111(9):4477‐4489. 10.1182/blood-2007-09-112920 PubMed DOI

Schrappe M, Valsecchi MG, Bartram CR, et al. Late MRD response determines relapse risk overall and in subsets of childhood T‐cell ALL: results of the AIEOP‐BFM‐ALL 2000 study. Blood. 2011;118(8):2077‐2084. 10.1182/blood-2011-03-338707 PubMed DOI

Möricke A, Zimmermann M, Valsecchi MG, et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP‐BFM ALL 2000. Blood. 2016;127(17):2101‐2112. 10.1182/blood-2015-09-670729 PubMed DOI

Dunsmore KP, Winter SS, Devidas M, et al. Children's Oncology Group AALL0434: a phase III randomized clinical trial testing nelarabine in newly diagnosed T‐cell acute lymphoblastic leukemia. J Clin Oncol. 2020;38(28):3282‐3293. 10.1200/JCO.20.00256 PubMed DOI PMC

Teachey DT, Devidas M, Wood BL, et al. Children's Oncology Group Trial AALL1231: a phase III clinical trial testing bortezomib in newly diagnosed T‐cell acute lymphoblastic leukemia and lymphoma. J Clin Oncol. 2022;40:JCO.21.02678. 10.1200/JCO.21.02678 PubMed DOI PMC

Quist‐Paulsen P, Toft N, Heyman M, et al. T‐cell acute lymphoblastic leukemia in patients 1–45 years treated with the pediatric NOPHO ALL2008 protocol. Leukemia. 2020;34(2):347‐357. 10.1038/s41375-019-0598-2 PubMed DOI

Raetz EA, Teachey DT. T‐cell acute lymphoblastic leukemia. Hematology. 2016;2016(1):580‐588. 10.1182/asheducation-2016.1.580 PubMed DOI PMC

Hofmans M, Suciu S, Ferster A, et al. Results of successive EORTC‐CLG 58 881 and 58 951 trials in paediatric T‐cell acute lymphoblastic leukaemia (ALL). Br J Haematol. 2019;186(5):741‐753. 10.1111/bjh.15983 PubMed DOI

Sato A, Hatta Y, Imai C, et al. Nelarabine, intensive l‐asparaginase, and protracted intrathecal therapy for newly diagnosed T‐cell acute lymphoblastic leukaemia in children and young adults (ALL‐T11): a nationwide, multicenter, phase 2 trial including randomisation in the very high‐risk group. Lancet Haematol. 2023;10(6):e419‐e432. 10.1016/S2352-3026(23)00072-8 PubMed DOI

Burns MA, Place AE, Stevenson KE, et al. Identification of prognostic factors in childhood T‐cell acute lymphoblastic leukemia: results from DFCI ALL Consortium Protocols 05‐001 and 11‐001. Pediatr Blood Cancer. 2021;68(1):e28719. 10.1002/pbc.28719 PubMed DOI PMC

Aricò M, Valsecchi MG, Conter V, et al. Improved outcome in high‐risk childhood acute lymphoblastic leukemia defined by prednisone‐poor response treated with double Berlin‐Frankfurt‐Muenster protocol II. Blood. 2002;100(2):420‐426. 10.1182/blood.V100.2.420 PubMed DOI

Basso G, Veltroni M, Valsecchi MG, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168‐5174. 10.1200/JCO.2008.20.8934 PubMed DOI

Conter V, Valsecchi MG, Cario G, et al. Four additional doses of PEG‐l‐asparaginase during the consolidation phase in the AIEOP‐BFM ALL 2009 protocol do not improve outcome and increase toxicity in high‐risk ALL: results of a randomized study. J Clin Oncol. 2024;42(8):915‐926. 10.1200/JCO.23.01388 PubMed DOI

Conter V, Valsecchi MG, Buldini B, et al. Early T‐cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP‐BFM protocols: a retrospective analysis. Lancet Haematol. 2016;3(2):e80‐e86. 10.1016/S2352-3026(15)00254-9 PubMed DOI

Dworzak MN, Gaipa G, Ratei R, et al. Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: multicentric assessment is feasible. Cytometry B Clin Cytom. 2008;74B(6):331‐340. 10.1002/cyto.b.20430 PubMed DOI

Pui C‐H, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008;9(3):257‐268. 10.1016/S1470-2045(08)70070-6 PubMed DOI

Flohr T, Schrauder A, Cazzaniga G, et al. Minimal residual disease‐directed risk stratification using real‐time quantitative PCR analysis of immunoglobulin and T‐cell receptor gene rearrangements in the international multicenter trial AIEOP‐BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22(4):771‐782. 10.1038/leu.2008.5 PubMed DOI

Rizzari C, Möricke A, Valsecchi MG, et al. Incidence and characteristics of hypersensitivity reactions to PEG‐asparaginase observed in 6136 children with acute lymphoblastic leukemia enrolled in the AIEOP‐BFM ALL 2009 study protocol. HemaSphere. 2023;7(6):e893. https://journals.lww.com/hemasphere/fulltext/2023/06000/incidence_and_characteristics_of_hypersensitivity.15.aspx PubMed PMC

Bürger B, Zimmermann M, Mann G, et al. Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol. 2003;21(2):184‐188. 10.1200/JCO.2003.04.096 PubMed DOI

Gossai NP, Devidas M, Chen Z, et al. Central nervous system status is prognostic in T‐cell acute lymphoblastic leukemia: a Children's Oncology Group report. Blood. 2023;141(15):1802‐1811. 10.1182/blood.2022018653 PubMed DOI PMC

O'Connor D, Moorman AV, Wade R, et al. Use of minimal residual disease assessment to redefine induction failure in pediatric acute lymphoblastic leukemia. J Clin Oncol. 2017;35(6):660‐667. 10.1200/JCO.2016.69.6278 PubMed DOI

Gupta S, Devidas M, Loh ML, et al. Flow‐cytometric vs. ‐morphologic assessment of remission in childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group (COG). Leukemia. 2018;32(6):1370‐1379. 10.1038/s41375-018-0039-7 PubMed DOI PMC

Chiesa R, Georgiadis C, Syed F, et al. Base‐edited CAR7 T cells for relapsed T‐cell acute lymphoblastic leukemia. N Engl J Med. 2023;389(10):899‐910. 10.1056/NEJMoa2300709 PubMed DOI

Oh BLZ, Shimasaki N, Coustan‐Smith E, et al. Fratricide‐resistant CD7‐CAR T cells in T‐ALL. Nat Med. 2024;30(12):3687‐3696. 10.1038/s41591-024-03228-8 PubMed DOI

Breit S, Stanulla M, Flohr T, et al. Activating NOTCH1 mutations predict favorable early treatment response and long‐term outcome in childhood precursor T‐cell lymphoblastic leukemia. Blood. 2006;108(4):1151‐1157. 10.1182/blood-2005-12-4956 PubMed DOI

Coustan‐Smith E, Mullighan CG, Onciu M, et al. Early T‐cell precursor leukaemia: a subtype of very high‐risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147‐156. 10.1016/S1470-2045(08)70314-0 PubMed DOI PMC

Kempter T, Richter‐Pechańska P, Michel, K , et al. Subclonal TP53 and KRAS variants combined with poor treatment response identify ultra‐high‐risk pediatric T‐ALL patients. Blood Adv. 2025;9(6):1267‐1279. 10.1182/bloodadvances.2024014209 PubMed DOI PMC

Pölönen P, Di Giacomo D, Seffernick AE, et al. The genomic basis of childhood T‐lineage acute lymphoblastic leukaemia. Nature. 2024;632(8027):1082‐1091. 10.1038/s41586-024-07807-0 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...