Catalytic pocket of Clr4 (Suv39h) methyltransferase serves as a substrate receptor for Cullin 4-dependent histone H3 ubiquitination
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R01 GM072805
NIGMS NIH HHS - United States
R44 GM119893
NIGMS NIH HHS - United States
PubMed
40909655
PubMed Central
PMC12407891
DOI
10.1101/2025.08.28.672867
PII: 2025.08.28.672867
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Histone H3 lysine 9 (H3K9) methylation must be regulated to prevent inappropriate heterochromatin formation. Regulation of the conserved fission yeast H3K9 methyltransferase Clr4 (Suv39h) involves an automethylation-induced conformational switch and interaction of its catalytic SET domain with mono-ubiquitinated histone H3 lysine 14 (H3K14ub), a modification catalyzed by the Cul4 subunit of the CLRC complex. Using reconstituted CLRC, we show that Clr4 catalytic pocket serves as a substrate receptor for Cul4-dependent H3K14 ubiquitination. H3K14ub activates Clr4 to catalyze cis methylation of H3K9 on the same histone tail, while Clr4 automethylation enables H3K14ub-bound Clr4 to methylate H3K9 on an unmodified H3 tail in trans. Crosslinking and structural modeling reveal interactions between Clr4 chromo and SET domains, and between the chromodomain and H3K14ub, suggesting that the chromodomain reads H3K9me3 and H3K14ub to allosterically regulate Clr4 activity. H3K14 ubiquitination therefore regulates Clr4 by promoting its recruitment and by positioning H3K9 in the active site.
Department of Cell Biology Harvard Medical School Boston MA 02115 USA
Zobrazit více v PubMed
Bühler M. & Moazed D. Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol 14, 1041–1048 (2007). PubMed
Allshire R. C. & Madhani H. D. Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol 19, 229–244 (2018). PubMed PMC
Jia S., Kobayashi R. & Grewal S. I. S. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat Cell Biol 7, 1007–1013 (2005). PubMed
Horn P. J., Bastie J. N. & Peterson C. L. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev 19, 1705–1714 (2005). PubMed PMC
Hong E. J. E., Villén J., Gerace E. L., Gygi S. P. & Moazed D. A cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochromatin formation. RNA Biol 2, 106–111 (2005). PubMed
Oya E. et al. H3K14 ubiquitylation promotes H3K9 methylation for heterochromatin assembly. EMBO Rep 20, 1–15 (2019). PubMed PMC
Stirpe A. et al. Suv39 set domains mediate crosstalk of heterochromatic histone marks. Elifie 10, (2021). PubMed PMC
Iglesias N. et al. Automethylation-induced conformational switch in Clr4 (Suv39h) maintains epigenetic stability. Nature 560, 504–508 (2018). PubMed PMC
Kuscu C. et al. CRL4-like Clr4 complex in Schizosaccharomyces pombe depends on an exposed surface of Dos1 for heterochromatin silencing. Proc Natl Acad Sci U S A 111, 1795–1800 (2014). PubMed PMC
Harper J. W. & Schulman B. A. Structural complexity in ubiquitin recognition. Cell 124, 1133–1136 (2006). PubMed
Kim H. S. et al. Clr4SUV39H1 ubiquitination and non-coding RNA mediate transcriptional silencing of heterochromatin via Swi6 phase separation. Nature Communications 2024 15:1 15, 1–14 (2024). PubMed PMC
DaRosa P. A. et al. A Bifunctional Role for the UHRF1 UBL Domain in the Control of Hemi-methylated DNA-Dependent Histone Ubiquitylation. Mol Cell 72, 753–765.e6 (2018). PubMed PMC
Liu Y. et al. DNA hypomethylation promotes UHRF1-and SUV39H1/H2-dependent crosstalk between H3K18ub and H3K9me3 to reinforce heterochromatin states. Mol Cell 85, 394–412.e12 (2025). PubMed PMC
Wong J. et al. An H3K14 ubiquitination-dependent SUV39H recruitment and activation is uniquely required for mammalian pericentromeric heterochromatin formation. (2024) doi: 10.21203/RS.3.RS-5496475/V1. DOI
Gradia S. D. et al. MacroBac: New Technologies for Robust and Efficient Large-Scale Production of Recombinant Multiprotein Complexes. Methods Enzymol 592, 1–26 (2017). PubMed PMC
Aslanidis C. & de Jong P. J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18, 6069–6074 (1990). PubMed PMC
Groisman R. et al. The Ubiquitin Ligase Activity in the DDB2 and CSA Complexes Is Dififierentially Regulated by the COP9 Signalosome in Response to DNA Damage. Cell vol. 113 (2003). PubMed
Shan C. M. et al. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading. Elifie 5, (2016). PubMed PMC
Nakayama J., Rice J. C., Strahl B. D., Allis C. D. & Grewal S. I. S. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001). PubMed
Jih G. et al. Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription. Nature 547, 463–467 (2017). PubMed PMC
Du Y. et al. Mechanistic insights into the stimulation of the histone H3K9 methyltransferase Clr4 by proximal H3K14 ubiquitination. Sci Adv 11, 1864 (2025). PubMed PMC
Saab C., Stephan J. & Akoury E. Structural insights into the binding mechanism of Clr4 methyltransferase to H3K9 methylated nucleosome. Sci Rep 14, (2024). PubMed PMC
Jin J., Arias E. E., Chen J., Harper J. W. & Walter J. C. A Family of Diverse Cul4-Ddb1-Interacting Proteins Includes Cdt2, which Is Required for S Phase Destruction of the Replication Factor Cdt1. Mol Cell 23, 709–721 (2006). PubMed
Murray J. M., Watson A. T. & Carr A. M. Transformation of Schizosaccharomyces pombe: Lithium Acetate/ Dimethyl Sulfoxide Procedure. Cold Spring Harb Protoc 2016, pdb.prot090969 (2016). PubMed
Farnung L., Vos S. M., Wigge C. & Cramer P. Nucleosome–Chd1 structure and implications for chromatin remodelling. Nature 2017 550:7677 550, 539–542 (2017). PubMed PMC
Dyer P. N. et al. Reconstitution of Nucleosome Core Particles from Recombinant Histones and DNA. Methods Enzymol 375, 23–44 (2003). PubMed
Luger K., Rechsteiner T. J. & Richmond T. J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119, 1–16 (1999). PubMed
Marunde M. R. et al. Nucleosome conformation dictates the histone code. Elifie 13, (2024). PubMed PMC
Schachner L. F. et al. Decoding the protein composition of whole nucleosomes with Nuc-MS. Nat Methods 18, 303–308 (2021). PubMed PMC
Bi X., Yang R., Feng X., Rhodes D. & Liu C. F. Semisynthetic UbH2A reveals different activities of deubiquitinases and inhibitory effects of H2A K119 ubiquitination on H3K36 methylation in mono-nucleosomes. Org Biomol Chem 14, 835–839 (2016). PubMed
Maundrell K. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123, 127–130 (1993). PubMed
Hicks C. W. et al. Ubiquitinated histone H2B as gatekeeper of the nucleosome acidic patch. Nucleic Acids Res 52, 9978–9995 (2024). PubMed PMC
Thomas J. F. et al. Structural Basis ofi Histone H2A Lysine 119 Deubiquitination by Polycomb Repressive Deubiquitinase BAP1/ASXL1. (2023). PubMed PMC
Mintseris J. & Gygi S. P. High-density chemical cross-linking for modeling protein interactions. Proc Natl Acad Sci U S A 117, 93–102 (2020). PubMed PMC
Koutni E. et al. Multivalency of nucleosome recognition by LEDGF. Nucleic Acids Res 51, 10011–10025 (2023). PubMed PMC
Eng J. K., Jahan T. A. & Hoopmann M. R. Comet: an open-source MS/MS sequence database search tool. Proteomics 13, 22–24 (2013). PubMed
Elias J. E. & Gygi S. P. Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol 604, 55–71 (2010). PubMed PMC
Elias J. E. & Gygi S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods 2007 4:3 4, 207–214 (2007). PubMed
Huttlin E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010). PubMed PMC
Navarrete-Perea J., Yu Q., Gygi S. P. & Paulo J. A. Streamlined Tandem Mass Tag (SL-TMT) Protocol: An Efficient Strategy for Quantitative (Phospho)proteome Profiling Using Tandem Mass Tag-Synchronous Precursor Selection-MS3. J Proteome Res 17, 2226–2236 (2018). PubMed PMC
Honorato R. V. et al. Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem. Front Mol Biosci 8, (2021). PubMed PMC
Honorato R. V. et al. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nature Protocols 2024 19:11 19, 3219–3241 (2024). PubMed
De Groot B. L. et al. Prediction of protein conformational freedom from distance constraints. Proteins: Structure, Function and Genetics 29, 240–251 (1997). PubMed
Iglesias N. et al. Native Chromatin Proteomics Reveals a Role for Specific Nucleoporins in Heterochromatin Organization and Maintenance. Mol Cell 77, 51–66 (2020). PubMed PMC