Listeria monocytogenes in organic and conventional farming: Epidemiology, risks, and solutions within a One Health framework

. 2025 Dec ; 21 () : 101173. [epub] 20250819

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40936647
Odkazy

PubMed 40936647
PubMed Central PMC12421640
DOI 10.1016/j.onehlt.2025.101173
PII: S2352-7714(25)00209-5
Knihovny.cz E-zdroje

Listeria monocytogenes is a resilient, zoonotic pathogen that poses significant challenges across human, animal, plant, and environmental health systems. This review explores the epidemiology of L. monocytogenes within the One Health framework, emphasizing its transmission dynamics, risk factors, and implications for food safety. The pathogen's ability to persist in diverse environments, form biofilms, and withstand extreme conditions highlights its role as a major public health concern, particularly for vulnerable populations such as pregnant women, immunocompromised individuals, and the elderly. The review examines the intersection of organic and conventional farming practices with L. monocytogenes contamination, noting the unique risks associated with organic fertilizers, wildlife exposure, and limited antimicrobial interventions. In contrast, conventional systems face challenges such as crowded animal housing and antimicrobial resistance. The role of plants as vectors, particularly through contaminated soil, irrigation water, and fertilizers, is underscored, with a focus on the risks linked to minimally processed and ready-to-eat foods. Environmental reservoirs, including soil, water, and biofilms, are identified as critical contributors to the pathogen's persistence and transmission. Climate change, agricultural practices, and industrial processes further exacerbate the complexity of L. monocytogenes control, necessitating cross-disciplinary approaches. The review concludes with a call to strengthen the One Health framework through integrated surveillance, sustainable farming practices, public awareness campaigns, and innovative technologies. By addressing the multifaceted challenges posed by L. monocytogenes, this approach aims to ensure food safety, promote ecological sustainability, and protect public health in an increasingly interconnected and climate-impacted world.

Zobrazit více v PubMed

Compendium of WHO and other UN Guidance on Health and Environment. 2025. https://www.who.int/tools/compendium-on-health-and-environment Available from:

Shaheen M.N.F. The concept of one health applied to the problem of zoonotic diseases. Rev. Med. Virol. 2022;32 doi: 10.1002/rmv.2326. PubMed DOI

Chandler-Khayd C., Di Francesco J., Baron J.N., Ramos T.D.M., Aminabadi P., Jay-Russell M.T. Risk factors associated with the prevalence of Listeria monocytogenes in manured soils on certified organic farms in four regions of the United States. Front. Sustain. Food Syst. 2023;7 doi: 10.3389/fsufs.2023.1222192. DOI

Wang J., Xue Y., Liu T. Consumer motivation for organic food consumption: health consciousness or herd mentality. Front. Public Health. 2022;10 doi: 10.3389/fpubh.2022.1042535. (PMID: 36711361) PubMed DOI PMC

Williams P.R.D., Hammitt J.K. Perceived risks of conventional and organic produce: pesticides, pathogens, and natural toxins. Risk Anal. 2001;21(2):319–330. doi: 10.1111/0272-4332.212114. (PMID: 11414540) PubMed DOI

Mylonakis E., Paliou M., Hohmann E.L., Calderwood S.B., Wing E.J. Listeriosis during pregnancy: a case series and review of 222 cases. Medicine. 2002;81(4):260. doi: 10.1097/00005792-200207000-00002. (PMID: 12169881) PubMed DOI

Charlier C., Perrodeau É., Leclercq A., Cazenave B., Pilmis B., Henry B., Lopes A., Maury M.M., Moura A., Goffinet F., Dieye H.B., Thouvenot P., Ungeheuer M.N., Tourdjman M., Goulet V., de Valk H., Lortholary O., Ravaud P., Lecuit M., MONALISA Study Group Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect. Dis. 2017;17(5):510–519. doi: 10.1016/S1473-3099(16)30521-7. PubMed DOI

Coipan C.E., Friesema I.H.M., van Hoek A.H.A.M., van den Bosch T., van den Beld M., Kuiling S., Gras L.M., Bergval I., Bosch T., Wullings B., van der Voort M., Franz E. New insights into the epidemiology of Listeria monocytogenes – a cross-sectoral retrospective genomic analysis in the Netherlands (2010−2020) Front. Microbiol. 2023;14:1147137. doi: 10.3389/fmicb.2023.1147137. PubMed DOI PMC

FAO, WHO . Microbiological Risk Assessment Series No. 38. 2022. Listeria monocytogenes in ready-to-eat (RTE) foods: attribution, characterization and monitoring – meeting report. Rome. DOI

Walland J., Lauper J., Frey J., Imhof R., Stephan R., Seuberlich T., Oevermann A. Listeria monocytogenes infection in ruminants: is there a link to the environment, food and human health? A review. Schweiz. Arch. Tierheilkd. 2015;157(6):319–328. doi: 10.17236/sat00022. (PMID: 26753347) PubMed DOI

Esteban J.I., Oporto B., Aduriz G., Juste R.A., Hurtado A. A survey of food-borne pathogens in free-range poultry farms. Int. J. Food Microbiol. 2008;123(1–2):177–182. doi: 10.1016/j.ijfoodmicro.2007.12.012. PubMed DOI

Jones D.R., Anderson K.E., Guard J.Y. Prevalence of coliforms, Salmonella, Listeria, and Campylobacter associated with eggs and the environment of conventional cage and free-range egg production. Poult. Sci. 2012;91(5):1195–1202. doi: 10.3382/ps.2011-01795. PubMed DOI

Wilhelm B., Rajić A., Waddell L., Parker S., Harris J., Roberts K.C. Prevalence of zoonotic or potentially zoonotic bacteria, antimicrobial resistance, and somatic cell counts in organic dairy production: current knowledge and research gaps. Foodborne Pathog. Dis. 2009;6(5):525–539. doi: 10.1089/fpd.2008.0181. PubMed DOI

Varsaki A., Ortiz S., Santorum P., López P., López-Alonso V., Hernández M. Prevalence and population diversity of Listeria monocytogenes isolated from dairy cattle farms in the Cantabria region of Spain. Animals. 2022;12(18):2477. doi: 10.3390/ani12182477. PubMed DOI PMC

Orsi R.H., Wiedmann M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl. Microbiol. Biotechnol. 2016;100:5273–5287. doi: 10.1007/s00253-016-7552-2. PubMed DOI PMC

Donnelly C.W. Listeria monocytogenes: a continuing challenge. Nutr. Rev. 2001;59:183–194. doi: 10.1111/j.1753-4887.2001.tb07011.x. PubMed DOI

Wing E.J., Gregory S.H. Listeria monocytogenes: clinical and experimental update. J. Infect. Dis. 2002;2002(185):S18–S24. doi: 10.1086/338465. PubMed DOI

de Noordhout C.M., Devleesschauwer B., Angulo F.J., Verbeke G., Haagsma J., Kirk M. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect. Dis. 2014;14:1073–1082. doi: 10.1016/S1473-3099(14)70870-9. PubMed DOI PMC

Gasanov U., Hughes D., Hansbro P.M. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol. Rev. 2005;29:851–875. doi: 10.1016/j.femsre.2004.12.002. PubMed DOI

Petran R.L., Zottola E.A. A study of factors affecting growth and recovery of Listeria monocytogenes Scott a. J. Food Sci. 1989;54:458–460. doi: 10.1111/j.1365-2621.1989.tb03105.x. DOI

Junttila J.R., Niemelä S.I., Hirn J. Minimum growth temperatures of Listeria monocytogenes and non-haemolytic listeria. J. Appl. Bacteriol. 1988;65:321–327. doi: 10.1111/j.1365-2672.1988.tb01898.x. PubMed DOI

Tienungoon S., Ratkowsky D.A., McMeekin T.A., Ross T. Growth limits of Listeria monocytogenes as a function of temperature, pH, NaCl, and lactic acid. Appl. Environ. Microbiol. 2000;66:4979–4987. doi: 10.1128/AEM.66.11.4979-4987.2000. PubMed DOI PMC

Gelbíčová T., Zobaníková M., Tomáštíková Z., Walle I.V., Ruppitsch W., Karpíšková R. An outbreak of listeriosis linked to Turkey meat products in the Czech Republic, 2012–2016. Epidemiol. Infect. 2018;146:1407–1412. doi: 10.1017/S0950268818001565. PubMed DOI PMC

Madjunkov M., Chaudhry S., Ito S. Listeriosis during pregnancy. Arch. Gynecol. Obstet. 2017;296:143–152. doi: 10.1007/s00404-017-4401-1. (PMID: 28536811) PubMed DOI

Donovan S. Listeriosis: a rare but deadly disease. Clin. Microbiol. Newsl. 2015;37:135–140. doi: 10.1016/j.clinmicnews.2015.08.001. DOI

Bennion J.R., Sorvillo F., Wise M.E., Krishna S., Mascola L. Decreasing listeriosis mortality in the United States, 1990–2005. Clin. Infect. Dis. 2008;47:867–874. doi: 10.1086/591131. (PMID: 18752441) PubMed DOI

Goulet V., Hebert M., Hedberg C., Laurent E., Vaillant V., De Valk H. Incidence of listeriosis and related mortality among groups at risk of acquiring listeriosis. Clin. Infect. Dis. 2012;54:652–660. doi: 10.1093/cid/cir902. (PMID: 22157172) PubMed DOI

Rivero G.A., Torres H.A., Rolston K.V.I., Kontoyiannis D.P. Listeria monocytogenes infection in patients with cancer. Diagn. Microbiol. Infect. Dis. 2003;47:393–398. doi: 10.1016/S0732-8893(03)00116-0. (PMID: 14522512) PubMed DOI

Shetty A., McLauchlin J., Grant K., O’Brien D., Howard T., Davies E.M. Outbreak of Listeria monocytogenes in an oncology unit associated with sandwiches consumed in hospital. J. Hosp. Infect. 2009;72:332–336. doi: 10.1016/j.jhin.2009.01.012. (PMID: 19278752) PubMed DOI

Ewert D.P., Lieb L., Hayes P.S., Reeves M.W., Mascola L. Listeria monocytogenes. Infection and serotype distribution among HIV-infected persons in Los Angeles County, 1985-1992. J. Acquir. Immune Defic. Syndr. 1995;8:461–465. doi: 10.1097/00042560-199504120-00005. PubMed DOI

Mascola L., Lieb L., Fannin S.L., Chiu J., Linnan M.J. Listeriosis: an uncommon opportunistic infection in patients with acquired immunodeficiency syndrome: a report of five cases and a review of the literature. Am. J. Med. 1988;84:162–164. doi: 10.1016/0002-9343(88)90027-7. (PMID: 3276181) PubMed DOI

Eremushkina Y., Kuskova T., Smirnova T. Listeriosis as one of the reasons of adverse outcomes in patients with immunosuppressive conditions. J. Lechaschi vrach. 2020;4:60–63. doi: 10.26295/OS.2020.48.47.011. DOI

Slifman N.R., Gershon S.K., Lee J.H., Edwards E.T., Braun M.M. Listeria monocytogenes infection as a complication of treatment with tumor necrosis factor α–neutralizing agents. Arthritis Rheum. 2003;48:319–324. doi: 10.1002/art.10758. (PMID: 12571839) PubMed DOI

Bodro M., Paterson D.L. Listeriosis in patients receiving biologic therapies. Eur. J. Clin. Microbiol. Infect. Dis. 2013;32:1225–1230. doi: 10.1007/s10096-013-1873-1. (PMID: 23568606) PubMed DOI

Skogberg K., Syrjänen J., Jahkola M., Renkonen O.V., Paavonen J., Ahonen J. Clinical presentation and outcome of listeriosis in patients with and without immunosuppressive therapy. Clin. Infect. Dis. 1992;14(4):815–821. doi: 10.1093/clinids/14.4.815. (PMID: 1341415) PubMed DOI

Winter C.H., Brockmann S.O., Sonnentag S.R., Schaupp T., Prager R., Hof H. Prolonged hospital and community-based listeriosis outbreak caused by ready-to-eat scalded sausages. J. Hosp. Infect. 2009;73(2):121–128. doi: 10.1016/j.jhin.2009.06.011. (PMID: 19716628) PubMed DOI

Schlech W.F. Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiol. Spectr. 2019;7(3) doi: 10.1128/microbiolspec.GPP3-0014-2018. (PMID: 31837132) PubMed DOI PMC

Voronina O., Tartakovsky I., Yuyshuk N., Ryzhova N., Ermolova E., M. Kunda M. Analysis of sporadic cases of invasive listeriosis in a metropolis. J. Microbiol. Epidemiol. Immunobiol. 2021;97:546–555. doi: 10.36233/0372-9311-2020-97-6-5. DOI

Martins I.S., da Conceição Faria F.C., Miguel M.A.L., de Sá Colaço Dias M.P., Cardoso F.L.L., de Gouveia Magalhães A.C. A cluster of Listeria monocytogenes infections in hospitalized adults. Am. J. Infect. Cont. 2010;38(9):e31–e36. doi: 10.1016/j.ajic.2010.02.014. PubMed DOI PMC

Silk B.J., McCoy M.H., Iwamoto M., Griffin P.M. Foodborne listeriosis acquired in hospitals. Clin. Infect. Dis. 2014;59(4):532–540. doi: 10.1093/cid/ciu365. (PMID: 24846635) PubMed DOI

Beigadarova R., Starikov Yu., Asenova L., Ospanova K. Clinical features and laboratory diagnosis of listeriosis in pregnant women. J. Med. Ecol. 2007:81–83.

Zahirnia Z., Mansouri S., Saffari F. Pregnancy-related listeriosis: frequency and genotypic characteristics of L. monocytogenes from human specimens in Kerman, Iran. Wien Med Wochenschr. 2019;169(9):226–231. doi: 10.1007/s10354-018-0648-9. (PMID: 30178426) PubMed DOI

Syzdykova D., Dmitrovskiy A., Zubova N., Dulbaeva S. The role of listeria in the pathology of pregnancy and childbirth. Sci. Pract. J. Vestnik Kaznmu. 2019:5–8. https://cyberleninka.ru/article/n/o-roli-listeriy-v-patologii-beremennosti-i-rodov/viewer

Hafner L., Pichon M., Burucoa C., Nusser S.H.A., Moura A., Garcia-Garcera M. Listeria monocytogenes faecal carriage is common and depends on the gut microbiota. Nat. Commun. 2021;12(1):6826. doi: 10.1038/s41467-021-27069-y. (PMID: 34819495) PubMed DOI PMC

Wong L.F.A., Ismail K., Fahy U. Listeria awareness among recently delivered mothers. J. Obstet. Gynaecol. 2013;33(8):814–816. doi: 10.3109/01443615.2013.830091. (PMID: 24219720) PubMed DOI

Pagliano P., Ascione T., Boccia G., Caro F.D., Esposito S. Listeria monocytogenes meningitis in the elderly: epidemiological, clinical and therapeutic findings. Infez. Med. 2016;24(2):105–111. (PMID: 27367319) PubMed

Gombas D.E., Chen Y., Clavero R.S., Scott V.N. Survey of Listeria monocytogenes in ready-to-eat foods. J. Food Prot. 2003;66(4):559–569. doi: 10.4315/0362-028X-66.4.559. (PMID: 12696677) PubMed DOI

Lianou A., Sofos J.N. A review of the incidence and transmission of Listeria monocytogenes in ready-to-eat products in retail and food service environments. J. Food Prot. 2007;70(9):2172–2198. doi: 10.4315/0362-028X-70.9.2172. (PMID: 17900099) PubMed DOI

Weis J., Seeliger H.P.R. Incidence of Listeria monocytogenes in nature. Appl. Microbiol. 1975;30(1):29–32. doi: 10.1128/am.30.1.29-32.1975. (PMID: 807164) PubMed DOI PMC

Nowakiewicz A., Zięba P., Ziółkowska G., Gnat S., Muszyńska M., K. Tomczuk K. Free-living species of carnivorous mammals in Poland: red fox, beech marten, and raccoon as a potential reservoir of Salmonella, Yersinia, Listeria spp. and coagulase-positive Staphylococcus. PloS One. 2016;11(5) doi: 10.1371/journal.pone.0155533. (PMID: 27171434) PubMed DOI PMC

Pava-Ripoll M., Pearson R.E.G., Miller A.K., Ziobro G.C. Prevalence and relative risk of Cronobacter spp., Salmonella spp., and Listeria monocytogenes associated with the body surfaces and guts of individual filth flies. Appl. Environ. Microbiol. 2012;78(22):7891–7902. doi: 10.1128/AEM.02195-12. (PMID: 22941079) PubMed DOI PMC

Hoelzer K., Pouillot R., Dennis S. Animal models of listeriosis: a comparative review of the current state of the art and lessons learned. Vet. Res. 2012;43(1):18. doi: 10.1186/1297-9716-43-18. (PMID: 22417207) PubMed DOI PMC

Schoder D., Pelz A., Paulsen P. Transmission scenarios of Listeria monocytogenes on small ruminant on-farm dairies. Foods. 2023;12(2):265. doi: 10.3390/foods12020265. (PMID: 36673359) PubMed DOI PMC

Rodriguez C., Taminiau B., García-Fuentes E., Daube G., Korsak N. Listeria monocytogenes dissemination in farming and primary production: sources, shedding and control measures. Food Control. 2021;120 doi: 10.1016/j.foodcont.2020.107540. DOI

Addis M.F., Cubeddu T., Pilicchi Y., Rocca S., R. Piccinini R. Chronic intramammary infection by Listeria monocytogenes in a clinically healthy goat – a case report. BMC Vet. Res. 2019;15(1):229. doi: 10.1186/s12917-019-1989-3. (PMID: 31277642) PubMed DOI PMC

Winter P., Schilcher F., Bagò Z., Schoder D., Egerbacher M., Baumgartner W. Clinical and histopathological aspects of naturally occurring mastitis caused by Listeria monocytogenes in cattle and ewes. J. Vet. Med. B. 2004;51(4):176–179. doi: 10.1111/j.1439-0450.2004.00751.x. PubMed DOI

Miao Z.H., Glatz P.C., Ru Y.J. Free-range poultry production - a review. Asian Australas. J. Anim. Sci. 2005;18(1):113–132. doi: 10.5713/ajas.2005.113. DOI

Salaheen S., Chowdhury N., Hanning I., Biswas D. Zoonotic bacterial pathogens and mixed crop-livestock farming. Poult. Sci. 2015;94(6):1398–1410. doi: 10.3382/ps/peu055. (PMID: 25589077) PubMed DOI

Brodziak A., Wajs J., Zuba-Ciszewska M., Król J., Stobiecka M., Jańczuk A. Organic versus conventional raw cow milk as material for processing. Animals. 2021;11(10):2760. doi: 10.3390/ani11102760. (PMID: 34679781) PubMed DOI PMC

Erdogan H.M., Cetinkaya B., Green L.E., Green L.E., Cripps P.J., Morgan K.L. Prevalence, incidence, signs and treatment of clinical listeriosis in dairy cattle in England. Vet. Rec. 2001;149(10):289–293. doi: 10.1136/vr.149.10.289. (PMID: 11570788) PubMed DOI

Kirkimbaeva Zh., Musaeva A., Egorova N., Kuzembekova G., Sarybaeva D. Distribution of Listeria monocytogenes in farms of Almaty region. Sci. Educ. 2022;68(3):96–104. doi: 10.56339/2305-9397-2022-3-1-96-104. DOI

Zurek L., Ghosh A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microbiol. 2014;80(12):3562–3567. doi: 10.1128/AEM.00600-14. (PMID: 24705326) PubMed DOI PMC

Schwaiger K., Schmied E.V.M., Bauer J. Comparative analysis on antibiotic resistance characteristics of Listeria spp. and Enterococcus spp. isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany. Zoo. Pub. Health. 2010;57(3):171–180. doi: 10.1111/j.1863-2378.2008.01229.x. PubMed DOI

Kijlstra A., Meerburg B.G., Bos A.P. Food safety in free-range and organic livestock systems: risk management and responsibility. J. Food Prot. 2009;72(12):2629–2637. doi: 10.4315/0362-028x-72.12.2629. (PMID: 20003752) PubMed DOI

Truong H.N., Garmyn D., Gal L., Fournier C., Sevellec Y., S. Jeandroz S. Plants as a realized niche for Listeria monocytogenes. MicrobiologyOpen. 2021;10(6) doi: 10.1002/mbo3.1255. (PMID: 34964288) PubMed DOI PMC

Kljujev I., Raicevic V., Jovicic-Petrovic J., Vujovic B., Mirkovic M., Rothballer M. Listeria monocytogenes – danger for health safety vegetable production. Microb. Pathog. 2018;120:23–31. doi: 10.1016/j.micpath.2018.04.034. (PMID: 29684542) PubMed DOI

Nguyen-the C., Carlin F. The microbiology of minimally processed fresh fruits and vegetables. Crit. Rev. Food Sci. Nutr. 1994;34(4):371–401. doi: 10.1080/10408399409527668. (PMID: 7945895) PubMed DOI

Pavlova I.B., Bannikova D.A., Kononenko A.B. Experimental study of populations of pathogenic Listeria in environment using scanning electron microscopy. S-H Biol. 2014;4:30–34. doi: 10.15389/agrobiology.2014.4.30eng. DOI

McCollum J.T., Cronquist A.B., Silk B.J., Jackson K.A., O’Connor K.A., S. Cosgrove S. Multistate outbreak of listeriosis associated with cantaloupe. N. Engl. J. Med. 2013;369(10):944–953. doi: 10.1056/NEJMoa1215837. PubMed DOI

Colás-Medà P., Viñas I., Oliveira M., Anguera M., Serrano J.C.E., Abadias M. Exposure to minimally processed pear and melon during shelf life could modify the pathogenic potential of Listeria monocytogenes. Food Microbiol. 2017;62:275–281. doi: 10.1016/j.fm.2016.10.016. (PMID: 27889159) PubMed DOI

Penteado A.L., Leitão M.F.F. Growth of Listeria monocytogenes in melon, watermelon and papaya pulps. Int. J. Food Microbiol. 2004;92(1):89–94. doi: 10.1016/j.ijfoodmicro.2003.08.020. (PMID: 15033271) PubMed DOI

Chlebicz A., Śliżewska K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: a review. Int. J. Environ. Res. Public Health. 2018;15(5):863. doi: 10.3390/ijerph15050863. (PMID: 29701663) PubMed DOI PMC

Vlasov A.A., Pavlova I.B. Viability and morphology of listeria in tissues of forage oats. Agric. Biol. 2009;4:89–92. https://agrobiology.ru/4-2009vlasov.html

Pauly T.M., Hansson I.B., Tham W.A. The effect of mechanical forage treatments on the growth of Clostridium tyrobutyricum and Listeria monocytogenes in grass silage. Anim. Feed. Sci. Technol. 1999;78(1):127–139. doi: 10.1016/S0377-8401(98)00267-3. DOI

Muck R., Shinners K. International Grassland Congress Proceeding. Vol. 19. FEALQ; Piracicaba: 2001. Conserved forage (silage and hay): Progress and priorities.

Prazak A.M., Murano E.A., Mercado I., Acuff G.R. Prevalence of Listeria monocytogenes during production and postharvest processing of cabbage. J. Food Prot. 2002;65(11):1728–1734. doi: 10.4315/0362-028X-65.11.1728. (PMID: 12430693) PubMed DOI

Weller D., Wiedmann M., Strawn L.K. Spatial and temporal factors associated with an increased prevalence of Listeria monocytogenes in spinach fields in New York State. Appl. Environ. Microbiol. 2015;81(17):6059–6069. doi: 10.1128/AEM.01286-15. PubMed DOI PMC

Jiang X., Islam M., Morgan J., Doyle M.P. Fate of Listeria monocytogenes in bovine manure–amended soil. J. Food Prot. 2004;67(8):1676–1681. doi: 10.4315/0362-028X-67.8.1676. (PMID: 15330533) PubMed DOI

Stea E.C., Purdue L.M., Jamieson R.C., Yost C.K., Truelstrup Hansen L. Comparison of the prevalences and diversities of Listeria species and Listeria monocytogenes in an urban and a rural agricultural watershed. Appl. Environ. Microbiol. 2015;81(11):3812–3822. doi: 10.1128/AEM.00416-15. (PMID: 25819965) PubMed DOI PMC

Moynihan E.L., Richards K.G., Brennan F.P., Tyrrel S.F., Ritz K. Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition. Appl. Soil Ecol. 2015;89:76–84. doi: 10.1016/j.apsoil.2015.01.011. DOI

Lupatini M., Korthals G.W., de Hollander M., Janssens T.K.S., Kuramae E.E. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 2017:2064. doi: 10.3389/fmicb.2016.02064. PubMed DOI PMC

De Corato U. Soil microbiota manipulation and its role in suppressing soil-borne plant pathogens in organic farming systems under the light of microbiome-assisted strategies. Chem. Biol. Technol. Agric. 2020;7(1) doi: 10.1186/s40538-020-00183-7. DOI

Dowe M.J., Jackson E.D., Mori J.G., Bell C.R. Listeria monocytogenes survival in soil and incidence in agricultural soils. J. Food Prot. 1997;60(10):1201–1207. doi: 10.4315/0362-028X-60.10.1201. (PMID: 31207734) PubMed DOI

Semenza J.C., Herbst S., Rechenburg A., Suk J.E., Höser C., Schreiber C. Climate change impact assessment of food and waterborne diseases. Crit. Rev. Environ. Sci. Technol. 2012;42(8):857–890. doi: 10.1080/10643389.2010.534706. (PMID: 24808720) PubMed DOI PMC

Colagiorgi A., Bruini I., Di Ciccio P.A., Zanardi E., Ghidini S., Ianieri A. Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens. 2017;6(3):41. doi: 10.3390/pathogens6030041. (PMID: 28869552) PubMed DOI PMC

Galié S., García-Gutiérrez C., Miguélez E.M., Villar C.J., Lombó F. Biofilms in the food industry: health aspects and control methods. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.00898. PubMed DOI PMC

da Silva E.P., De Martinis E.C.P. Current knowledge and perspectives on biofilm formation: the case of Listeria monocytogenes. Appl. Microbiol. Biotechnol. 2013;97(3):957–968. doi: 10.1007/s00253-012-4611-1. (PMID: 23233205) PubMed DOI

Schäfer D.F., Steffens J., Barbosa J., Zeni J., Paroul N., Valduga E. Monitoring of contamination sources of Listeria monocytogenes in a poultry slaughterhouse. LWT. 2017;86:393–398. doi: 10.1016/j.lwt.2017.08.024. DOI

Barbosa J., Borges S., Camilo R., Magalhães R., Ferreira V., Santos I. Biofilm formation among clinical and food isolates of Listeria monocytogenes. Int. J. Microbiol. 2013;1 doi: 10.1155/2013/524975. (PMID: 24489549) PubMed DOI PMC

Carpentier B., Cerf O. Review — persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011;145(1):1–8. doi: 10.1016/j.ijfoodmicro.2011.01.005. (PMID: 21276634) PubMed DOI

Silverlås C., Mattsson J.G., Insulander M., Lebbad M. Zoonotic transmission of Cryptosporidium meleagridis on an organic Swedish farm. Int. J. Parasitol. 2012;42(11):963–967. doi: 10.1016/j.ijpara.2012.08.008. (PMID: 23022616) PubMed DOI

Chersich M.F., Scorgie F., Rees H., Wright C.Y. How climate change can fuel listeriosis outbreaks in South Africa. S. Afr. Med. J. 2018;108(6):453. doi: 10.7196/SAMJ.2018.v108i6.13274. (PMID: 30004323) PubMed DOI

Mouton N., Motshabi T., Jeje K., Henrico A. Bulk water services delivery challenges in the Dr. Ruth Segomotsi Mompati district municipality in South Africa’s North West province. WWP. 2024;10(3):821–858. doi: 10.1002/wwp2.12207. DOI

Lebov J., Grieger K., Womack D., Zaccaro D., Whitehead N., Kowalcyk B. A framework for One Health research. J. One Health. 2017;3:44–50. doi: 10.1016/j.onehlt.2017.03.004. PubMed DOI PMC

Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7:219–242. doi: 10.1007/s40820-015-0040-x. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...