Listeria monocytogenes in organic and conventional farming: Epidemiology, risks, and solutions within a One Health framework
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40936647
PubMed Central
PMC12421640
DOI
10.1016/j.onehlt.2025.101173
PII: S2352-7714(25)00209-5
Knihovny.cz E-zdroje
- Klíčová slova
- Farming, Listeria monocytogenes, One Health, Surveillance,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Listeria monocytogenes is a resilient, zoonotic pathogen that poses significant challenges across human, animal, plant, and environmental health systems. This review explores the epidemiology of L. monocytogenes within the One Health framework, emphasizing its transmission dynamics, risk factors, and implications for food safety. The pathogen's ability to persist in diverse environments, form biofilms, and withstand extreme conditions highlights its role as a major public health concern, particularly for vulnerable populations such as pregnant women, immunocompromised individuals, and the elderly. The review examines the intersection of organic and conventional farming practices with L. monocytogenes contamination, noting the unique risks associated with organic fertilizers, wildlife exposure, and limited antimicrobial interventions. In contrast, conventional systems face challenges such as crowded animal housing and antimicrobial resistance. The role of plants as vectors, particularly through contaminated soil, irrigation water, and fertilizers, is underscored, with a focus on the risks linked to minimally processed and ready-to-eat foods. Environmental reservoirs, including soil, water, and biofilms, are identified as critical contributors to the pathogen's persistence and transmission. Climate change, agricultural practices, and industrial processes further exacerbate the complexity of L. monocytogenes control, necessitating cross-disciplinary approaches. The review concludes with a call to strengthen the One Health framework through integrated surveillance, sustainable farming practices, public awareness campaigns, and innovative technologies. By addressing the multifaceted challenges posed by L. monocytogenes, this approach aims to ensure food safety, promote ecological sustainability, and protect public health in an increasingly interconnected and climate-impacted world.
School of Health Systems and Public Health University of Pretoria South Africa
Science and research Centre Faculty of Health Sciences Palacký University Olomouc Czechia
South African Medical Research Council Environmental Health Unit Pretoria South Africa
Zobrazit více v PubMed
Compendium of WHO and other UN Guidance on Health and Environment. 2025. https://www.who.int/tools/compendium-on-health-and-environment Available from:
Shaheen M.N.F. The concept of one health applied to the problem of zoonotic diseases. Rev. Med. Virol. 2022;32 doi: 10.1002/rmv.2326. PubMed DOI
Chandler-Khayd C., Di Francesco J., Baron J.N., Ramos T.D.M., Aminabadi P., Jay-Russell M.T. Risk factors associated with the prevalence of Listeria monocytogenes in manured soils on certified organic farms in four regions of the United States. Front. Sustain. Food Syst. 2023;7 doi: 10.3389/fsufs.2023.1222192. DOI
Wang J., Xue Y., Liu T. Consumer motivation for organic food consumption: health consciousness or herd mentality. Front. Public Health. 2022;10 doi: 10.3389/fpubh.2022.1042535. (PMID: 36711361) PubMed DOI PMC
Williams P.R.D., Hammitt J.K. Perceived risks of conventional and organic produce: pesticides, pathogens, and natural toxins. Risk Anal. 2001;21(2):319–330. doi: 10.1111/0272-4332.212114. (PMID: 11414540) PubMed DOI
Mylonakis E., Paliou M., Hohmann E.L., Calderwood S.B., Wing E.J. Listeriosis during pregnancy: a case series and review of 222 cases. Medicine. 2002;81(4):260. doi: 10.1097/00005792-200207000-00002. (PMID: 12169881) PubMed DOI
Charlier C., Perrodeau É., Leclercq A., Cazenave B., Pilmis B., Henry B., Lopes A., Maury M.M., Moura A., Goffinet F., Dieye H.B., Thouvenot P., Ungeheuer M.N., Tourdjman M., Goulet V., de Valk H., Lortholary O., Ravaud P., Lecuit M., MONALISA Study Group Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect. Dis. 2017;17(5):510–519. doi: 10.1016/S1473-3099(16)30521-7. PubMed DOI
Coipan C.E., Friesema I.H.M., van Hoek A.H.A.M., van den Bosch T., van den Beld M., Kuiling S., Gras L.M., Bergval I., Bosch T., Wullings B., van der Voort M., Franz E. New insights into the epidemiology of Listeria monocytogenes – a cross-sectoral retrospective genomic analysis in the Netherlands (2010−2020) Front. Microbiol. 2023;14:1147137. doi: 10.3389/fmicb.2023.1147137. PubMed DOI PMC
FAO, WHO . Microbiological Risk Assessment Series No. 38. 2022. Listeria monocytogenes in ready-to-eat (RTE) foods: attribution, characterization and monitoring – meeting report. Rome. DOI
Walland J., Lauper J., Frey J., Imhof R., Stephan R., Seuberlich T., Oevermann A. Listeria monocytogenes infection in ruminants: is there a link to the environment, food and human health? A review. Schweiz. Arch. Tierheilkd. 2015;157(6):319–328. doi: 10.17236/sat00022. (PMID: 26753347) PubMed DOI
Esteban J.I., Oporto B., Aduriz G., Juste R.A., Hurtado A. A survey of food-borne pathogens in free-range poultry farms. Int. J. Food Microbiol. 2008;123(1–2):177–182. doi: 10.1016/j.ijfoodmicro.2007.12.012. PubMed DOI
Jones D.R., Anderson K.E., Guard J.Y. Prevalence of coliforms, Salmonella, Listeria, and Campylobacter associated with eggs and the environment of conventional cage and free-range egg production. Poult. Sci. 2012;91(5):1195–1202. doi: 10.3382/ps.2011-01795. PubMed DOI
Wilhelm B., Rajić A., Waddell L., Parker S., Harris J., Roberts K.C. Prevalence of zoonotic or potentially zoonotic bacteria, antimicrobial resistance, and somatic cell counts in organic dairy production: current knowledge and research gaps. Foodborne Pathog. Dis. 2009;6(5):525–539. doi: 10.1089/fpd.2008.0181. PubMed DOI
Varsaki A., Ortiz S., Santorum P., López P., López-Alonso V., Hernández M. Prevalence and population diversity of Listeria monocytogenes isolated from dairy cattle farms in the Cantabria region of Spain. Animals. 2022;12(18):2477. doi: 10.3390/ani12182477. PubMed DOI PMC
Orsi R.H., Wiedmann M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl. Microbiol. Biotechnol. 2016;100:5273–5287. doi: 10.1007/s00253-016-7552-2. PubMed DOI PMC
Donnelly C.W. Listeria monocytogenes: a continuing challenge. Nutr. Rev. 2001;59:183–194. doi: 10.1111/j.1753-4887.2001.tb07011.x. PubMed DOI
Wing E.J., Gregory S.H. Listeria monocytogenes: clinical and experimental update. J. Infect. Dis. 2002;2002(185):S18–S24. doi: 10.1086/338465. PubMed DOI
de Noordhout C.M., Devleesschauwer B., Angulo F.J., Verbeke G., Haagsma J., Kirk M. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect. Dis. 2014;14:1073–1082. doi: 10.1016/S1473-3099(14)70870-9. PubMed DOI PMC
Gasanov U., Hughes D., Hansbro P.M. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol. Rev. 2005;29:851–875. doi: 10.1016/j.femsre.2004.12.002. PubMed DOI
Petran R.L., Zottola E.A. A study of factors affecting growth and recovery of Listeria monocytogenes Scott a. J. Food Sci. 1989;54:458–460. doi: 10.1111/j.1365-2621.1989.tb03105.x. DOI
Junttila J.R., Niemelä S.I., Hirn J. Minimum growth temperatures of Listeria monocytogenes and non-haemolytic listeria. J. Appl. Bacteriol. 1988;65:321–327. doi: 10.1111/j.1365-2672.1988.tb01898.x. PubMed DOI
Tienungoon S., Ratkowsky D.A., McMeekin T.A., Ross T. Growth limits of Listeria monocytogenes as a function of temperature, pH, NaCl, and lactic acid. Appl. Environ. Microbiol. 2000;66:4979–4987. doi: 10.1128/AEM.66.11.4979-4987.2000. PubMed DOI PMC
Gelbíčová T., Zobaníková M., Tomáštíková Z., Walle I.V., Ruppitsch W., Karpíšková R. An outbreak of listeriosis linked to Turkey meat products in the Czech Republic, 2012–2016. Epidemiol. Infect. 2018;146:1407–1412. doi: 10.1017/S0950268818001565. PubMed DOI PMC
Madjunkov M., Chaudhry S., Ito S. Listeriosis during pregnancy. Arch. Gynecol. Obstet. 2017;296:143–152. doi: 10.1007/s00404-017-4401-1. (PMID: 28536811) PubMed DOI
Donovan S. Listeriosis: a rare but deadly disease. Clin. Microbiol. Newsl. 2015;37:135–140. doi: 10.1016/j.clinmicnews.2015.08.001. DOI
Bennion J.R., Sorvillo F., Wise M.E., Krishna S., Mascola L. Decreasing listeriosis mortality in the United States, 1990–2005. Clin. Infect. Dis. 2008;47:867–874. doi: 10.1086/591131. (PMID: 18752441) PubMed DOI
Goulet V., Hebert M., Hedberg C., Laurent E., Vaillant V., De Valk H. Incidence of listeriosis and related mortality among groups at risk of acquiring listeriosis. Clin. Infect. Dis. 2012;54:652–660. doi: 10.1093/cid/cir902. (PMID: 22157172) PubMed DOI
Rivero G.A., Torres H.A., Rolston K.V.I., Kontoyiannis D.P. Listeria monocytogenes infection in patients with cancer. Diagn. Microbiol. Infect. Dis. 2003;47:393–398. doi: 10.1016/S0732-8893(03)00116-0. (PMID: 14522512) PubMed DOI
Shetty A., McLauchlin J., Grant K., O’Brien D., Howard T., Davies E.M. Outbreak of Listeria monocytogenes in an oncology unit associated with sandwiches consumed in hospital. J. Hosp. Infect. 2009;72:332–336. doi: 10.1016/j.jhin.2009.01.012. (PMID: 19278752) PubMed DOI
Ewert D.P., Lieb L., Hayes P.S., Reeves M.W., Mascola L. Listeria monocytogenes. Infection and serotype distribution among HIV-infected persons in Los Angeles County, 1985-1992. J. Acquir. Immune Defic. Syndr. 1995;8:461–465. doi: 10.1097/00042560-199504120-00005. PubMed DOI
Mascola L., Lieb L., Fannin S.L., Chiu J., Linnan M.J. Listeriosis: an uncommon opportunistic infection in patients with acquired immunodeficiency syndrome: a report of five cases and a review of the literature. Am. J. Med. 1988;84:162–164. doi: 10.1016/0002-9343(88)90027-7. (PMID: 3276181) PubMed DOI
Eremushkina Y., Kuskova T., Smirnova T. Listeriosis as one of the reasons of adverse outcomes in patients with immunosuppressive conditions. J. Lechaschi vrach. 2020;4:60–63. doi: 10.26295/OS.2020.48.47.011. DOI
Slifman N.R., Gershon S.K., Lee J.H., Edwards E.T., Braun M.M. Listeria monocytogenes infection as a complication of treatment with tumor necrosis factor α–neutralizing agents. Arthritis Rheum. 2003;48:319–324. doi: 10.1002/art.10758. (PMID: 12571839) PubMed DOI
Bodro M., Paterson D.L. Listeriosis in patients receiving biologic therapies. Eur. J. Clin. Microbiol. Infect. Dis. 2013;32:1225–1230. doi: 10.1007/s10096-013-1873-1. (PMID: 23568606) PubMed DOI
Skogberg K., Syrjänen J., Jahkola M., Renkonen O.V., Paavonen J., Ahonen J. Clinical presentation and outcome of listeriosis in patients with and without immunosuppressive therapy. Clin. Infect. Dis. 1992;14(4):815–821. doi: 10.1093/clinids/14.4.815. (PMID: 1341415) PubMed DOI
Winter C.H., Brockmann S.O., Sonnentag S.R., Schaupp T., Prager R., Hof H. Prolonged hospital and community-based listeriosis outbreak caused by ready-to-eat scalded sausages. J. Hosp. Infect. 2009;73(2):121–128. doi: 10.1016/j.jhin.2009.06.011. (PMID: 19716628) PubMed DOI
Schlech W.F. Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiol. Spectr. 2019;7(3) doi: 10.1128/microbiolspec.GPP3-0014-2018. (PMID: 31837132) PubMed DOI PMC
Voronina O., Tartakovsky I., Yuyshuk N., Ryzhova N., Ermolova E., M. Kunda M. Analysis of sporadic cases of invasive listeriosis in a metropolis. J. Microbiol. Epidemiol. Immunobiol. 2021;97:546–555. doi: 10.36233/0372-9311-2020-97-6-5. DOI
Martins I.S., da Conceição Faria F.C., Miguel M.A.L., de Sá Colaço Dias M.P., Cardoso F.L.L., de Gouveia Magalhães A.C. A cluster of Listeria monocytogenes infections in hospitalized adults. Am. J. Infect. Cont. 2010;38(9):e31–e36. doi: 10.1016/j.ajic.2010.02.014. PubMed DOI PMC
Silk B.J., McCoy M.H., Iwamoto M., Griffin P.M. Foodborne listeriosis acquired in hospitals. Clin. Infect. Dis. 2014;59(4):532–540. doi: 10.1093/cid/ciu365. (PMID: 24846635) PubMed DOI
Beigadarova R., Starikov Yu., Asenova L., Ospanova K. Clinical features and laboratory diagnosis of listeriosis in pregnant women. J. Med. Ecol. 2007:81–83.
Zahirnia Z., Mansouri S., Saffari F. Pregnancy-related listeriosis: frequency and genotypic characteristics of L. monocytogenes from human specimens in Kerman, Iran. Wien Med Wochenschr. 2019;169(9):226–231. doi: 10.1007/s10354-018-0648-9. (PMID: 30178426) PubMed DOI
Syzdykova D., Dmitrovskiy A., Zubova N., Dulbaeva S. The role of listeria in the pathology of pregnancy and childbirth. Sci. Pract. J. Vestnik Kaznmu. 2019:5–8. https://cyberleninka.ru/article/n/o-roli-listeriy-v-patologii-beremennosti-i-rodov/viewer
Hafner L., Pichon M., Burucoa C., Nusser S.H.A., Moura A., Garcia-Garcera M. Listeria monocytogenes faecal carriage is common and depends on the gut microbiota. Nat. Commun. 2021;12(1):6826. doi: 10.1038/s41467-021-27069-y. (PMID: 34819495) PubMed DOI PMC
Wong L.F.A., Ismail K., Fahy U. Listeria awareness among recently delivered mothers. J. Obstet. Gynaecol. 2013;33(8):814–816. doi: 10.3109/01443615.2013.830091. (PMID: 24219720) PubMed DOI
Pagliano P., Ascione T., Boccia G., Caro F.D., Esposito S. Listeria monocytogenes meningitis in the elderly: epidemiological, clinical and therapeutic findings. Infez. Med. 2016;24(2):105–111. (PMID: 27367319) PubMed
Gombas D.E., Chen Y., Clavero R.S., Scott V.N. Survey of Listeria monocytogenes in ready-to-eat foods. J. Food Prot. 2003;66(4):559–569. doi: 10.4315/0362-028X-66.4.559. (PMID: 12696677) PubMed DOI
Lianou A., Sofos J.N. A review of the incidence and transmission of Listeria monocytogenes in ready-to-eat products in retail and food service environments. J. Food Prot. 2007;70(9):2172–2198. doi: 10.4315/0362-028X-70.9.2172. (PMID: 17900099) PubMed DOI
Weis J., Seeliger H.P.R. Incidence of Listeria monocytogenes in nature. Appl. Microbiol. 1975;30(1):29–32. doi: 10.1128/am.30.1.29-32.1975. (PMID: 807164) PubMed DOI PMC
Nowakiewicz A., Zięba P., Ziółkowska G., Gnat S., Muszyńska M., K. Tomczuk K. Free-living species of carnivorous mammals in Poland: red fox, beech marten, and raccoon as a potential reservoir of Salmonella, Yersinia, Listeria spp. and coagulase-positive Staphylococcus. PloS One. 2016;11(5) doi: 10.1371/journal.pone.0155533. (PMID: 27171434) PubMed DOI PMC
Pava-Ripoll M., Pearson R.E.G., Miller A.K., Ziobro G.C. Prevalence and relative risk of Cronobacter spp., Salmonella spp., and Listeria monocytogenes associated with the body surfaces and guts of individual filth flies. Appl. Environ. Microbiol. 2012;78(22):7891–7902. doi: 10.1128/AEM.02195-12. (PMID: 22941079) PubMed DOI PMC
Hoelzer K., Pouillot R., Dennis S. Animal models of listeriosis: a comparative review of the current state of the art and lessons learned. Vet. Res. 2012;43(1):18. doi: 10.1186/1297-9716-43-18. (PMID: 22417207) PubMed DOI PMC
Schoder D., Pelz A., Paulsen P. Transmission scenarios of Listeria monocytogenes on small ruminant on-farm dairies. Foods. 2023;12(2):265. doi: 10.3390/foods12020265. (PMID: 36673359) PubMed DOI PMC
Rodriguez C., Taminiau B., García-Fuentes E., Daube G., Korsak N. Listeria monocytogenes dissemination in farming and primary production: sources, shedding and control measures. Food Control. 2021;120 doi: 10.1016/j.foodcont.2020.107540. DOI
Addis M.F., Cubeddu T., Pilicchi Y., Rocca S., R. Piccinini R. Chronic intramammary infection by Listeria monocytogenes in a clinically healthy goat – a case report. BMC Vet. Res. 2019;15(1):229. doi: 10.1186/s12917-019-1989-3. (PMID: 31277642) PubMed DOI PMC
Winter P., Schilcher F., Bagò Z., Schoder D., Egerbacher M., Baumgartner W. Clinical and histopathological aspects of naturally occurring mastitis caused by Listeria monocytogenes in cattle and ewes. J. Vet. Med. B. 2004;51(4):176–179. doi: 10.1111/j.1439-0450.2004.00751.x. PubMed DOI
Miao Z.H., Glatz P.C., Ru Y.J. Free-range poultry production - a review. Asian Australas. J. Anim. Sci. 2005;18(1):113–132. doi: 10.5713/ajas.2005.113. DOI
Salaheen S., Chowdhury N., Hanning I., Biswas D. Zoonotic bacterial pathogens and mixed crop-livestock farming. Poult. Sci. 2015;94(6):1398–1410. doi: 10.3382/ps/peu055. (PMID: 25589077) PubMed DOI
Brodziak A., Wajs J., Zuba-Ciszewska M., Król J., Stobiecka M., Jańczuk A. Organic versus conventional raw cow milk as material for processing. Animals. 2021;11(10):2760. doi: 10.3390/ani11102760. (PMID: 34679781) PubMed DOI PMC
Erdogan H.M., Cetinkaya B., Green L.E., Green L.E., Cripps P.J., Morgan K.L. Prevalence, incidence, signs and treatment of clinical listeriosis in dairy cattle in England. Vet. Rec. 2001;149(10):289–293. doi: 10.1136/vr.149.10.289. (PMID: 11570788) PubMed DOI
Kirkimbaeva Zh., Musaeva A., Egorova N., Kuzembekova G., Sarybaeva D. Distribution of Listeria monocytogenes in farms of Almaty region. Sci. Educ. 2022;68(3):96–104. doi: 10.56339/2305-9397-2022-3-1-96-104. DOI
Zurek L., Ghosh A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microbiol. 2014;80(12):3562–3567. doi: 10.1128/AEM.00600-14. (PMID: 24705326) PubMed DOI PMC
Schwaiger K., Schmied E.V.M., Bauer J. Comparative analysis on antibiotic resistance characteristics of Listeria spp. and Enterococcus spp. isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany. Zoo. Pub. Health. 2010;57(3):171–180. doi: 10.1111/j.1863-2378.2008.01229.x. PubMed DOI
Kijlstra A., Meerburg B.G., Bos A.P. Food safety in free-range and organic livestock systems: risk management and responsibility. J. Food Prot. 2009;72(12):2629–2637. doi: 10.4315/0362-028x-72.12.2629. (PMID: 20003752) PubMed DOI
Truong H.N., Garmyn D., Gal L., Fournier C., Sevellec Y., S. Jeandroz S. Plants as a realized niche for Listeria monocytogenes. MicrobiologyOpen. 2021;10(6) doi: 10.1002/mbo3.1255. (PMID: 34964288) PubMed DOI PMC
Kljujev I., Raicevic V., Jovicic-Petrovic J., Vujovic B., Mirkovic M., Rothballer M. Listeria monocytogenes – danger for health safety vegetable production. Microb. Pathog. 2018;120:23–31. doi: 10.1016/j.micpath.2018.04.034. (PMID: 29684542) PubMed DOI
Nguyen-the C., Carlin F. The microbiology of minimally processed fresh fruits and vegetables. Crit. Rev. Food Sci. Nutr. 1994;34(4):371–401. doi: 10.1080/10408399409527668. (PMID: 7945895) PubMed DOI
Pavlova I.B., Bannikova D.A., Kononenko A.B. Experimental study of populations of pathogenic Listeria in environment using scanning electron microscopy. S-H Biol. 2014;4:30–34. doi: 10.15389/agrobiology.2014.4.30eng. DOI
McCollum J.T., Cronquist A.B., Silk B.J., Jackson K.A., O’Connor K.A., S. Cosgrove S. Multistate outbreak of listeriosis associated with cantaloupe. N. Engl. J. Med. 2013;369(10):944–953. doi: 10.1056/NEJMoa1215837. PubMed DOI
Colás-Medà P., Viñas I., Oliveira M., Anguera M., Serrano J.C.E., Abadias M. Exposure to minimally processed pear and melon during shelf life could modify the pathogenic potential of Listeria monocytogenes. Food Microbiol. 2017;62:275–281. doi: 10.1016/j.fm.2016.10.016. (PMID: 27889159) PubMed DOI
Penteado A.L., Leitão M.F.F. Growth of Listeria monocytogenes in melon, watermelon and papaya pulps. Int. J. Food Microbiol. 2004;92(1):89–94. doi: 10.1016/j.ijfoodmicro.2003.08.020. (PMID: 15033271) PubMed DOI
Chlebicz A., Śliżewska K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: a review. Int. J. Environ. Res. Public Health. 2018;15(5):863. doi: 10.3390/ijerph15050863. (PMID: 29701663) PubMed DOI PMC
Vlasov A.A., Pavlova I.B. Viability and morphology of listeria in tissues of forage oats. Agric. Biol. 2009;4:89–92. https://agrobiology.ru/4-2009vlasov.html
Pauly T.M., Hansson I.B., Tham W.A. The effect of mechanical forage treatments on the growth of Clostridium tyrobutyricum and Listeria monocytogenes in grass silage. Anim. Feed. Sci. Technol. 1999;78(1):127–139. doi: 10.1016/S0377-8401(98)00267-3. DOI
Muck R., Shinners K. International Grassland Congress Proceeding. Vol. 19. FEALQ; Piracicaba: 2001. Conserved forage (silage and hay): Progress and priorities.
Prazak A.M., Murano E.A., Mercado I., Acuff G.R. Prevalence of Listeria monocytogenes during production and postharvest processing of cabbage. J. Food Prot. 2002;65(11):1728–1734. doi: 10.4315/0362-028X-65.11.1728. (PMID: 12430693) PubMed DOI
Weller D., Wiedmann M., Strawn L.K. Spatial and temporal factors associated with an increased prevalence of Listeria monocytogenes in spinach fields in New York State. Appl. Environ. Microbiol. 2015;81(17):6059–6069. doi: 10.1128/AEM.01286-15. PubMed DOI PMC
Jiang X., Islam M., Morgan J., Doyle M.P. Fate of Listeria monocytogenes in bovine manure–amended soil. J. Food Prot. 2004;67(8):1676–1681. doi: 10.4315/0362-028X-67.8.1676. (PMID: 15330533) PubMed DOI
Stea E.C., Purdue L.M., Jamieson R.C., Yost C.K., Truelstrup Hansen L. Comparison of the prevalences and diversities of Listeria species and Listeria monocytogenes in an urban and a rural agricultural watershed. Appl. Environ. Microbiol. 2015;81(11):3812–3822. doi: 10.1128/AEM.00416-15. (PMID: 25819965) PubMed DOI PMC
Moynihan E.L., Richards K.G., Brennan F.P., Tyrrel S.F., Ritz K. Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition. Appl. Soil Ecol. 2015;89:76–84. doi: 10.1016/j.apsoil.2015.01.011. DOI
Lupatini M., Korthals G.W., de Hollander M., Janssens T.K.S., Kuramae E.E. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 2017:2064. doi: 10.3389/fmicb.2016.02064. PubMed DOI PMC
De Corato U. Soil microbiota manipulation and its role in suppressing soil-borne plant pathogens in organic farming systems under the light of microbiome-assisted strategies. Chem. Biol. Technol. Agric. 2020;7(1) doi: 10.1186/s40538-020-00183-7. DOI
Dowe M.J., Jackson E.D., Mori J.G., Bell C.R. Listeria monocytogenes survival in soil and incidence in agricultural soils. J. Food Prot. 1997;60(10):1201–1207. doi: 10.4315/0362-028X-60.10.1201. (PMID: 31207734) PubMed DOI
Semenza J.C., Herbst S., Rechenburg A., Suk J.E., Höser C., Schreiber C. Climate change impact assessment of food and waterborne diseases. Crit. Rev. Environ. Sci. Technol. 2012;42(8):857–890. doi: 10.1080/10643389.2010.534706. (PMID: 24808720) PubMed DOI PMC
Colagiorgi A., Bruini I., Di Ciccio P.A., Zanardi E., Ghidini S., Ianieri A. Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens. 2017;6(3):41. doi: 10.3390/pathogens6030041. (PMID: 28869552) PubMed DOI PMC
Galié S., García-Gutiérrez C., Miguélez E.M., Villar C.J., Lombó F. Biofilms in the food industry: health aspects and control methods. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.00898. PubMed DOI PMC
da Silva E.P., De Martinis E.C.P. Current knowledge and perspectives on biofilm formation: the case of Listeria monocytogenes. Appl. Microbiol. Biotechnol. 2013;97(3):957–968. doi: 10.1007/s00253-012-4611-1. (PMID: 23233205) PubMed DOI
Schäfer D.F., Steffens J., Barbosa J., Zeni J., Paroul N., Valduga E. Monitoring of contamination sources of Listeria monocytogenes in a poultry slaughterhouse. LWT. 2017;86:393–398. doi: 10.1016/j.lwt.2017.08.024. DOI
Barbosa J., Borges S., Camilo R., Magalhães R., Ferreira V., Santos I. Biofilm formation among clinical and food isolates of Listeria monocytogenes. Int. J. Microbiol. 2013;1 doi: 10.1155/2013/524975. (PMID: 24489549) PubMed DOI PMC
Carpentier B., Cerf O. Review — persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011;145(1):1–8. doi: 10.1016/j.ijfoodmicro.2011.01.005. (PMID: 21276634) PubMed DOI
Silverlås C., Mattsson J.G., Insulander M., Lebbad M. Zoonotic transmission of Cryptosporidium meleagridis on an organic Swedish farm. Int. J. Parasitol. 2012;42(11):963–967. doi: 10.1016/j.ijpara.2012.08.008. (PMID: 23022616) PubMed DOI
Chersich M.F., Scorgie F., Rees H., Wright C.Y. How climate change can fuel listeriosis outbreaks in South Africa. S. Afr. Med. J. 2018;108(6):453. doi: 10.7196/SAMJ.2018.v108i6.13274. (PMID: 30004323) PubMed DOI
Mouton N., Motshabi T., Jeje K., Henrico A. Bulk water services delivery challenges in the Dr. Ruth Segomotsi Mompati district municipality in South Africa’s North West province. WWP. 2024;10(3):821–858. doi: 10.1002/wwp2.12207. DOI
Lebov J., Grieger K., Womack D., Zaccaro D., Whitehead N., Kowalcyk B. A framework for One Health research. J. One Health. 2017;3:44–50. doi: 10.1016/j.onehlt.2017.03.004. PubMed DOI PMC
Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7:219–242. doi: 10.1007/s40820-015-0040-x. PubMed DOI PMC