ERK3/MAPK6 promotes triple-negative breast cancer progression through collective migration and EMT plasticity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40936697
PubMed Central
PMC12420279
DOI
10.3389/fonc.2025.1563969
Knihovny.cz E-zdroje
- Klíčová slova
- Extracellular signal-regulated kinase 3 (ERK3), Triple-negative breast cancer (TNBC), collective migration, epithelial-mesenchymal plasticity (EMP), epithelial-to-mesenchymal transition (EMT), mitogen-activated protein kinase 6 (MAPK6),
- Publikační typ
- časopisecké články MeSH
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, in which epithelial-to-mesenchymal transition (EMT) plasticity is required for successful metastasis. ERK3 has been implicated in promoting breast cancer migration and invasion, but the mechanisms remain elusive. Here, we investigated ERK3 expression across patient-derived datasets and explored its role in promoting EMT plasticity using different 2D and 3D in vitro models to investigate cell-extracellular matrix adhesion, migration and invasion, anchorage-independent growth, extravasation and colonization. We have established an association between ERK3 overexpression and aggressive breast cancer phenotypes, higher tumour plasticity, as informed by its grade, and poor clinical outcomes. Based on the hypothesis that ERK3 contributes to TNBC progression by supporting a partial-EMT state, we showed that ERK3 contributes to different steps of the metastatic process, especially by enabling collective migration but also by modulating other functional aspects related to an active EMT program. In conclusion, our results demonstrate that ERK3 contributes to TNBC progression and potentially metastasis by promoting EMT plasticity and collective migration.
AtoGen Co Ltd Daejeon Republic of Korea
Department of Biochemistry Faculty of Science Masaryk University Brno Czechia
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
Department of Pharmacy UIT The Arctic University of Norway Tromso Norway
European Molecular Biology Laboratory Barcelona Spain
Institute for Research in Immunology and Cancer Montreal QC Canada
Institute of Hematology and Blood Transfusion Prague Czechia
International Clinical Research Center Faculty of Medicine Masaryk University Brno Czechia
International Clinical Research Center St Anne's University Hospital Brno Czechia
School of Cardiovascular and Metabolic Medicine and Sciences King's College London United Kingdom
Zobrazit více v PubMed
Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. (2007) 13:2329–34. doi: 10.1158/1078-0432.ccr-06-1109, PMID: PubMed DOI
Lüönd F, Sugiyama N, Bill R, Bornes L, Hager C, Tang F, et al. Distinct contributions of partial and full EMT to breast cancer Malignancy. Dev Cell. (2021) 56:3203–3221.e11. doi: 10.1016/j.devcel.2021.11.006, PMID: PubMed DOI
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. (2020) 21:341–52. doi: 10.1038/s41580-020-0237-9, PMID: PubMed DOI PMC
Pastushenko I, Blanpain C, Transition States during Tumor Progression EMT. and metastasis. Trends Cell Biol. (2019) 29:212–26. doi: 10.1016/j.tcb.2018.12.001, PMID: PubMed DOI
Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell.(2013) 155:1639–51. doi: 10.1016/j.cell.2013.11.029, PMID: PubMed DOI PMC
Gui T, Sun Y, Shimokado A, Muragaki Y. The roles of mitogen-activated protein kinase pathways in TGF- PubMed DOI PMC
Wang J, Kuiatse I, Lee AV, Pan J, Giuliano A, Cui X. Sustained c-jun-NH2-kinase activity promotes epithelial-mesenchymal transition, invasion, and survival of breast cancer cells by regulating extracellular signal-regulated kinase activation. Mol Cancer Res. (2010) 8:266–77. doi: 10.1158/1541-7786.mcr-09-0221, PMID: PubMed DOI PMC
Bhatt AB, Wright TD, Barnes V, Chakrabarty S, Matossian MD, Lexner E, et al. Diverse and converging roles of ERK1/2 and ERK5 pathways on mesenchymal to epithelial transition in breast cancer. Transl Oncol. (2021) 14:101046. doi: 10.1016/j.tranon.2021.101046, PMID: PubMed DOI PMC
Antoon JW, Nitzchke AM, Martin EC, Rhodes LV, Nam S, Wadsworth S, et al. Inhibition of p38 mitogen-activated protein kinase alters microRNA expression and reverses epithelial-to-mesenchymal transition. Int J Oncol. (2013) 42:1139–50. doi: 10.3892/ijo.2013.1814, PMID: PubMed DOI PMC
Seternes OM, Mikalsen T, Johansen B, Michaelsen E, Armstrong CG, Morrice NA, et al. Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO J. (2004) 23:4780–91. doi: 10.1038/sj.emboj.7600489, PMID: PubMed DOI PMC
Bogucka K, Marini F, Rosigkeit S, Schloeder J, Jonuleit H, David K, et al. ERK3/MAPK6 is required for KRAS-mediated NSCLC tumorigenesis. Cancer Gene Ther. (2020). 28:359–74. doi: 10.1038/s41417-020-00245-w, PMID: PubMed DOI
Coulombe P, Meloche S. Atypical mitogen-activated protein kinases: Structure, regulation and functions. Biochim Biophys Acta BBA - Mol Cell Res. (2007) 1773:1376–87. doi: 10.1016/j.bbamcr.2006.11.001, PMID: PubMed DOI
Vallabhaneni S, Liu J, Morel M, Wang J, DeMayo FJ, Long W. Conditional PubMed DOI PMC
Bogucka K, Pompaiah M, Marini F, Binder H, Harms G, Kaulich M, et al. ERK3/MAPK6 controls IL-8 production and chemotaxis. eLife.(2020) 9:e52511. doi: 10.7554/elife.52511, PMID: PubMed DOI PMC
Bogucka-Janczi K, Harms G, Coissieux MM, Bentires-Alj M, Thiede B, Rajalingam K. ERK3/MAPK6 dictates CDC42/RAC1 activity and ARP2/3-dependent actin polymerization. eLife.(2023) 12:e85167. doi: 10.7554/elife.85167, PMID: PubMed DOI PMC
Cai Q, Zhou W, Wang W, Dong B, Han D, Shen T, et al. MAPK6-AKT signaling promotes tumor growth and resistance to mTOR kinase blockade. Sci Adv. (2021) 7:eabi6439. doi: 10.1126/sciadv.abi6439, PMID: PubMed DOI PMC
Liang B. Increased expression of mitogen-activated protein kinase and its upstream regulating signal in human gastric cancer. World J Gastroenterol. (2005) 11:623. doi: 10.3748/wjg.v11.i5.623, PMID: PubMed DOI PMC
Al-Mahdi R, Babteen N, Thillai K, Holt M, Johansen B, Wetting HL, et al. A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adhes Migr.(2015) 9:483–94. doi: 10.1080/19336918.2015.1112485, PMID: PubMed DOI PMC
Edgar R. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. (2002) 30:207–10. doi: 10.1093/nar/30.1.207, PMID: PubMed DOI PMC
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. (2013) 45:580–5. doi: 10.1038/ng.2653, PMID: PubMed DOI PMC
The Cancer Genome Atlas Research Network. JN W, EA C, GB M, Shaw KRM, BA O, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. (2013) 45:1113–20. doi: 10.1038/ng.2764, PMID: PubMed DOI PMC
Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a shared vision for cancer genomic data. N Engl J Med. (2016) 375:1109–12. doi: 10.1056/nejmp1607591, PMID: PubMed DOI PMC
Bartha Takoyaki San Daet llÁ, Győrffy B. TNMplot.com: A web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int J Mol Sci. (2021) 22:2622. Available online at: https://tnmplot.com/ (Accessed June 13, 2022)., PMID: PubMed PMC
Park SJ, Yoon BH, Kim SK, Kim SY. GENT2: an updated gene expression database for normal and tumor tissues. BMC Med Genomics. (2019) 12:101. Available online at: http://gent2.appex.kr/gent2/ (Accessed June 27, 2022)., PMID: PubMed PMC
Gyorffy Balázs. Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer. Br J Pharmacol. (2023) 181:362–74. Available online at: https://kmplot.com/analysis (Accessed September 2, 2022)., PMID: PubMed
Jose SS, De Zuani M, Tidu F, Hortová Kohoutková M, Pazzagli L, Forte G, et al. Comparison of two human organoid models of lung and intestinal inflammation reveals Toll-like receptor signalling activation and monocyte recruitment. Clin Transl Immunol. (2020) 9:e1131. doi: 10.1002/cti2.1131, PMID: PubMed DOI PMC
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science.(2009) 324:797–801. doi: 10.1126/science.1172482, PMID: PubMed DOI PMC
Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, et al. PubMed DOI PMC
Miller AJ, Dye BR, Ferrer-Torres D, Hill DR, Overeem AW, Shea LD, et al. Generation of lung organoids from human pluripotent stem cells PubMed DOI PMC
Grädler U. Biochemical, cellular and structural characterization of novel and selective ERK3 inhibitors. Bioorg. Med Chem Lett. (2020) 30:127551. doi: 10.1016/j.bmcl.2020.127551, PMID: PubMed DOI
Javary J, Goupil E, Soulez M, Kanshin E, Bouchard A, Seternes O, et al. Phosphoproteomic analysis identifies supervillin as an ERK3 substrate regulating cytokinesis and cell ploidy. J Cell Physiol. (2024) 239:e30938. doi: 10.1002/jcp.30938, PMID: PubMed DOI
Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO, et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PloS One. (2009) 4:e6529. doi: 10.1371/journal.pone.0006529, PMID: PubMed DOI PMC
Suarez-Arnedo A, Torres Figueroa F, Clavijo C, Arbeláez P, Cruz JC, Muñoz-Camargo C, et al. An image J plugin for the high throughput image analysis of PubMed DOI PMC
Haase K, Gillrie MR, Hajal C, Kamm RD. Pericytes contribute to dysfunction in a human 3D model of placental microvasculature through VEGF-ang-tie2 signaling. Adv Sci. (2019) 6:1900878. doi: 10.1002/advs.201900878, PMID: PubMed DOI PMC
Chen MB, Whisler JA, Fröse J, Yu C, Shin Y, Kamm RD. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protoc. (2017) 12:865–80. doi: 10.1038/nprot.2017.018, PMID: PubMed DOI PMC
Wu Y, Li C, Peng H, Swaidan A, Riehle A, Pollmeier B, et al. Acid sphingomyelinase contributes to the control of mycobacterial infection via a signaling cascade leading from reactive oxygen species to cathepsin D. Cells.(2020) 9:2406. doi: 10.3390/cells9112406, PMID: PubMed DOI PMC
Srivastava GK, Reinoso R, Singh AK, Fernandez-Bueno I, Hileeto D, Martino M, et al. Trypan Blue staining method for quenching the autofluorescence of RPE cells for improving protein expression analysis. Exp Eye Res. (2011) 93:956–62. doi: 10.1016/j.exer.2011.07.002, PMID: PubMed DOI
Cowen T, Haven AJ, Burnstock G. Pontamine sky blue: A counterstain for background autofluorescence in fluorescence and immunofluorescence histochemistry. Histochemistry.(1985) 82:205–8. doi: 10.1007/bf00501396, PMID: PubMed DOI
Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell.(2023) 186:1708–28. doi: 10.1016/j.cell.2023.01.040, PMID: PubMed DOI
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest.(2011) 121:2750–67. doi: 10.1172/jci45014, PMID: PubMed DOI PMC
Lakhani SR, Ellis IO, Schnitt SJ, Tan PH. WHO classification of tumours of the breast. International Agency for Research on Cancer (IARC) 69372 Lyon Cedex 08, France. (2012).
Surveillance, epidemiology, and end results program. In: National institute of health (NIH) - cancer stat facts: female breast cancer subtypes. Available online at: https://seer.cancer.gov/statfacts/html/breast-subtypes.html (Accessed February 21, 2023).
Surveillance, epidemiology, and end results program (SEER) . Available online at: https://seer.cancer.gov (Accessed Feb 7, 2024).
Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. (2006) 10:515–27. doi: 10.1016/j.ccr.2006.10.008, PMID: PubMed DOI PMC
Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK, Wong PK. Decoding leader cells in collective cancer invasion. Nat Rev Cancer.(2021) 21:592–604. doi: 10.1038/s41568-021-00376-8, PMID: PubMed DOI
Insua-Rodríguez J, Oskarsson T. The extracellular matrix in breast cancer. Adv Drug Delivery Rev. (2016) 97:41–55. doi: 10.1016/j.addr.2015.12.017, PMID: PubMed DOI
Elkhadragy L, Myers A, Long W. Role of the atypical MAPK ERK3 in cancer growth and progression. Cancers.(2024) 16:1381. doi: 10.3390/cancers16071381, PMID: PubMed DOI PMC
Elkhadragy L, Alsaran H, Long W. The C-terminus tail regulates ERK3 kinase activity and its ability in promoting cancer cell migration and invasion. Int J Mol Sci. (2020) 21:4044. doi: 10.3390/ijms21114044, PMID: PubMed DOI PMC
Elkhadragy L, Alsaran H, Morel M, Long W. Activation loop phosphorylation of ERK3 is important for its kinase activity and ability to promote lung cancer cell invasiveness. J Biol Chem. (2018) 293:16193–205. doi: 10.1074/jbc.ra118.003699, PMID: PubMed DOI PMC
Strilic B, Offermanns S. Intravascular survival and extravasation of tumor cells. Cancer Cell. (2017) 32:282–93. doi: 10.1016/j.ccell.2017.07.001, PMID: PubMed DOI
Burstein HJ, Curigliano G, Thürlimann B, Weber WP, Poortmans P, Regan MM, et al. Customizing local and systemic therapies for women with early breast cancer: the St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann Oncol. (2021) 32:1216–35. doi: 10.1016/j.annonc.2021.06.023, PMID: PubMed DOI PMC
Kröger C, Afeyan A, Mraz J, Eaton EN, Reinhardt F, Khodor YL, et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci. (2019) 116:7353–62. doi: 10.1073/pnas.1812876116, PMID: PubMed DOI PMC
Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, et al. Identification of the tumour transition states occurring during EMT. Nature.(2018) 556:463–8. doi: 10.1038/s41586-018-0040-3, PMID: PubMed DOI
Tang T, Zhu Q, Li X, Zhu G, Deng S, Wang Y, et al. Protease Nexin I is a feedback regulator of EGF/PKC/MAPK/EGR1 signaling in breast cancer cells metastasis and stemness. Cell Death Dis. (2019) 10:649. doi: 10.1038/s41419-019-1882-9, PMID: PubMed DOI PMC
Zhu C, Kong Z, Wang B, Cheng W, Wu A, Meng X. ITGB3/CD61: a hub modulator and target in the tumor microenvironment. Am J Transl Res. (2019) 11(12):7195–208., PMID: PubMed PMC
Tulotta C, Lefley DV, Moore CK, Amariutei AE, Spicer-Hadlington AR, Quayle LA, et al. IL-1B drives opposing responses in primary tumours and bone metastases; harnessing combination therapies to improve outcome in breast cancer. NPJ Breast Cancer.(2021) 7:95. doi: 10.1038/s41523-021-00305-w, PMID: PubMed DOI PMC
Chang CM, Lam HP, Hsu HJ, Jiang SJ. Interleukin-10: A double-edged sword in breast cancer. Tzu Chi Med J. (2021) 33:203. doi: 10.4103/tcmj.tcmj_162_20, PMID: PubMed DOI PMC
Moore KM, Thomas GJ, Duffy SW, Warwick J, Gabe R, Chou P, et al. Therapeutic targeting of integrin αvβ6 in breast cancer. JNCI J Natl Cancer Inst. (2014) 106. doi: 10.1093/jnci/dju169, PMID: PubMed DOI PMC
Cheng G, Fan X, Hao M, Wang J, Zhou X, Sun X. Higher levels of TIMP-1 expression are associated with a poor prognosis in triple-negative breast cancer. Mol Cancer.(2016) 15:30. doi: 10.1186/s12943-016-0515-5, PMID: PubMed DOI PMC
Banys-Paluchowski M, Witzel I, Aktas B, Fasching PA, Hartkopf A, Janni W, et al. The prognostic relevance of urokinase-type plasminogen activator (uPA) in the blood of patients with metastatic breast cancer. Sci Rep. (2019) 9:2318. doi: 10.1038/s41598-018-37259-2, PMID: PubMed DOI PMC
Wang MY, Chen PS, Prakash E, Hsu HC, Huang HY, Lin MT, et al. Connective Tissue Growth Factor Confers Drug Resistance in Breast Cancer through Concomitant Up-regulation of Bcl-xL and cIAP1. Cancer Res. (2009) 69:3482–91. doi: 10.1158/0008-5472.can-08-2524, PMID: PubMed DOI
Su X, Xu Y, Fox GC, Xiang J, Kwakwa KA, Davis JL, et al. Breast cancer–derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment. J Clin Invest.(2021) 131:e145296. doi: 10.1172/jci145296, PMID: PubMed DOI PMC
Liu L, Wu Y, Zhang C, Zhou C, Li Y, Zeng Y, et al. Cancer-associated adipocyte-derived G-CSF promotes breast cancer Malignancy via Stat3 signaling. J Mol Cell Biol. (2020) 12:723–37. doi: 10.1093/jmcb/mjaa016, PMID: PubMed DOI PMC
Liu Y, Song Y, Ye M, Hu X, Wang ZP, Zhu X. The emerging role of WISP proteins in tumorigenesis and cancer therapy. J Transl Med. (2019) 17:28. doi: 10.1186/s12967-019-1769-7, PMID: PubMed DOI PMC
Wang S, Li J, Hong S, Wang N, Xu S, Yang B, et al. Chemotherapy-elicited extracellular vesicle CXCL1 from dying cells promotes triple-negative breast cancer metastasis by activating TAM/PD-L1 signaling. J Exp Clin Cancer Res. (2024) 43:121. doi: 10.1186/s13046-024-03050-7, PMID: PubMed DOI PMC
Sereesongsaeng N, McDowell SH, Burrows JF, Scott CJ, Burden RE. Cathepsin V suppresses GATA3 protein expression in luminal A breast cancer. Breast Cancer Res. (2020) 22:139. doi: 10.1186/s13058-020-01376-6, PMID: PubMed DOI PMC
SenGupta S, Hein LE, Xu Y, Zhang J, Konwerski JR, Li Y, et al. Triple-negative breast cancer cells recruit neutrophils by secreting TGF-β and CXCR2 ligands. Front Immunol. (2021) 12:659996. doi: 10.3389/fimmu.2021.659996, PMID: PubMed DOI PMC
Ibrahim SA, El-Ghonaimy EA, Hassan H, Mahana N, Mahmoud MA, El-Mamlouk T, et al. Hormonal-receptor positive breast cancer: IL-6 augments invasion and lymph node metastasis via stimulating cathepsin B expression. J Adv Res. (2016) 7:661–70. doi: 10.1016/j.jare.2016.06.007, PMID: PubMed DOI PMC
Kim SH, Ryu KJ, Hong KS, Kim H, Han H, Kim M, et al. ERK3 increases snail protein stability by inhibiting FBXO11-mediated snail ubiquitination. Cancers.(2023) 16:105. doi: 10.3390/cancers16010105, PMID: PubMed DOI PMC
Boussommier-Calleja A, Atiyas Y, Haase K, Headley M, Lewis C, Kamm RD. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials.(2019) 198:180–93. doi: 10.1016/j.biomaterials.2018.03.005, PMID: PubMed DOI PMC
Fernandes S, Oliver-De La Cruz J, Morazzo S, Niro F, Cassani M, Ďuríková H, et al. TGF-β induces matrisome pathological alterations and EMT in patient-derived prostate cancer tumoroids. Matrix Biol. (2024) 125:12–30. doi: 10.1016/j.matbio.2023.11.001, PMID: PubMed DOI
Mathien S, Déléris P, Soulez M, Voisin L, Meloche S. Deubiquitinating enzyme USP20 regulates extracellular signal-regulated kinase 3 stability and biological activity. Mol Cell Biol. (2017) 37:e00432–16. doi: 10.1128/mcb.00432-16, PMID: PubMed DOI PMC
Takahashi C, Miyatake K, Kusakabe M, Nishida E. The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture. J Biol Chem. (2018) 293:8342–61. doi: 10.1074/jbc.ra117.000992, PMID: PubMed DOI PMC
Huang Y, Liu R, Han X, Hou X, Tian Y, Zhang W. Rab31 promotes the invasion and metastasis of cervical cancer cells by inhibiting MAPK6 degradation. Int J Biol Sci. (2022) 18:112–23. doi: 10.7150/ijbs.63388, PMID: PubMed DOI PMC
Expression of MAPK6 in cancer - Summary - The Human Protein Atlas . Available online at: https://www.proteinatlas.org/ENSG00000069956-MAPK6/pathology (Accessed Apr 14, 2021).
Myers AK, Morel M, Gee SH, Hoffmann KA, Long W. ERK3 and DGKζ interact to modulate cell motility in lung cancer cells. Front Cell Dev Biol. (2023) 11:1192221. doi: 10.3389/fcell.2023.1192221, PMID: PubMed DOI PMC
Brand F, Schumacher S, Kant S, Menon MB, Simon R, Turgeon B, et al. The extracellular signal-regulated kinase 3 (Mitogen-activated protein kinase 6 [MAPK6])–MAPK-activated protein kinase 5 signaling complex regulates septin function and dendrite morphology. Mol Cell Biol. (2012) 32:2467–78. doi: 10.1128/mcb.06633-11, PMID: PubMed DOI PMC
Long W, Foulds CE, Qin J, Liu J, Ding C, Lonard DM, et al. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J Clin Invest.(2012) 122:1869–80. doi: 10.1172/jci61492, PMID: PubMed DOI PMC
Quinn HM, Vogel R, Popp O, Mertins P, Lan L, Messerschmidt C, et al. YAP and β-catenin cooperate to drive oncogenesis in basal breast cancer. Cancer Res. (2021) 81:2116–27. doi: 10.1158/0008-5472.can-20-2801, PMID: PubMed DOI
Luo J, Zou H, Guo Y, Tong T, Chen Y, Xiao Y, et al. The oncogenic roles and clinical implications of YAP/TAZ in breast cancer. Br J Cancer.(2023) 128:1611–24. doi: 10.1038/s41416-023-02182-5, PMID: PubMed DOI PMC
Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ. WISP-1 is a Wnt-1- and -catenin- responsive oncogene. Genes Dev. (2000) 14(5):585–95., PMID: PubMed PMC
Zhong Q, Qiu R. Mechanism of lncRNA SNHG19 miR-299-5p MAPK6 signaling axis promoting metastasis of non-small cell lung cancer cells. Oncol Transl Med. (2022) 8:247–58. doi: 10.1007/s10330-022-0595-5 DOI
Huang YT, Lan Q, Lorusso G, Duffey N, Rüegg C. The matricellular protein CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and suppressing anoikis. Oncotarget.(2017) 8:9200–15. doi: 10.18632/oncotarget.13677, PMID: PubMed DOI PMC
Espinoza I, Kurapaty C, Park CH, Steen TV, Kleer CG, Wiley E, et al. Depletion of CCN1/CYR61 reduces triple-negative/basal-like breast cancer aggressiveness. Am J Cancer Res. (2022) 12(2):839–51., PMID: PubMed PMC