Comparison of the Effect of CFTR Modulators elexacaftor/tezacaftor/ivacaftor and lumacaftor/ivacaftor via Serum Human Epididymis Protein 4 Concentration in p.Phe508del-CFTR Homozygous Cystic Fibrosis Patients
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FK 135327
National Research, Development, and Innovation Office
PubMed
40943949
PubMed Central
PMC12429638
DOI
10.3390/jcm14176188
PII: jcm14176188
Knihovny.cz E-resources
- Keywords
- CFTR modulator, HE4, biomarker, cystic fibrosis, ppFEV1, treatment efficacy,
- Publication type
- Journal Article MeSH
Elevated human epididymis protein 4 (HE4) levels decreased in patients with CF (pwCF) in response to CFTR-specific drugs and negatively correlated with FEV1% predicted values (ppFEV1). Objectives: Although elexacaftor/tezacaftor/ivacaftor (ETI, Kaftrio®) demonstrates more substantial effectiveness than lumacaftor/ivacaftor (LUM/IVA, Orkambi®) in pwCF, plasma biomarkers have not been used to compare treatment efficacy. Hence, our aim was to correlate the change in HE4 levels and the clinical effects of these CFTR modulators (CFTRm). Methods: Serum HE4 concentrations were measured in a total of 123 pwCF homozygous for the p.Phe508del-CFTR variant before treatment and 1-6 months after either ETI or LUM/IVA administration. A correlation between serum HE4 and ppFEV1 was assessed using the Spearman test. HE4 protein levels were also analyzed in the supernatants of p.Phe508del-CFTR CFBE 41o- cells before and after treatment with these CFTRm, and their direct effect on CFTR function was monitored by the whole-cell patch-clamp technique. Results: Serum HE4 levels were reduced below baseline after 3 months of either ETI or LUM/IVA (mean delta HE4: -38.5 vs. -18.5 pmol/L, respectively) when the mean change of ppFEV1 was 13.6 vs. 1.6% and remained decreased up to 6 months. A significant inverse correlation between HE4 and ppFEV1 was observed in both study cohorts (r = -0.537 and r = -0.575, respectively; p < 0.0001). In agreement with ex vivo results, the effect on p.Phe508del-CFTR was more pronounced by ETI than LUM/IVA in CFBE cells, showing a larger improvement in p.Phe508del-CFTR function and reductions in HE4 levels at 24 h. Conclusions: Serum HE4 negatively correlates with lung function improvement and monitors better drug efficacy in pwCF under ETI than LUM/IVA.
Department of Laboratory Medicine Faculty of Medicine University of Debrecen 4032 Debrecen Hungary
Department of Medical Genetics Faculty of Medicine University of Debrecen 4032 Debrecen Hungary
Department of Pediatrics Faculty of Medicine University of Pécs 7624 Pécs Hungary
National Korányi Institute for Pulmonology 1122 Budapest Hungary
Törökbálint Institute for Pulmonology 2045 Törökbálint Hungary
See more in PubMed
Rowe S.M., Miller S., Sorscher E.J. Cystic fibrosis. N. Engl. J. Med. 2005;352:1992–2001. doi: 10.1056/NEJMra043184. PubMed DOI
ECFS Patient Registry Annual Report. 2023. [(accessed on 8 July 2025)]. Available online: https://www.ecfs.eu/projects/ecfs-patient-registry/annual-reports.
De Boeck K., Amaral M.D. Progress in Therapies for Cystic Fibrosis. Lancet Respir. Med. 2016;4:662–674. doi: 10.1016/S2213-2600(16)00023-0. PubMed DOI
Van Goor F., Hadida S., Grootenhuis P.D., Burton B., Cao D., Neuberger T., Turnbull A., Singh A., Joubran J., Hazlewood A., et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. USA. 2009;106:18825–18830. doi: 10.1073/pnas.0904709106. PubMed DOI PMC
Van Goor F., Hadida S., Grootenhuis P.D., Burton B., Stack J.H., Straley K.S., Decker C.J., Miller M., McCartney J., Olson E.R., et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc. Natl. Acad. Sci. USA. 2011;108:18843–18848. doi: 10.1073/pnas.1105787108. PubMed DOI PMC
Pranke I.M., Hatton A., Simonin J., Jais J.P., Le Pimpec-Barthes F., Carsin A., Bonnette P., Fayon M., Stremler-Le Bel N., Grenet D., et al. Correction of CFTR function in nasal epithelial cells from cystic fibrosis patients predicts improvement of respiratory function by CFTR modulators. Sci. Rep. 2017;7:7375. doi: 10.1038/s41598-017-07504-1. PubMed DOI PMC
Ridley K., Condren M. Elexacaftor-Tezacaftor-Ivacaftor: The First Triple-Combination Cystic Fibrosis Transmembrane Conductance Regulator Modulating Therapy. J. Pediatr. Pharmacol. Ther. 2020;25:192–197. doi: 10.5863/1551-6776-25.3.192. PubMed DOI PMC
Middleton P.G., Mall M.A., Dřevínek P., Lands L.C., McKone E.F., Polineni D., Ramsey B.W., Taylor-Cousar J.L., Tullis E., Vermeulen F., et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019;381:1809–1819. doi: 10.1056/NEJMoa1908639. PubMed DOI PMC
Heijerman H.G.M., McKone E.F., Downey D.G., Van Braeckel E., Rowe S.M., Tullis E., Mall M.A., Welter J.J., Ramsey B.W., McKee C.M., et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: A double-blind, randomised, phase 3 trial. Lancet. 2019;394:1940–1948. doi: 10.1016/S0140-6736(19)32597-8. PubMed DOI PMC
Goralski J.L., Hoppe J.E., Mall M.A., McColley S.A., McKone E., Ramsey B., Rayment J.H., Robinson P., Stehling F., Taylor-Cousar J.L., et al. Phase 3 Open-Label Clinical Trial of Elexacaftor/Tezacaftor/Ivacaftor in Children Aged 2–5 Years with Cystic Fibrosis and at Least One F508del Allele. Am. J. Respir. Crit. Care Med. 2023;208:59–67. doi: 10.1164/rccm.202301-0084OC. PubMed DOI PMC
Sutharsan S., McKone E.F., Downey D.G., Duckers J., MacGregor G., Tullis E., Van Braeckel E., Wainwright C.E., Watson D., Ahluwalia N., et al. Efficacy and safety of elexacaftor plus tezacaftor plus ivacaftor versus tezacaftor plus ivacaftor in people with cystic fibrosis homozygous for F508del-CFTR: A 24-week, multicentre, randomised, double-blind, active-controlled, phase 3b trial. Lancet Respir. Med. 2022;10:267–277. doi: 10.1016/S2213-2600(21)00454-9. PubMed DOI
Mall M.A., Brugha R., Gartner S., Legg J., Moeller A., Mondejar-Lopez P., Prais D., Pressler T., Ratjen F., Reix P., et al. Efficacy and Safety of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 Through 11 Years of Age with Cystic Fibrosis Heterozygous for F508del and a Minimal Function Mutation: A Phase 3b, Randomized, Placebo-controlled Study. Am. J. Respir. Crit. Care Med. 2022;206:1361–1369. doi: 10.1164/rccm.202202-0392OC. PubMed DOI PMC
Milla C.E., Ratjen F., Marigowda G., Liu F., Waltz D., Rosenfeld M., VX13-809-011 Part B Investigator Group Lumacaftor/Ivacaftor in Patients Aged 6-11 Years with Cystic Fibrosis and Homozygous for F508del-CFTR. Am. J. Respir. Crit. Care Med. 2017;195:912–920. doi: 10.1164/rccm.201608-1754OC. PubMed DOI PMC
Burgel P.R., Munck A., Durieu I., Chiron R., Mely L., Prevotat A., Murris-Espin M., Porzio M., Abely M., Reix P., et al. Real-Life Safety and Effectiveness of Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2020;201:188–197. doi: 10.1164/rccm.201906-1227OC. PubMed DOI
Nagy B., Jr., Nagy B., Fila L., Clarke L.A., Gönczy F., Bede O., Nagy D., Újhelyi R., Szabó Á., Anghelyi A., et al. Human epididymis protein 4: A novel serum inflammatory biomarker in cystic fibrosis. Chest. 2016;150:661–672. doi: 10.1016/j.chest.2016.04.006. PubMed DOI
Nagy B., Jr., Bene Z., Fejes Z., Heltshe S.L., Reid D., Ronan N.J., McCarthy Y., Smith D., Nagy A., Joseloff E., et al. Human epididymis protein 4 (HE4) levels inversely correlate with lung function improvement (delta FEV1) in cystic fibrosis patients receiving ivacaftor treatment. J. Cyst. Fibros. 2019;18:271–277. doi: 10.1016/j.jcf.2018.08.013. PubMed DOI
Pócsi M., Fejes Z., Bene Z., Nagy A., Balogh I., Amaral M.D., Macek M., Jr., Nagy B., Jr. Human epididymis protein 4 (HE4) plasma concentration inversely correlates with the improvement of cystic fibrosis lung disease in p.Phe508del-CFTR homozygous cases treated with the CFTR modulator lumacaftor/ivacaftor combination. J. Cyst. Fibros. 2023;22:1085–1092. PubMed
Bene Z., Fejes Z., Szanto T.G., Fenyvesi F., Váradi J., Clarke L.A., Panyi G., Macek M., Jr., Amaral M.D., Balogh I., et al. Enhanced expression of human epididymis protein 4 (HE4) reflecting pro-inflammatory status is regulated by CFTR in cystic fibrosis bronchial epithelial cells. Front. Pharmacol. 2021;12:592184. doi: 10.3389/fphar.2021.592184. PubMed DOI PMC
Quanjer P.H., Stanojevic S., Cole T.J., Baur X., Hall G.L., Culver B.H., Enright P.L., Hankinson J.L., Ip M.S., ERS Global Lung Function Initiative et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012;40:1324–1343. doi: 10.1183/09031936.00080312. PubMed DOI PMC
Nagy B., Jr., Krasznai Z.T., Balla H., Csobán M., Antal-Szalmás P., Hernádi Z., Kappelmayer J. Elevated human epididymis protein 4 concentrations in chronic kidney disease. Pt 4Ann. Clin. Biochem. 2012;49:377–380. doi: 10.1258/acb.2011.011258. PubMed DOI
Hunter M.J., Treharne K.J., Winter A.K., Cassidy D.M., Land S., Mehta A. Expression of Wild-type CFTR Suppresses NF-kappaB-Driven Inflammatory Signalling. PLoS One. 2010;5:e11598. doi: 10.1371/journal.pone.0011598. PubMed DOI PMC
Kmit A., Marson F.A.L., Pereira S.V., Vinagre A.M., Leite G.S., Servidoni M.F., Ribeiro J.D., Ribeiro A.F., Bertuzzo C.S., Amaral M.D. Extent of rescue of F508del-CFTR function by VX-809 and VX-770 in human nasal epithelial cells correlates with SNP rs7512462 in SLC26A9 gene in F508del/F508del Cystic Fibrosis patients. Biochim. Biophys. Acta. Mol. Basis. Dis. 2019;1865:1323–1331. doi: 10.1016/j.bbadis.2019.01.029. PubMed DOI
Boinot C., Jollivet Souchet M., Ferru-Clément R., Becq F. Searching for combinations of small-molecule correctors to restore f508del-cystic fibrosis transmembrane conductance regulator function and processing. J. Pharmacol. Exp. Ther. 2014;350:624–634. doi: 10.1124/jpet.114.214890. PubMed DOI
Billet A., Froux L., Hanrahan J.W., Becq F. Development of Automated Patch Clamp Technique to Investigate CFTR Chloride Channel Function. Front. Pharmacol. 2017;8:195. doi: 10.3389/fphar.2017.00195. PubMed DOI PMC
Graeber S.Y., Vitzthum C., Pallenberg S.T., Naehrlich L., Stahl M., Rohrbach A., Drescher M., Minso R., Ringshausen F.C., Rueckes-Nilges C., et al. Effects of Elexacaftor/Tezacaftor/Ivacaftor Therapy on CFTR Function in Patients with Cystic Fibrosis and One or Two F508del Alleles. Am. J. Respir. Crit. Care Med. 2022;205:540–549. doi: 10.1164/rccm.202110-2249OC. PubMed DOI
Szczesniak R., Heltshe S.L., Stanojevic S., Mayer-Hamblett N. Use of FEV1 in cystic fibrosis epidemiologic studies and clinical trials: A statistical perspective for the clinical researcher. J. Cyst. Fibros. 2017;16:318–326. doi: 10.1016/j.jcf.2017.01.002. PubMed DOI PMC
Greaves R.F., Jolly L., Massie J., Scott S., Wiley V.C., Metz M.P., Mackay R.J., Australasian Association of Clinical Biochemists Sweat Test Working Party in association with the Royal Australasian College of Pathologists Quality Assurance Programs Laboratory performance of sweat conductivity for the screening of cystic fibrosis. Clin. Chem. Lab. Med. 2018;28:554–559. doi: 10.1515/cclm-2017-0530. PubMed DOI
Bene Z., Fejes Z., Macek M., Jr., Amaral M.D., Balogh I., Nagy B., Jr. Laboratory biomarkers for lung disease severity and progression in cystic fibrosis. Clin. Chim. Acta. 2020;508:277–286. doi: 10.1016/j.cca.2020.05.015. PubMed DOI
Jarosz-Griffiths H.H., Scambler T., Wong C.H., Lara-Reyna S., Holbrook J., Martinon F., Savic S., Whitaker P., Etherington C., Spoletini G., et al. Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis. Elife. 2020;9:e54556 pii. doi: 10.7554/eLife.54556. PubMed DOI PMC
García M.S., Madrid-Carbajal C.J., Peláez A., Moreno R.M.G., Alonso E.F., García B.P., Punter R.M.G., Ancochea J., Bachiller J.M.E., Ruiz J.D.H., et al. The Role of Triple CFTR Modulator Therapy in Reducing Systemic Inflammation in Cystic Fibrosis. Lung. 2025;203:55. doi: 10.1007/s00408-025-00806-6. PubMed DOI
Maher R.E., Cytlak-Chaudhuri U.M., Aleem S., Barry P., Brice D.P., Caamaño Gutiérrez E., Driver K., Emmott E., Rothwell A., Smith E., et al. Effect of elexacaftor/tezacaftor/ivacaftor on systemic inflammation in cystic fibrosis. Thorax. 2025 doi: 10.1136/thorax-2024-222242. Online ahead of print . PubMed DOI PMC
Carnovale V., Scialò F., Gelzo M., Iacotucci P., Amato F., Zarrilli F., Celardo A., Castaldo G., Corso G. Cystic Fibrosis Patients with F508del/Minimal Function Genotype: Laboratory and Nutritional Evaluations after One Year of Elexacaftor/Tezacaftor/Ivacaftor Treatment. J. Clin. Med. 2022;11:6900. doi: 10.3390/jcm11236900. PubMed DOI PMC
Salvatore D., Pepe A. Cystic Fibrosis Transmembrane Conductance Regulator Modulators in Cystic Fibrosis: A Review of Registry-Based Evidence. J. Clin. Med. 2025;14:3978. doi: 10.3390/jcm14113978. PubMed DOI PMC
Schmidt H., Höpfer L.M., Wohlgemuth L., Knapp C.L., Mohamed A.O.K., Stukan L., Münnich F., Hüsken D., Koller A.S., Stratmann A.E.P., et al. Multimodal analysis of granulocytes, monocytes, and platelets in patients with cystic fibrosis before and after Elexacaftor-Tezacaftor-Ivacaftor treatment. Front. Immunol. 2023;14:1180282. doi: 10.3389/fimmu.2023.1180282. PubMed DOI PMC
Capraro M., Pedrazzi M., De Tullio R., Manfredi M., Cresta F., Castellani C., Averna M. Modulation of Plasmatic Matrix Metalloprotease 9: A Promising New Tool for Understanding the Variable Clinical Responses of Patients with Cystic Fibrosis to Cystic Fibrosis Transmembrane Conductance Regulator Modulators. Int. J. Mol. Sci. 2023;24:13384. doi: 10.3390/ijms241713384. PubMed DOI PMC
Tümmler B. Post-approval studies with the CFTR modulators Elexacaftor-Tezacaftor-Ivacaftor. Front. Pharmacol. 2023;14:1158207. doi: 10.3389/fphar.2023.1158207. PubMed DOI PMC
Liu J., Bihler H., Farinha C.M., Awatade N.T., Romão A.M., Mercadante D., Cheng Y., Musisi I., Jantarajit W., Wang Y., et al. Partial rescue of F508del-cystic fibrosis transmembrane conductance regulator channel gating with modest improvement of protein processing, but not stability, by a dual-acting small molecule. Br. J. Pharmacol. 2018;175:1017–1038. doi: 10.1111/bph.14141. PubMed DOI PMC