• This record comes from PubMed

Comparison of the Effect of CFTR Modulators elexacaftor/tezacaftor/ivacaftor and lumacaftor/ivacaftor via Serum Human Epididymis Protein 4 Concentration in p.Phe508del-CFTR Homozygous Cystic Fibrosis Patients

. 2025 Sep 02 ; 14 (17) : . [epub] 20250902

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
FK 135327 National Research, Development, and Innovation Office

Elevated human epididymis protein 4 (HE4) levels decreased in patients with CF (pwCF) in response to CFTR-specific drugs and negatively correlated with FEV1% predicted values (ppFEV1). Objectives: Although elexacaftor/tezacaftor/ivacaftor (ETI, Kaftrio®) demonstrates more substantial effectiveness than lumacaftor/ivacaftor (LUM/IVA, Orkambi®) in pwCF, plasma biomarkers have not been used to compare treatment efficacy. Hence, our aim was to correlate the change in HE4 levels and the clinical effects of these CFTR modulators (CFTRm). Methods: Serum HE4 concentrations were measured in a total of 123 pwCF homozygous for the p.Phe508del-CFTR variant before treatment and 1-6 months after either ETI or LUM/IVA administration. A correlation between serum HE4 and ppFEV1 was assessed using the Spearman test. HE4 protein levels were also analyzed in the supernatants of p.Phe508del-CFTR CFBE 41o- cells before and after treatment with these CFTRm, and their direct effect on CFTR function was monitored by the whole-cell patch-clamp technique. Results: Serum HE4 levels were reduced below baseline after 3 months of either ETI or LUM/IVA (mean delta HE4: -38.5 vs. -18.5 pmol/L, respectively) when the mean change of ppFEV1 was 13.6 vs. 1.6% and remained decreased up to 6 months. A significant inverse correlation between HE4 and ppFEV1 was observed in both study cohorts (r = -0.537 and r = -0.575, respectively; p < 0.0001). In agreement with ex vivo results, the effect on p.Phe508del-CFTR was more pronounced by ETI than LUM/IVA in CFBE cells, showing a larger improvement in p.Phe508del-CFTR function and reductions in HE4 levels at 24 h. Conclusions: Serum HE4 negatively correlates with lung function improvement and monitors better drug efficacy in pwCF under ETI than LUM/IVA.

See more in PubMed

Rowe S.M., Miller S., Sorscher E.J. Cystic fibrosis. N. Engl. J. Med. 2005;352:1992–2001. doi: 10.1056/NEJMra043184. PubMed DOI

ECFS Patient Registry Annual Report. 2023. [(accessed on 8 July 2025)]. Available online: https://www.ecfs.eu/projects/ecfs-patient-registry/annual-reports.

De Boeck K., Amaral M.D. Progress in Therapies for Cystic Fibrosis. Lancet Respir. Med. 2016;4:662–674. doi: 10.1016/S2213-2600(16)00023-0. PubMed DOI

Van Goor F., Hadida S., Grootenhuis P.D., Burton B., Cao D., Neuberger T., Turnbull A., Singh A., Joubran J., Hazlewood A., et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. USA. 2009;106:18825–18830. doi: 10.1073/pnas.0904709106. PubMed DOI PMC

Van Goor F., Hadida S., Grootenhuis P.D., Burton B., Stack J.H., Straley K.S., Decker C.J., Miller M., McCartney J., Olson E.R., et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc. Natl. Acad. Sci. USA. 2011;108:18843–18848. doi: 10.1073/pnas.1105787108. PubMed DOI PMC

Pranke I.M., Hatton A., Simonin J., Jais J.P., Le Pimpec-Barthes F., Carsin A., Bonnette P., Fayon M., Stremler-Le Bel N., Grenet D., et al. Correction of CFTR function in nasal epithelial cells from cystic fibrosis patients predicts improvement of respiratory function by CFTR modulators. Sci. Rep. 2017;7:7375. doi: 10.1038/s41598-017-07504-1. PubMed DOI PMC

Ridley K., Condren M. Elexacaftor-Tezacaftor-Ivacaftor: The First Triple-Combination Cystic Fibrosis Transmembrane Conductance Regulator Modulating Therapy. J. Pediatr. Pharmacol. Ther. 2020;25:192–197. doi: 10.5863/1551-6776-25.3.192. PubMed DOI PMC

Middleton P.G., Mall M.A., Dřevínek P., Lands L.C., McKone E.F., Polineni D., Ramsey B.W., Taylor-Cousar J.L., Tullis E., Vermeulen F., et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019;381:1809–1819. doi: 10.1056/NEJMoa1908639. PubMed DOI PMC

Heijerman H.G.M., McKone E.F., Downey D.G., Van Braeckel E., Rowe S.M., Tullis E., Mall M.A., Welter J.J., Ramsey B.W., McKee C.M., et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: A double-blind, randomised, phase 3 trial. Lancet. 2019;394:1940–1948. doi: 10.1016/S0140-6736(19)32597-8. PubMed DOI PMC

Goralski J.L., Hoppe J.E., Mall M.A., McColley S.A., McKone E., Ramsey B., Rayment J.H., Robinson P., Stehling F., Taylor-Cousar J.L., et al. Phase 3 Open-Label Clinical Trial of Elexacaftor/Tezacaftor/Ivacaftor in Children Aged 2–5 Years with Cystic Fibrosis and at Least One F508del Allele. Am. J. Respir. Crit. Care Med. 2023;208:59–67. doi: 10.1164/rccm.202301-0084OC. PubMed DOI PMC

Sutharsan S., McKone E.F., Downey D.G., Duckers J., MacGregor G., Tullis E., Van Braeckel E., Wainwright C.E., Watson D., Ahluwalia N., et al. Efficacy and safety of elexacaftor plus tezacaftor plus ivacaftor versus tezacaftor plus ivacaftor in people with cystic fibrosis homozygous for F508del-CFTR: A 24-week, multicentre, randomised, double-blind, active-controlled, phase 3b trial. Lancet Respir. Med. 2022;10:267–277. doi: 10.1016/S2213-2600(21)00454-9. PubMed DOI

Mall M.A., Brugha R., Gartner S., Legg J., Moeller A., Mondejar-Lopez P., Prais D., Pressler T., Ratjen F., Reix P., et al. Efficacy and Safety of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 Through 11 Years of Age with Cystic Fibrosis Heterozygous for F508del and a Minimal Function Mutation: A Phase 3b, Randomized, Placebo-controlled Study. Am. J. Respir. Crit. Care Med. 2022;206:1361–1369. doi: 10.1164/rccm.202202-0392OC. PubMed DOI PMC

Milla C.E., Ratjen F., Marigowda G., Liu F., Waltz D., Rosenfeld M., VX13-809-011 Part B Investigator Group Lumacaftor/Ivacaftor in Patients Aged 6-11 Years with Cystic Fibrosis and Homozygous for F508del-CFTR. Am. J. Respir. Crit. Care Med. 2017;195:912–920. doi: 10.1164/rccm.201608-1754OC. PubMed DOI PMC

Burgel P.R., Munck A., Durieu I., Chiron R., Mely L., Prevotat A., Murris-Espin M., Porzio M., Abely M., Reix P., et al. Real-Life Safety and Effectiveness of Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2020;201:188–197. doi: 10.1164/rccm.201906-1227OC. PubMed DOI

Nagy B., Jr., Nagy B., Fila L., Clarke L.A., Gönczy F., Bede O., Nagy D., Újhelyi R., Szabó Á., Anghelyi A., et al. Human epididymis protein 4: A novel serum inflammatory biomarker in cystic fibrosis. Chest. 2016;150:661–672. doi: 10.1016/j.chest.2016.04.006. PubMed DOI

Nagy B., Jr., Bene Z., Fejes Z., Heltshe S.L., Reid D., Ronan N.J., McCarthy Y., Smith D., Nagy A., Joseloff E., et al. Human epididymis protein 4 (HE4) levels inversely correlate with lung function improvement (delta FEV1) in cystic fibrosis patients receiving ivacaftor treatment. J. Cyst. Fibros. 2019;18:271–277. doi: 10.1016/j.jcf.2018.08.013. PubMed DOI

Pócsi M., Fejes Z., Bene Z., Nagy A., Balogh I., Amaral M.D., Macek M., Jr., Nagy B., Jr. Human epididymis protein 4 (HE4) plasma concentration inversely correlates with the improvement of cystic fibrosis lung disease in p.Phe508del-CFTR homozygous cases treated with the CFTR modulator lumacaftor/ivacaftor combination. J. Cyst. Fibros. 2023;22:1085–1092. PubMed

Bene Z., Fejes Z., Szanto T.G., Fenyvesi F., Váradi J., Clarke L.A., Panyi G., Macek M., Jr., Amaral M.D., Balogh I., et al. Enhanced expression of human epididymis protein 4 (HE4) reflecting pro-inflammatory status is regulated by CFTR in cystic fibrosis bronchial epithelial cells. Front. Pharmacol. 2021;12:592184. doi: 10.3389/fphar.2021.592184. PubMed DOI PMC

Quanjer P.H., Stanojevic S., Cole T.J., Baur X., Hall G.L., Culver B.H., Enright P.L., Hankinson J.L., Ip M.S., ERS Global Lung Function Initiative et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012;40:1324–1343. doi: 10.1183/09031936.00080312. PubMed DOI PMC

Nagy B., Jr., Krasznai Z.T., Balla H., Csobán M., Antal-Szalmás P., Hernádi Z., Kappelmayer J. Elevated human epididymis protein 4 concentrations in chronic kidney disease. Pt 4Ann. Clin. Biochem. 2012;49:377–380. doi: 10.1258/acb.2011.011258. PubMed DOI

Hunter M.J., Treharne K.J., Winter A.K., Cassidy D.M., Land S., Mehta A. Expression of Wild-type CFTR Suppresses NF-kappaB-Driven Inflammatory Signalling. PLoS One. 2010;5:e11598. doi: 10.1371/journal.pone.0011598. PubMed DOI PMC

Kmit A., Marson F.A.L., Pereira S.V., Vinagre A.M., Leite G.S., Servidoni M.F., Ribeiro J.D., Ribeiro A.F., Bertuzzo C.S., Amaral M.D. Extent of rescue of F508del-CFTR function by VX-809 and VX-770 in human nasal epithelial cells correlates with SNP rs7512462 in SLC26A9 gene in F508del/F508del Cystic Fibrosis patients. Biochim. Biophys. Acta. Mol. Basis. Dis. 2019;1865:1323–1331. doi: 10.1016/j.bbadis.2019.01.029. PubMed DOI

Boinot C., Jollivet Souchet M., Ferru-Clément R., Becq F. Searching for combinations of small-molecule correctors to restore f508del-cystic fibrosis transmembrane conductance regulator function and processing. J. Pharmacol. Exp. Ther. 2014;350:624–634. doi: 10.1124/jpet.114.214890. PubMed DOI

Billet A., Froux L., Hanrahan J.W., Becq F. Development of Automated Patch Clamp Technique to Investigate CFTR Chloride Channel Function. Front. Pharmacol. 2017;8:195. doi: 10.3389/fphar.2017.00195. PubMed DOI PMC

Graeber S.Y., Vitzthum C., Pallenberg S.T., Naehrlich L., Stahl M., Rohrbach A., Drescher M., Minso R., Ringshausen F.C., Rueckes-Nilges C., et al. Effects of Elexacaftor/Tezacaftor/Ivacaftor Therapy on CFTR Function in Patients with Cystic Fibrosis and One or Two F508del Alleles. Am. J. Respir. Crit. Care Med. 2022;205:540–549. doi: 10.1164/rccm.202110-2249OC. PubMed DOI

Szczesniak R., Heltshe S.L., Stanojevic S., Mayer-Hamblett N. Use of FEV1 in cystic fibrosis epidemiologic studies and clinical trials: A statistical perspective for the clinical researcher. J. Cyst. Fibros. 2017;16:318–326. doi: 10.1016/j.jcf.2017.01.002. PubMed DOI PMC

Greaves R.F., Jolly L., Massie J., Scott S., Wiley V.C., Metz M.P., Mackay R.J., Australasian Association of Clinical Biochemists Sweat Test Working Party in association with the Royal Australasian College of Pathologists Quality Assurance Programs Laboratory performance of sweat conductivity for the screening of cystic fibrosis. Clin. Chem. Lab. Med. 2018;28:554–559. doi: 10.1515/cclm-2017-0530. PubMed DOI

Bene Z., Fejes Z., Macek M., Jr., Amaral M.D., Balogh I., Nagy B., Jr. Laboratory biomarkers for lung disease severity and progression in cystic fibrosis. Clin. Chim. Acta. 2020;508:277–286. doi: 10.1016/j.cca.2020.05.015. PubMed DOI

Jarosz-Griffiths H.H., Scambler T., Wong C.H., Lara-Reyna S., Holbrook J., Martinon F., Savic S., Whitaker P., Etherington C., Spoletini G., et al. Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis. Elife. 2020;9:e54556 pii. doi: 10.7554/eLife.54556. PubMed DOI PMC

García M.S., Madrid-Carbajal C.J., Peláez A., Moreno R.M.G., Alonso E.F., García B.P., Punter R.M.G., Ancochea J., Bachiller J.M.E., Ruiz J.D.H., et al. The Role of Triple CFTR Modulator Therapy in Reducing Systemic Inflammation in Cystic Fibrosis. Lung. 2025;203:55. doi: 10.1007/s00408-025-00806-6. PubMed DOI

Maher R.E., Cytlak-Chaudhuri U.M., Aleem S., Barry P., Brice D.P., Caamaño Gutiérrez E., Driver K., Emmott E., Rothwell A., Smith E., et al. Effect of elexacaftor/tezacaftor/ivacaftor on systemic inflammation in cystic fibrosis. Thorax. 2025 doi: 10.1136/thorax-2024-222242. Online ahead of print . PubMed DOI PMC

Carnovale V., Scialò F., Gelzo M., Iacotucci P., Amato F., Zarrilli F., Celardo A., Castaldo G., Corso G. Cystic Fibrosis Patients with F508del/Minimal Function Genotype: Laboratory and Nutritional Evaluations after One Year of Elexacaftor/Tezacaftor/Ivacaftor Treatment. J. Clin. Med. 2022;11:6900. doi: 10.3390/jcm11236900. PubMed DOI PMC

Salvatore D., Pepe A. Cystic Fibrosis Transmembrane Conductance Regulator Modulators in Cystic Fibrosis: A Review of Registry-Based Evidence. J. Clin. Med. 2025;14:3978. doi: 10.3390/jcm14113978. PubMed DOI PMC

Schmidt H., Höpfer L.M., Wohlgemuth L., Knapp C.L., Mohamed A.O.K., Stukan L., Münnich F., Hüsken D., Koller A.S., Stratmann A.E.P., et al. Multimodal analysis of granulocytes, monocytes, and platelets in patients with cystic fibrosis before and after Elexacaftor-Tezacaftor-Ivacaftor treatment. Front. Immunol. 2023;14:1180282. doi: 10.3389/fimmu.2023.1180282. PubMed DOI PMC

Capraro M., Pedrazzi M., De Tullio R., Manfredi M., Cresta F., Castellani C., Averna M. Modulation of Plasmatic Matrix Metalloprotease 9: A Promising New Tool for Understanding the Variable Clinical Responses of Patients with Cystic Fibrosis to Cystic Fibrosis Transmembrane Conductance Regulator Modulators. Int. J. Mol. Sci. 2023;24:13384. doi: 10.3390/ijms241713384. PubMed DOI PMC

Tümmler B. Post-approval studies with the CFTR modulators Elexacaftor-Tezacaftor-Ivacaftor. Front. Pharmacol. 2023;14:1158207. doi: 10.3389/fphar.2023.1158207. PubMed DOI PMC

Liu J., Bihler H., Farinha C.M., Awatade N.T., Romão A.M., Mercadante D., Cheng Y., Musisi I., Jantarajit W., Wang Y., et al. Partial rescue of F508del-cystic fibrosis transmembrane conductance regulator channel gating with modest improvement of protein processing, but not stability, by a dual-acting small molecule. Br. J. Pharmacol. 2018;175:1017–1038. doi: 10.1111/bph.14141. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...