Polymer Nanomedicines with pH-Triggered Pirarubicin Release: Revealing the Role of Carrier Hydrophilicity and Release Kinetics in Anticancer Performance
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40947885
PubMed Central
PMC12522147
DOI
10.1021/acs.biomac.5c01344
Knihovny.cz E-zdroje
- MeSH
- doxorubicin * analogy a deriváty chemie farmakologie farmakokinetika aplikace a dávkování MeSH
- hydrofobní a hydrofilní interakce MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nanomedicína MeSH
- nosiče léků * chemie MeSH
- polymery * chemie MeSH
- protinádorové látky * chemie farmakologie MeSH
- uvolňování léčiv MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- doxorubicin * MeSH
- nosiče léků * MeSH
- pirarubicin MeSH Prohlížeč
- polymery * MeSH
- protinádorové látky * MeSH
The therapeutic efficacy of antitumor nanomedicines is influenced by numerous factors, with the most critical being the selection of an appropriate biomaterial and the use of suitable stimulus-responsive linkers. The chosen biomaterial must be biocompatible and capable of binding the drug via a linker that facilitates selective release and activation of the therapeutic effect, specifically within tumor tissue. In this study, we designed, synthesized, and compared the physicochemical and biological properties of various polymer nanomedicines, each bearing pirarubicin conjugated to water-soluble and biocompatible methacrylamide-based copolymers through pH-sensitive hydrazone bonds. Our findings indicate that the hydrophobicity and length of the linker near the hydrazone bond are crucial factors influencing the treatment efficacy of the nanomedicines. Conjugates with aminohexanoyl linkers exhibited superior drug release and enhanced antitumor activity compared with those with shorter linkers. Overall, our study highlights that the rate of drug release, governed by the linker structure, plays a pivotal role in therapeutic efficacy, while the hydrophilicity of the polymer backbone has a lesser impact.
Zobrazit více v PubMed
Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R.. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116(9):5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI
Kopeček J., Yang J.. Polymer Nanomedicines. Adv. Drug Delivery Rev. 2020;156:40–64. doi: 10.1016/j.addr.2020.07.020. PubMed DOI PMC
Maeda H., Nakamura H., Fang J.. The EPR Effect for Macromolecular Drug Delivery to Solid Tumors: Improvement of Tumor Uptake, Lowering of Systemic Toxicity, and Distinct Tumor Imaging in Vivo. Adv. Drug Delivery Rev. 2013;65(1):71–79. doi: 10.1016/j.addr.2012.10.002. PubMed DOI
Kopeček J., Kopečková P.. HPMA Copolymers: Origins, Early Developments, Present, and Future. Adv. Drug Delivery Rev. 2010;62(2):122–149. doi: 10.1016/j.addr.2009.10.004. PubMed DOI PMC
Chen X., Parelkar S. S., Henchey E., Schneider S., Emrick T.. PolyMPC–Doxorubicin Prodrugs. Bioconjugate Chem. 2012;23(9):1753–1763. doi: 10.1021/bc200667s. PubMed DOI
Chen K., Liao S., Guo S., Zheng X., Wang B., Duan Z., Zhang H., Gong Q., Luo K.. Multistimuli-Responsive PEGylated Polymeric Bioconjugate-Based Nano-Aggregate for Cancer Therapy. Chem. Eng. J. 2020;391(August 2019):123543. doi: 10.1016/j.cej.2019.123543. DOI
Pytlíková S., Pechar M., Chytil P., Studenovský M., Pola R., Kotrchová L., Konefał R., Čtveráčková L., Laga R., Pankrác J., Gao S., Jiang B., Yang K., Fang J., Filipová M., Etrych T.. Highly Hydrophilic Methacrylamide-Based Copolymers as Precursors for Polymeric Nanomedicines Containing Anthracyclines. Eur. Polym. J. 2024;205(January):112756. doi: 10.1016/j.eurpolymj.2024.112756. DOI
Krakovičová H., Etrych T., Ulbrich K.. HPMA-Based Polymer Conjugates with Drug Combination. Eur. J. Pharm. Sci. 2009;37:405. doi: 10.1016/j.ejps.2009.03.011. PubMed DOI
Wang Y., Gu Z., Wang W., Liu S. L.. Progress in Researches for PH-Sensitive Polymer with Ketal (Acetal) Bonds Used as Drug Carriers. Chin. J. New Drugs. 2015;24:782.
Zhai Y., Zhou X., Zhang Z., Zhang L., Wang D., Wang X., Sun W.. Design, Synthesis, and Characterization of Schiffbase Bond-Linked PH-Responsive Doxorubicin Prodrug Based on Functionalized MPEG-PCL for Targeted Cancer Therapy. Polymers. 2018;10:1127. doi: 10.3390/polym10101127. PubMed DOI PMC
Zhang P., Wu J., Xiao F., Zhao D., Luan Y.. Disulfide Bond Based Polymeric Drug Carriers for Cancer Chemotherapy and Relevant Redox Environments in Mammals. Med. Res. Rev. 2018;38:1485. doi: 10.1002/med.21485. PubMed DOI
Pechar M., Pola R., Studenovský M., Bláhová M., Grosmanová E., Dydowiczová A., Filipová M., Islam R., Gao S., Fang J., Etrych T.. Polymer Nanomedicines with Enzymatically Triggered Activation: A Comparative Study of in Vitro and in Vivo Anti-Cancer Efficacy Related to the Spacer Structure. Nanomedicine. 2022;46:102597. doi: 10.1016/j.nano.2022.102597. PubMed DOI
Yi X., Zhang Q., Dong H., Zhao D., Xu J. Q., Zhuo R., Li F.. One-Pot Synthesis of Crosslinked Amphiphilic Polycarbonates as Stable but Reduction-Sensitive Carriers for Doxorubicin Delivery. Nanotechnology. 2015;26:395602. doi: 10.1088/0957-4484/26/39/395602. PubMed DOI
Gao S.-Q., Lu Z.-R., Petri B., Kopečková P., Kopeček J., Kopecková P., Kopecek J.. Colon-Specific 9-Aminocamptothecin-HPMA Copolymer Conjugates Containing a 1,6-Elimination Spacer. J. Controlled Release. 2006;110(2):323–331. doi: 10.1016/j.jconrel.2005.10.004. PubMed DOI
Pola R., Pokorná E., Vočková P., Böhmová E., Pechar M., Karolová J., Pankrác J., Šefc L., Helman K., Trněný M., Etrych T., Klener P.. Cytarabine Nanotherapeutics with Increased Stability and Enhanced Lymphoma Uptake for Tailored Highly Effective Therapy of Mantle Cell Lymphoma. Acta Biomater. 2021;119:349–359. doi: 10.1016/j.actbio.2020.11.014. PubMed DOI
Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B.. Polymeric Drugs Based on Conjugates of Synthetic and Natural Macromolecules. J. Controlled Release. 2000;64(1–3):63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI
Huang X., Du F., Ju R., Li Z.. Novel Acid-Labile, Thermoresponsive Poly(Methacrylamide)s with Pendent Ortho Ester Moieties. Macromol. Rapid Commun. 2007;28(5):597–603. doi: 10.1002/marc.200600798. DOI
Ulbrich K., Etrych T., Chytil P., Jelínková M., Říhová B.. Antibody-Targeted Polymer-Doxorubicin Conjugates with PH-Controlled Activation. J. Drug Targeting. 2004;12:477. doi: 10.1080/10611860400011869. PubMed DOI
Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T.. N -(2-Hydroxypropyl)Methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules. 2018;19(10):4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI
Luo X., Liu J., Liu G., Wang R., Liu Z., Li A.. Manipulation of the Bioactivity of Glucose Oxidase via Raft-controlled Surface Modification. J. Polym. Sci., Part A: Polym. Chem. 2012;50(14):2786–2793. doi: 10.1002/pola.26067. DOI
Ishitake K., Satoh K., Kamigaito M., Okamoto Y.. Stereogradient Polymers Formed by Controlled/Living Radical Polymerization of Bulky Methacrylate Monomers. Angew. Chem., Int. Ed. 2009;48:1991. doi: 10.1002/anie.200805168. PubMed DOI
Rejmanová P., Labský J., Kopeček J.. Aminolyses of Monomeric and Polymeric 4-nitrophenyl Esters of N -methacryloylamino Acids. Die Makromol. Chem. 1977;178(8):2159–2168. doi: 10.1002/macp.1977.021780803. DOI
Drobník J., Kopeček J., Labský J., Rejmanová P., Exner J., Saudek V., Kálal J.. Enzymatic Cleavage of Side Chains of Synthetic Water-soluble Polymers. Die Makromol. Chem. 1976;177(10):2833–2848. doi: 10.1002/macp.1976.021771003. DOI
Perrier S., Takolpuckdee P., Mars C. A.. Reversible Addition-Fragmentation Chain Transfer Polymerization: End Group Modification for Functionalized Polymers and Chain Transfer Agent Recovery. Macromolecules. 2005;38(6):2033–2036. doi: 10.1021/ma047611m. DOI
Kracíková L., Ziółkowska N., Androvič L., Klimánková I., Červený D., Vít M., Pompach P., Konefał R., Janoušková O., Hrubý M., Jirák D., Laga R.. Phosphorus-Containing Polymeric Zwitterion: A Pioneering Bioresponsive Probe for 31P-Magnetic Resonance Imaging. Macromol. Biosci. 2022;22:2100523. doi: 10.1002/mabi.202100523. PubMed DOI
Nakamura H., Etrych T., Chytil P., Ohkubo M., Fang J., Ulbrich K., Maeda H.. Two Step Mechanisms of Tumor Selective Delivery of N-(2-Hydroxypropyl) Methacrylamide Copolymer Conjugated with Pirarubicin via an Acid-Cleavable Linkage. J. Controlled Release. 2014;174(1):81–87. doi: 10.1016/j.jconrel.2013.11.011. PubMed DOI
Cayot P., Tainturier G.. The Quantification of Protein Amino Groups by the Trinitrobenzenesulfonic Acid Method: A Reexamination. Anal. Biochem. 1997;249:184. doi: 10.1006/abio.1997.2161. PubMed DOI
Ren J., Jepson C. E., Nealy S. L., Kuhlmann C. J., Osuka S., Azolibe S. U., Blucas M. T., Nagaoka-Kamata Y., Kharlampieva E., Kamata M.. Site-Oriented Conjugation of Poly(2-Methacryloyloxyethyl Phosphorylcholine) for Enhanced Brain Delivery of Antibody. Front. Cell Dev. Biol. 2023;11:1214118. doi: 10.3389/fcell.2023.1214118. PubMed DOI PMC
Iwasaki Y., Ishihara K.. Cell Membrane-Inspired Phospholipid Polymers for Developing Medical Devices with Excellent Biointerfaces. Sci. Technol. Adv. Mater. 2012;13:064101. doi: 10.1088/1468-6996/13/6/064101. PubMed DOI PMC