Feasibility and accuracy of the ASERT digital questionnaire in mood tracking for a longitudinal research study on bipolar disorder
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40979181
PubMed Central
PMC12445695
DOI
10.1016/j.xjmad.2025.100145
PII: S2950-0044(25)00042-2
Knihovny.cz E-zdroje
- Klíčová slova
- Bipolar disorder, Depression, Longitudinal studies, Mania, Mood tracking,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: It is challenging for bipolar disorder (BD) studies to capture multiple mood states within a participant at in-person visits. Mood tracking could aid scheduling, but evaluation is usually done using clinical assessments inconvenient for participants to undergo often. However, frequent assessments are necessary to capture dynamic mood changes typical of BD. The Aktibipo Self-Rating Questionnaire (ASERT) is a simple, self-report mood survey. We examined the utility of collecting the ASERT weekly to assess mood changes and schedule follow-up visits. METHODS: Sixty-one participants with BD completed the ASERT and were administered the Montgomery-Åsberg Depression Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) during a baseline visit. Participants were then sent weekly text messages with an ASERT survey link. If participants exhibited at least a 5-point (later 8-point) change from baseline on either the mania or depression subscale, they were called and administered the MADRS or YMRS. A 10-point change on either phone-delivered clinical scale prompted a follow-up visit. Associations between ASERT subscales and clinical scales were evaluated using Spearman's correlation and robust regression. RESULTS: Mean completion rate was 94.8 % and median completion time was 67 s. The ASERT depression and mania subscales correlated with the MADRS and YMRS at baseline and all follow-up time points. Our screening method aided scheduling, with 15 of 19 participants exhibiting a 10-point change or greater on the MADRS and/or YMRS at Visit 2. CONCLUSIONS: The ASERT can be feasibly deployed to track mood and can help schedule follow-up assessments in BD longitudinal studies.
Carver College of Medicine The University of Iowa United States
Department of Biomedical Engineering The University of Iowa IA United States
Department of Biostatistics University of Iowa IA United States
Department of Epidemiology The University of Iowa United States
Department of Molecular Physiology and Biophysics The University of Iowa IA United States
Department of Neurosurgery The University of Iowa IA United States
Department of Psychiatry The University of Iowa United States
Department of Psychiatry University of Ottawa Ontario Canada
Department of Radiology The University of Iowa United States
Iowa Neuroscience Institute The University of Iowa United States
Mindpax s r o Prague Czech Republic
National Institute of Mental Health Klecany Czech Republic
Ottawa Hospital Research Institute Ontario Canada
School of Epidemiology and Public Health University of Ottawa Ontario Canada
Zobrazit více v PubMed
Chakrabarti S. Bipolar disorder in the international classification of Diseases-Eleventh version: a review of the changes, their basis, and usefulness. World J Psychiatry. 2022;12(12):1335–1355. doi: 10.5498/wjp.v12.i12.1335. PubMed DOI PMC
Montgomery S.A., Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–389. doi: 10.1192/bjp.134.4.382. PubMed DOI
Young R.C., Biggs J.T., Ziegler V.E., Meyer D.A. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–435. doi: 10.1192/bjp.133.5.429. PubMed DOI
Sagorac Gruichich T., David Gomez J.C., Zayas-Cabán G., McInnis M.G., Cochran A.L. A digital self-report survey of mood for bipolar disorder. Bipolar Disord. 2021;23(8):810–820. doi: 10.1111/bdi.13058. PubMed DOI PMC
Tsanas A., Saunders K.E., Bilderbeck A.C., Palmius N., Osipov M., Clifford G.D., et al. Daily longitudinal self-monitoring of mood variability in bipolar disorder and borderline personality disorder. J Affect Disord. 2016;205:225–233. doi: 10.1016/j.jad.2016.06.065. PubMed DOI PMC
Anýž J., Bakštein E., Dally A., Kolenič M., Hlinka J., Hartmannová T., et al. Validity of the aktibipo Self-rating questionnaire for the digital self-assessment of mood and relapse detection in patients with bipolar disorder: instrument validation study. JMIR Ment Health. 2021;8(8) doi: 10.2196/26348. PubMed DOI PMC
Faurholt-Jepsen M., Vinberg M., Frost M., Christensen E.M., Bardram J.E., Kessing L.V. Smartphone data as an electronic biomarker of illness activity in bipolar disorder. Bipolar Disord. 2015;17(7):715–728. doi: 10.1111/bdi.12332. PubMed DOI
Ryan K.A., Babu P., Easter R., Saunders E., Lee A.J., Klasnja P., et al. A smartphone app to monitor mood symptoms in bipolar disorder: development and usability study. JMIR Ment Health. 2020;7(9) doi: 10.2196/19476. PubMed DOI PMC
Faurholt-Jepsen M., Ritz C., Frost M., Mikkelsen R.L., Margrethe Christensen E., Bardram J., et al. Mood instability in bipolar disorder type I versus type II-continuous daily electronic self-monitoring of illness activity using smartphones. J Affect Disord. 2015;186:342–349. doi: 10.1016/j.jad.2015.06.026. PubMed DOI
McKnight R.F., Bilderbeck A.C., Miklowitz D.J., Hinds C., Goodwin G.M., Geddes J.R. Longitudinal mood monitoring in bipolar disorder: course of illness as revealed through a short messaging service. J Affect Disord. 2017;223:139–145. doi: 10.1016/j.jad.2017.07.029. PubMed DOI
Pellegrini A.M., Huang E.J., Staples P.C., Hart K.L., Lorme J.M., Brown H.E., et al. Estimating longitudinal depressive symptoms from smartphone data in a transdiagnostic cohort. Brain Behav. 2022;12(2) doi: 10.1002/brb3.2077. PubMed DOI PMC
Salsman J.M., Butt Z., Pilkonis P.A., Cyranowski J.M., Zill N., Hendrie H.C., et al. Emotion assessment using the NIH toolbox. Neurology. 2013;80(11 ement 3):S76–S86. doi: 10.1212/WNL.0b013e3182872e11. PubMed DOI PMC
Weintraub S., Dikmen S.S., Heaton R.K., Tulsky D.S., Zelazo P.D., Bauer P.J., et al. Cognition assessment using the NIH toolbox. Neurology. 2013;80(11_ement_3):S54–S64. PubMed PMC
Posner K., Brown G.K., Stanley B., Brent D.A., Yershova K.V., Oquendo M.A., et al. The Columbia–Suicide severity rating scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am J Psychiatry. 2011;168(12):1266–1277. doi: 10.1176/appi.ajp.2011.10111704. PubMed DOI PMC
Beck A.T., Epstein N., Brown G., Steer R. Beck anxiety inventory. J Consult Clin Psychol. 1993 PubMed
Harris P.A., Taylor R., Thielke R., Payne J., Gonzalez N., Conde J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010. PubMed DOI PMC
Harris P.A., Taylor R., Minor B.L., Elliott V., Fernandez M., O'Neal L., et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95 doi: 10.1016/j.jbi.2019.103208. PubMed DOI PMC
Team Posit. Posit Software. PBC; Boston, MA: 2023. RStudio: integrated development environment for R. [software]
Core Team R. Version 4.3.1 [software] R Foundation for Statistical Computing; Vienna, Austria: 2023. R: a language and environment for statistical computing.
Revelle W. R package version 2.4.12 [software] Procedures for Psychological, Psychometric, and Personality Research; Evanston, Illinois: Northwestern University: 2024. Psych.
Spearman C. The proof and measurement of association between two things. Am J Psychol. 1904;15(1):72–101. doi: 10.2307/1412159. PubMed DOI
Wager T.D., Keller M.C., Lacey S.C., Jonides J. Increased sensitivity in neuroimaging analyses using robust regression. NeuroImage. 2005;26(1):99–113. doi: 10.1016/j.neuroimage.2005.01.011. PubMed DOI
Venables W.N., Ripley B.D. fourth ed. Springer; New York: 2002. (Modern Applied Statistics with S).
Maechler M. Utilities from 'Seminar fuer Statistik' ETH Zurich. R package version .1- [software] 2024. pp. 1–19.
Wickham H., Averick M., Bryan J., Chang W., McGowan L., François R., et al. Welcome to the tidyverse. J Open Source Softw. 2019;4(43):1686.
Robinson D. fuzzyjoin: Join Tables Together on Inexact Matching. R package version 0.1.6 [software]. 2020.
Dawson C. Ggprism: a 'ggplot2' extension inspired by 'GraphPad prism. R Package Version 1 0 5. 2024
Heinzen E., Sinnwell J., Atkinson E., Gunderson T., Dougherty G. arsenal: An Arsenal of 'R' Functions for Large-Scale Statistical Summaries. R package version 3.6.3 [software]. 2021.
Bilderbeck A.C., Atkinson L.Z., McMahon H.C., Voysey M., Simon J., Price J., et al. Psychoeducation and online mood tracking for patients with bipolar disorder: a randomised controlled trial. J Affect Disord. 2016;205:245–251. doi: 10.1016/j.jad.2016.06.064. PubMed DOI
Bopp J.M., Miklowitz D.J., Goodwin G.M., Stevens W., Rendell J.M., Geddes J.R. The longitudinal course of bipolar disorder as revealed through weekly text messaging: a feasibility study. Bipolar Disord. 2010;12(3):327–334. doi: 10.1111/j.1399-5618.2010.00807.x. PubMed DOI PMC
Schwartz S., Schultz S., Reider A., Saunders E.F.H. Daily mood monitoring of symptoms using smartphones in bipolar disorder: a pilot study assessing the feasibility of ecological momentary assessment. J Affect Disord. 2016;191:88–93. doi: 10.1016/j.jad.2015.11.013. PubMed DOI PMC
Kost R.G., de, Rosa J.C. Impact of survey length and compensation on validity, reliability, and sample characteristics for Ultrashort-, Short-, and Long-Research participant perception surveys. J Clin Transl Sci. 2018;2(1):31–37. doi: 10.1017/cts.2018.18. PubMed DOI PMC
Cassidy F. Insight in bipolar disorder: relationship to episode subtypes and symptom dimensions. Neuropsychiatr Dis Treat. 2010;6:627–631. doi: 10.2147/ndt.S12663. PubMed DOI PMC
Tondo L., Vázquez G.H., Baldessarini R.J. Depression and mania in bipolar disorder. Curr Neuropharmacol. 2017;15(3):353–358. doi: 10.2174/1570159x14666160606210811. PubMed DOI PMC