Validity of the Aktibipo Self-rating Questionnaire for the Digital Self-assessment of Mood and Relapse Detection in Patients With Bipolar Disorder: Instrument Validation Study

. 2021 Aug 09 ; 8 (8) : e26348. [epub] 20210809

Status PubMed-not-MEDLINE Jazyk angličtina Země Kanada Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34383689
Odkazy

PubMed 34383689
PubMed Central PMC8386400
DOI 10.2196/26348
PII: v8i8e26348
Knihovny.cz E-zdroje

BACKGROUND: Self-reported mood is a valuable clinical data source regarding disease state and course in patients with mood disorders. However, validated, quick, and scalable digital self-report measures that can also detect relapse are still not available for clinical care. OBJECTIVE: In this study, we aim to validate the newly developed ASERT (Aktibipo Self-rating) questionnaire-a 10-item, mobile app-based, self-report mood questionnaire consisting of 4 depression, 4 mania, and 2 nonspecific symptom items, each with 5 possible answers. The validation data set is a subset of the ongoing observational longitudinal AKTIBIPO400 study for the long-term monitoring of mood and activity (via actigraphy) in patients with bipolar disorder (BD). Patients with confirmed BD are included and monitored with weekly ASERT questionnaires and monthly clinical scales (Montgomery-Åsberg Depression Rating Scale [MADRS] and Young Mania Rating Scale [YMRS]). METHODS: The content validity of the ASERT questionnaire was assessed using principal component analysis, and the Cronbach α was used to assess the internal consistency of each factor. The convergent validity of the depressive or manic items of the ASERT questionnaire with the MADRS and YMRS, respectively, was assessed using a linear mixed-effects model and linear correlation analyses. In addition, we investigated the capability of the ASERT questionnaire to distinguish relapse (YMRS≥15 and MADRS≥15) from a nonrelapse (interepisode) state (YMRS<15 and MADRS<15) using a logistic mixed-effects model. RESULTS: A total of 99 patients with BD were included in this study (follow-up: mean 754 days, SD 266) and completed an average of 78.1% (SD 18.3%) of the requested ASERT assessments (completion time for the 10 ASERT questions: median 24.0 seconds) across all patients in this study. The ASERT depression items were highly associated with MADRS total scores (P<.001; bootstrap). Similarly, ASERT mania items were highly associated with YMRS total scores (P<.001; bootstrap). Furthermore, the logistic mixed-effects regression model for scale-based relapse detection showed high detection accuracy in a repeated holdout validation for both depression (accuracy=85%; sensitivity=69.9%; specificity=88.4%; area under the receiver operating characteristic curve=0.880) and mania (accuracy=87.5%; sensitivity=64.9%; specificity=89.9%; area under the receiver operating characteristic curve=0.844). CONCLUSIONS: The ASERT questionnaire is a quick and acceptable mood monitoring tool that is administered via a smartphone app. The questionnaire has a good capability to detect the worsening of clinical symptoms in a long-term monitoring scenario.

Zobrazit více v PubMed

Vieta E, Berk M, Schulze TG, Carvalho AF, Suppes T, Calabrese JR, Gao K, Miskowiak KW, Grande I. Bipolar disorders. Nat Rev Dis Primers. 2018 Dec 8;4:18008. doi: 10.1038/nrdp.2018.8. PubMed DOI

The Global Burden of Disease : 2004 Update. Geneva, Switzerland: World Health Organization; 2008.

Schouby Bock M, Nørgaard Van Achter O, Dines D, Simonsen Speed M, Correll CU, Mors O, Østergaard SD, Kølbæk P. Clinical validation of the self-reported Glasgow Antipsychotic Side-effect Scale using the clinician-rated UKU side-effect scale as gold standard reference. J Psychopharmacol. 2020 Aug;34(8):820–8. doi: 10.1177/0269881120916122. PubMed DOI

Correll CU, Kishimoto T, Nielsen J, Kane JM. Quantifying clinical relevance in the treatment of schizophrenia. Clin Ther. 2011 Dec;33(12):B16–39. doi: 10.1016/j.clinthera.2011.11.016. PubMed DOI PMC

Guo T, Xiang Y, Xiao L, Hu C, Chiu HF, Ungvari GS, Correll CU, Lai KY, Feng L, Geng Y, Feng Y, Wang G. Measurement-based care versus standard care for major depression: a randomized controlled trial with blind raters. Am J Psychiatry. 2015 Oct;172(10):1004–13. doi: 10.1176/appi.ajp.2015.14050652. PubMed DOI

Østergaard SD, Opler MG, Correll CU. Bridging the measurement gap between research and clinical care in schizophrenia: positive and negative syndrome scale-6 (panss-6) and other assessments based on the simplified negative and positive symptoms interview (SNAPSI) Innov Clin Neurosci. 2017 Dec 1;14(11-12):68–72. PubMed PMC

Tohen M, Frank E, Bowden CL, Colom F, Ghaemi SN, Yatham LN, Malhi GS, Calabrese JR, Nolen WA, Vieta E, Kapczinski F, Goodwin GM, Suppes T, Sachs GS, Chengappa KR, Grunze H, Mitchell PB, Kanba S, Berk M. The International Society for Bipolar Disorders (ISBD) Task Force report on the nomenclature of course and outcome in bipolar disorders. Bipolar Disord. 2009 Aug;11(5):453–73. doi: 10.1111/j.1399-5618.2009.00726.x. PubMed DOI

De Crescenzo F, Economou A, Sharpley AL, Gormez A, Quested DJ. Actigraphic features of bipolar disorder: a systematic review and meta-analysis. Sleep Med Rev. 2017 Jun;33:58–69. doi: 10.1016/j.smrv.2016.05.003. PubMed DOI

Schneider J, Bakštein E, Kolenič M, Vostatek P, Correll CU, Novák D, Španiel F. Motor activity patterns can distinguish between interepisode bipolar disorder patients and healthy controls. CNS Spectr. 2020 Sep 4;:1–11. doi: 10.1017/S1092852920001777. PubMed DOI

Cho C, Lee T, Kim M, In HP, Kim L, Lee H. Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: prospective observational cohort study. J Med Internet Res. 2019 Apr 17;21(4):e11029. doi: 10.2196/11029. PubMed DOI PMC

Kim H, Lee S, Lee S, Hong S, Kang H, Kim N. Depression prediction by using ecological momentary assessment, actiwatch data, and machine learning: observational study on older adults living alone. JMIR Mhealth Uhealth. 2019 Oct 16;7(10):e14149. doi: 10.2196/14149. PubMed DOI PMC

Cerimele JM, Goldberg SB, Miller CJ, Gabrielson SW, Fortney JC. Systematic review of symptom assessment measures for use in measurement-based care of bipolar disorders. Psychiatr Serv. 2019 May 1;70(5):396–408. doi: 10.1176/appi.ps.201800383. PubMed DOI PMC

mHealth: new horizons for health through mobile technologies: second global survey on eHealth. Geneva, Switzerland: World Health Organization; 2011.

Taylor K, Silver L. Smartphone Ownership Is Growing Rapidly Around the World, but Not Always Equally. Pew Research Center. 2019. [2020-10-20]. https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/

Rajagopalan A, Shah P, Zhang MW, Ho RC. Digital platforms in the assessment and monitoring of patients with bipolar disorder. Brain Sci. 2017 Nov 12;7(11):150. doi: 10.3390/brainsci7110150. PubMed DOI PMC

Saunders KE, Bilderbeck AC, Panchal P, Atkinson LZ, Geddes JR, Goodwin GM. Experiences of remote mood and activity monitoring in bipolar disorder: a qualitative study. Eur Psychiatry. 2017 Mar;41:115–21. doi: 10.1016/j.eurpsy.2016.11.005. PubMed DOI PMC

Beiwinkel T, Kindermann S, Maier A, Kerl C, Moock J, Barbian G, Rössler W. Using smartphones to monitor bipolar disorder symptoms: a pilot study. JMIR Ment Health. 2016;3(1):e2. doi: 10.2196/mental.4560. PubMed DOI PMC

Huang C, Yang Y, Chen M, Lee I, Yeh T, Yang M. Patient- and family-rated scale for bipolar disorder symptoms: Internal State Scale. Kaohsiung J Med Sci. 2003 Apr;19(4):170–6. doi: 10.1016/S1607-551X(09)70467-X. PubMed DOI PMC

Henry C, M'Bailara K, Mathieu F, Poinsot R, Falissard B. Construction and validation of a dimensional scale exploring mood disorders: MAThyS (Multidimensional Assessment of Thymic States) BMC Psychiatry. 2008;8:82. doi: 10.1186/1471-244X-8-82. PubMed DOI PMC

Adler M, Liberg B, Andersson S, Isacsson G, Hetta J. Development and validation of the Affective Self Rating Scale for manic, depressive, and mixed affective states. Nord J Psychiatry. 2008;62(2):130–5. doi: 10.1080/08039480801960354. PubMed DOI

Denicoff KD, Leverich GS, Nolen WA, Rush AJ, McElroy SL, Keck PE, Suppes T, Altshuler LL, Kupka R, Frye MA, Hatef J, Brotman MA, Post RM. Validation of the prospective NIMH-Life-Chart Method (NIMH-LCM-p) for longitudinal assessment of bipolar illness. Psychol Med. 2000 Nov;30(6):1391–7. PubMed

Whybrow PC, Grof P, Gyulai L, Rasgon N, Glenn T, Bauer M. The electronic assessment of the longitudinal course of bipolar disorder: the ChronoRecord software. Pharmacopsychiatry. 2003 Nov;36 Suppl 3:S244–9. doi: 10.1055/s-2003-45137. PubMed DOI

Tsanas A, Saunders KE, Bilderbeck AC, Palmius N, Osipov M, Clifford GD, Goodwin. De Vos M. Daily longitudinal self-monitoring of mood variability in bipolar disorder and borderline personality disorder. J Affect Disord. 2016 Nov 15;205:225–33. doi: 10.1016/j.jad.2016.06.065. PubMed DOI PMC

Hidalgo-Mazzei D, Mateu A, Reinares M, Murru A, Del MB, Varo C, Valentí M, Undurraga J, Strejilevich S, Sánchez-Moreno J, Vieta E, Colom F. Psychoeducation in bipolar disorder with a SIMPLe smartphone application: feasibility, acceptability and satisfaction. J Affect Disord. 2016 Aug;200:58–66. doi: 10.1016/j.jad.2016.04.042. PubMed DOI

Hidalgo-Mazzei D, Reinares M, Mateu A, Nikolova VL, Bonnín CD, Samalin L, García-Estela A, Pérez-Solá V, Young AH, Strejilevich S, Vieta E, Colom F. OpenSIMPLe: a real-world implementation feasibility study of a smartphone-based psychoeducation programme for bipolar disorder. J Affect Disord. 2018 Dec 1;241:436–45. doi: 10.1016/j.jad.2018.08.048. PubMed DOI

Aktibipo SElf-RaTing (ASERT) Questionnaire. Mindpax. 2017. [2020-10-20]. https://www.mindpax.me/assets/docs/ASERT-questionnaireCZ-EN-DE.pdf.

Mindpax. [2020-10-20]. www.mindpax.me.

Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979 Apr;134:382–9. PubMed

Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978 Nov;133:429–35. PubMed

AKTIBIPO400 study. [2020-11-26]. https://bipo.nudz.cz.

Sachs GS. Strategies for improving treatment of bipolar disorder: integration of measurement and management. Acta Psychiatr Scand Suppl. 2004;(422):7–17. doi: 10.1111/j.1600-0447.2004.00409.x. PubMed DOI

Aiken CB, Weisler RH, Sachs GS. The Bipolarity Index: a clinician-rated measure of diagnostic confidence. J Affect Disord. 2015 May 15;177:59–64. doi: 10.1016/j.jad.2015.02.004. PubMed DOI

Jolliffe IT. Principal Component Analysis. New York, USA: Springer-Verlag; 2002. p. 488.

Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951 Sep;16(3):297–334. doi: 10.1007/bf02310555. DOI

Pinheiro J, Bates D. Mixed-Effects Models in S and S-PLUS. New York, USA: Springer; 2000. p. 528.

Craighead WE, Evans DD. Factor analysis of the montgomery-asberg depression rating scale. Depression. 1996;4(1):31–3. doi: 10.1002/(SICI)1522-7162(1996)4:1<31::AID-DEPR3>3.0.CO;2-I. PubMed DOI

McIntyre RS, Weiller E, Zhang P, Weiss C. Brexpiprazole as adjunctive treatment of major depressive disorder with anxious distress: results from a post-hoc analysis of two randomised controlled trials. J Affect Disord. 2016 Sep 1;201:116–23. doi: 10.1016/j.jad.2016.05.013. PubMed DOI

Cassano GB, Rucci P, Benvenuti A, Miniati M, Calugi S, Maggi L, Pini S, Kupfer DJ, Maj M, Fagiolini A, Frank E. The role of psychomotor activation in discriminating unipolar from bipolar disorders: a classification-tree analysis. J Clin Psychiatry. 2012 Jan;73(1):22–8. doi: 10.4088/JCP.11m06946. PubMed DOI

MacKinnon DF, Zandi PP, Gershon ES, Nurnberger JI, DePaulo JR. Association of rapid mood switching with panic disorder and familial panic risk in familial bipolar disorder. Am J Psychiatry. 2003 Sep;160(9):1696–8. doi: 10.1176/appi.ajp.160.9.1696. PubMed DOI

Perlis RH, Ostacher MJ, Patel JK, Marangell LB, Zhang H, Wisniewski SR, Ketter TA, Miklowitz DJ, Otto MW, Gyulai L, Reilly-Harrington NA, Nierenberg AA, Sachs GS, Thase ME. Predictors of recurrence in bipolar disorder: primary outcomes from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) Am J Psychiatry. 2006 Feb;163(2):217–24. doi: 10.1176/appi.ajp.163.2.217. PubMed DOI

Simon NM, Otto MW, Wisniewski SR, Fossey M, Sagduyu K, Frank E, Sachs GS, Nierenberg AA, Thase ME, Pollack MH. Anxiety disorder comorbidity in bipolar disorder patients: data from the first 500 participants in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) Am J Psychiatry. 2004 Dec;161(12):2222–9. doi: 10.1176/appi.ajp.161.12.2222. PubMed DOI

Ghaemi SN, Rosenquist KJ. Is insight in mania state-dependent?: a meta-analysis. J Nerv Ment Dis. 2004 Nov;192(11):771–5. doi: 10.1097/01.nmd.0000145036.76435.c3. PubMed DOI

Meyer TD, Crist N, La Rosa N, Ye B, Soares JC, Bauer IE. Are existing self-ratings of acute manic symptoms in adults reliable and valid?-a systematic review. Bipolar Disord. 2020 Sep;22(6):558–68. doi: 10.1111/bdi.12906. PubMed DOI

Eisner E, Drake R, Lobban F, Bucci S, Emsley R, Barrowclough C. Comparing early signs and basic symptoms as methods for predicting psychotic relapse in clinical practice. Schizophr Res. 2018 Feb;192:124–30. doi: 10.1016/j.schres.2017.04.050. PubMed DOI PMC

Španiel F, Vohlídka P, Kožený J, Novák T, Hrdlička J, Motlová L, Čermák J, Höschl C. The information technology aided relapse prevention programme in schizophrenia: an extension of a mirror-design follow-up. Int J Clin Pract. 2008 Dec;62(12):1943–6. doi: 10.1111/j.1742-1241.2008.01903.x. doi: 10.1111/j.1742-1241.2008.01903.x. PubMed DOI PMC

Španiel F, Hrdlička J, Novák T, Kožený J, Höschl C, Mohr P, Motlová LB. Effectiveness of the information technology-aided program of relapse prevention in schizophrenia (ITAREPS): a randomized, controlled, double-blind study. J Psychiatr Pract. 2012 Jul;18(4):269–80. doi: 10.1097/01.pra.0000416017.45591.c1. PubMed DOI

Barnett I, Torous J, Staples P, Sandoval L, Keshavan M, Onnela J. Relapse prediction in schizophrenia through digital phenotyping: a pilot study. Neuropsychopharmacology. 2018 Jul;43(8):1660–6. doi: 10.1038/s41386-018-0030-z. PubMed DOI PMC

Cochran AL, Schultz A, McInnis MG, Forger DB. A Comparison of Mathematical Models of Mood in Bipolar Disorder. Cham, UK: Springer; 2017. pp. 315–41.

Chang S, Chou T. A dynamical bifurcation model of bipolar disorder based on learned expectation and asymmetry in mood sensitivity. Comput Psychiatr. 2018 Dec;2:205–22. doi: 10.1162/cpsy_a_00021. PubMed DOI PMC

Faurholt-Jepsen M, Frost M, Ritz C, Christensen EM, Jacoby AS, Mikkelsen RL, Knorr U, Bardram JE, Vinberg M, Kessing LV. Daily electronic self-monitoring in bipolar disorder using smartphones - the MONARCA I trial: a randomized, placebo-controlled, single-blind, parallel group trial. Psychol Med. 2015 Oct;45(13):2691–704. doi: 10.1017/S0033291715000410. PubMed DOI

Faurholt-Jepsen M, Frost M, Christensen EM, Bardram JE, Vinberg M, Kessing LV. The effect of smartphone-based monitoring on illness activity in bipolar disorder: the MONARCA II randomized controlled single-blinded trial. Psychol Med. 2020 Apr 4;50(5):838–848. doi: 10.1017/S0033291719000710. PubMed DOI

Mühlbauer E, Bauer M, Ebner-Priemer U, Ritter P, Hill H, Beier F, Kleindienst N, Severus E. Effectiveness of smartphone-based ambulatory assessment (SBAA-BD) including a predicting system for upcoming episodes in the long-term treatment of patients with bipolar disorders: study protocol for a randomized controlled single-blind trial. BMC Psychiatry. 2018 Oct 26;18(1):349. doi: 10.1186/s12888-018-1929-y. PubMed DOI PMC

Tønning ML, Kessing LV, Bardram JE, Faurholt-Jepsen M. Methodological challenges in randomized controlled trials on smartphone-based treatment in psychiatry: systematic review. J Med Internet Res. 2019 Oct 27;21(10):e15362. doi: 10.2196/15362. PubMed DOI PMC

Galvin HK, DeMuro PR. Developments in privacy and data ownership in mobile health technologies, 2016-2019. Yearb Med Inform. 2020 Aug;29(1):32–43. doi: 10.1055/s-0040-1701987. PubMed DOI PMC

Bauer M, Glenn T, Geddes J, Gitlin M, Grof P, Kessing LV, Monteith S, Faurholt-Jepsen M, Severus E, Whybrow PC. Smartphones in mental health: a critical review of background issues, current status and future concerns. Int J Bipolar Disord. 2020 Jan 10;8(1):19. doi: 10.1186/s40345-019-0164-x. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...