Validity of the Aktibipo Self-rating Questionnaire for the Digital Self-assessment of Mood and Relapse Detection in Patients With Bipolar Disorder: Instrument Validation Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Kanada Médium electronic
Typ dokumentu časopisecké články
PubMed
34383689
PubMed Central
PMC8386400
DOI
10.2196/26348
PII: v8i8e26348
Knihovny.cz E-zdroje
- Klíčová slova
- bipolar disorder, ecological mood assessment, mobile application, mobile phone, relapse detection, symptom monitoring,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Self-reported mood is a valuable clinical data source regarding disease state and course in patients with mood disorders. However, validated, quick, and scalable digital self-report measures that can also detect relapse are still not available for clinical care. OBJECTIVE: In this study, we aim to validate the newly developed ASERT (Aktibipo Self-rating) questionnaire-a 10-item, mobile app-based, self-report mood questionnaire consisting of 4 depression, 4 mania, and 2 nonspecific symptom items, each with 5 possible answers. The validation data set is a subset of the ongoing observational longitudinal AKTIBIPO400 study for the long-term monitoring of mood and activity (via actigraphy) in patients with bipolar disorder (BD). Patients with confirmed BD are included and monitored with weekly ASERT questionnaires and monthly clinical scales (Montgomery-Åsberg Depression Rating Scale [MADRS] and Young Mania Rating Scale [YMRS]). METHODS: The content validity of the ASERT questionnaire was assessed using principal component analysis, and the Cronbach α was used to assess the internal consistency of each factor. The convergent validity of the depressive or manic items of the ASERT questionnaire with the MADRS and YMRS, respectively, was assessed using a linear mixed-effects model and linear correlation analyses. In addition, we investigated the capability of the ASERT questionnaire to distinguish relapse (YMRS≥15 and MADRS≥15) from a nonrelapse (interepisode) state (YMRS<15 and MADRS<15) using a logistic mixed-effects model. RESULTS: A total of 99 patients with BD were included in this study (follow-up: mean 754 days, SD 266) and completed an average of 78.1% (SD 18.3%) of the requested ASERT assessments (completion time for the 10 ASERT questions: median 24.0 seconds) across all patients in this study. The ASERT depression items were highly associated with MADRS total scores (P<.001; bootstrap). Similarly, ASERT mania items were highly associated with YMRS total scores (P<.001; bootstrap). Furthermore, the logistic mixed-effects regression model for scale-based relapse detection showed high detection accuracy in a repeated holdout validation for both depression (accuracy=85%; sensitivity=69.9%; specificity=88.4%; area under the receiver operating characteristic curve=0.880) and mania (accuracy=87.5%; sensitivity=64.9%; specificity=89.9%; area under the receiver operating characteristic curve=0.844). CONCLUSIONS: The ASERT questionnaire is a quick and acceptable mood monitoring tool that is administered via a smartphone app. The questionnaire has a good capability to detect the worsening of clinical symptoms in a long-term monitoring scenario.
Department of Child and Adolescent Psychiatry Charité Universitätsmedizin Berlin Berlin Germany
Department of Psychiatry The Zucker Hillside Hospital Glen Oaks NY United States
Zobrazit více v PubMed
Vieta E, Berk M, Schulze TG, Carvalho AF, Suppes T, Calabrese JR, Gao K, Miskowiak KW, Grande I. Bipolar disorders. Nat Rev Dis Primers. 2018 Dec 8;4:18008. doi: 10.1038/nrdp.2018.8. PubMed DOI
The Global Burden of Disease : 2004 Update. Geneva, Switzerland: World Health Organization; 2008.
Schouby Bock M, Nørgaard Van Achter O, Dines D, Simonsen Speed M, Correll CU, Mors O, Østergaard SD, Kølbæk P. Clinical validation of the self-reported Glasgow Antipsychotic Side-effect Scale using the clinician-rated UKU side-effect scale as gold standard reference. J Psychopharmacol. 2020 Aug;34(8):820–8. doi: 10.1177/0269881120916122. PubMed DOI
Correll CU, Kishimoto T, Nielsen J, Kane JM. Quantifying clinical relevance in the treatment of schizophrenia. Clin Ther. 2011 Dec;33(12):B16–39. doi: 10.1016/j.clinthera.2011.11.016. PubMed DOI PMC
Guo T, Xiang Y, Xiao L, Hu C, Chiu HF, Ungvari GS, Correll CU, Lai KY, Feng L, Geng Y, Feng Y, Wang G. Measurement-based care versus standard care for major depression: a randomized controlled trial with blind raters. Am J Psychiatry. 2015 Oct;172(10):1004–13. doi: 10.1176/appi.ajp.2015.14050652. PubMed DOI
Østergaard SD, Opler MG, Correll CU. Bridging the measurement gap between research and clinical care in schizophrenia: positive and negative syndrome scale-6 (panss-6) and other assessments based on the simplified negative and positive symptoms interview (SNAPSI) Innov Clin Neurosci. 2017 Dec 1;14(11-12):68–72. PubMed PMC
Tohen M, Frank E, Bowden CL, Colom F, Ghaemi SN, Yatham LN, Malhi GS, Calabrese JR, Nolen WA, Vieta E, Kapczinski F, Goodwin GM, Suppes T, Sachs GS, Chengappa KR, Grunze H, Mitchell PB, Kanba S, Berk M. The International Society for Bipolar Disorders (ISBD) Task Force report on the nomenclature of course and outcome in bipolar disorders. Bipolar Disord. 2009 Aug;11(5):453–73. doi: 10.1111/j.1399-5618.2009.00726.x. PubMed DOI
De Crescenzo F, Economou A, Sharpley AL, Gormez A, Quested DJ. Actigraphic features of bipolar disorder: a systematic review and meta-analysis. Sleep Med Rev. 2017 Jun;33:58–69. doi: 10.1016/j.smrv.2016.05.003. PubMed DOI
Schneider J, Bakštein E, Kolenič M, Vostatek P, Correll CU, Novák D, Španiel F. Motor activity patterns can distinguish between interepisode bipolar disorder patients and healthy controls. CNS Spectr. 2020 Sep 4;:1–11. doi: 10.1017/S1092852920001777. PubMed DOI
Cho C, Lee T, Kim M, In HP, Kim L, Lee H. Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: prospective observational cohort study. J Med Internet Res. 2019 Apr 17;21(4):e11029. doi: 10.2196/11029. PubMed DOI PMC
Kim H, Lee S, Lee S, Hong S, Kang H, Kim N. Depression prediction by using ecological momentary assessment, actiwatch data, and machine learning: observational study on older adults living alone. JMIR Mhealth Uhealth. 2019 Oct 16;7(10):e14149. doi: 10.2196/14149. PubMed DOI PMC
Cerimele JM, Goldberg SB, Miller CJ, Gabrielson SW, Fortney JC. Systematic review of symptom assessment measures for use in measurement-based care of bipolar disorders. Psychiatr Serv. 2019 May 1;70(5):396–408. doi: 10.1176/appi.ps.201800383. PubMed DOI PMC
mHealth: new horizons for health through mobile technologies: second global survey on eHealth. Geneva, Switzerland: World Health Organization; 2011.
Taylor K, Silver L. Smartphone Ownership Is Growing Rapidly Around the World, but Not Always Equally. Pew Research Center. 2019. [2020-10-20]. https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
Rajagopalan A, Shah P, Zhang MW, Ho RC. Digital platforms in the assessment and monitoring of patients with bipolar disorder. Brain Sci. 2017 Nov 12;7(11):150. doi: 10.3390/brainsci7110150. PubMed DOI PMC
Saunders KE, Bilderbeck AC, Panchal P, Atkinson LZ, Geddes JR, Goodwin GM. Experiences of remote mood and activity monitoring in bipolar disorder: a qualitative study. Eur Psychiatry. 2017 Mar;41:115–21. doi: 10.1016/j.eurpsy.2016.11.005. PubMed DOI PMC
Beiwinkel T, Kindermann S, Maier A, Kerl C, Moock J, Barbian G, Rössler W. Using smartphones to monitor bipolar disorder symptoms: a pilot study. JMIR Ment Health. 2016;3(1):e2. doi: 10.2196/mental.4560. PubMed DOI PMC
Huang C, Yang Y, Chen M, Lee I, Yeh T, Yang M. Patient- and family-rated scale for bipolar disorder symptoms: Internal State Scale. Kaohsiung J Med Sci. 2003 Apr;19(4):170–6. doi: 10.1016/S1607-551X(09)70467-X. PubMed DOI PMC
Henry C, M'Bailara K, Mathieu F, Poinsot R, Falissard B. Construction and validation of a dimensional scale exploring mood disorders: MAThyS (Multidimensional Assessment of Thymic States) BMC Psychiatry. 2008;8:82. doi: 10.1186/1471-244X-8-82. PubMed DOI PMC
Adler M, Liberg B, Andersson S, Isacsson G, Hetta J. Development and validation of the Affective Self Rating Scale for manic, depressive, and mixed affective states. Nord J Psychiatry. 2008;62(2):130–5. doi: 10.1080/08039480801960354. PubMed DOI
Denicoff KD, Leverich GS, Nolen WA, Rush AJ, McElroy SL, Keck PE, Suppes T, Altshuler LL, Kupka R, Frye MA, Hatef J, Brotman MA, Post RM. Validation of the prospective NIMH-Life-Chart Method (NIMH-LCM-p) for longitudinal assessment of bipolar illness. Psychol Med. 2000 Nov;30(6):1391–7. PubMed
Whybrow PC, Grof P, Gyulai L, Rasgon N, Glenn T, Bauer M. The electronic assessment of the longitudinal course of bipolar disorder: the ChronoRecord software. Pharmacopsychiatry. 2003 Nov;36 Suppl 3:S244–9. doi: 10.1055/s-2003-45137. PubMed DOI
Tsanas A, Saunders KE, Bilderbeck AC, Palmius N, Osipov M, Clifford GD, Goodwin. De Vos M. Daily longitudinal self-monitoring of mood variability in bipolar disorder and borderline personality disorder. J Affect Disord. 2016 Nov 15;205:225–33. doi: 10.1016/j.jad.2016.06.065. PubMed DOI PMC
Hidalgo-Mazzei D, Mateu A, Reinares M, Murru A, Del MB, Varo C, Valentí M, Undurraga J, Strejilevich S, Sánchez-Moreno J, Vieta E, Colom F. Psychoeducation in bipolar disorder with a SIMPLe smartphone application: feasibility, acceptability and satisfaction. J Affect Disord. 2016 Aug;200:58–66. doi: 10.1016/j.jad.2016.04.042. PubMed DOI
Hidalgo-Mazzei D, Reinares M, Mateu A, Nikolova VL, Bonnín CD, Samalin L, García-Estela A, Pérez-Solá V, Young AH, Strejilevich S, Vieta E, Colom F. OpenSIMPLe: a real-world implementation feasibility study of a smartphone-based psychoeducation programme for bipolar disorder. J Affect Disord. 2018 Dec 1;241:436–45. doi: 10.1016/j.jad.2018.08.048. PubMed DOI
Aktibipo SElf-RaTing (ASERT) Questionnaire. Mindpax. 2017. [2020-10-20]. https://www.mindpax.me/assets/docs/ASERT-questionnaireCZ-EN-DE.pdf.
Mindpax. [2020-10-20]. www.mindpax.me.
Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979 Apr;134:382–9. PubMed
Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978 Nov;133:429–35. PubMed
AKTIBIPO400 study. [2020-11-26]. https://bipo.nudz.cz.
Sachs GS. Strategies for improving treatment of bipolar disorder: integration of measurement and management. Acta Psychiatr Scand Suppl. 2004;(422):7–17. doi: 10.1111/j.1600-0447.2004.00409.x. PubMed DOI
Aiken CB, Weisler RH, Sachs GS. The Bipolarity Index: a clinician-rated measure of diagnostic confidence. J Affect Disord. 2015 May 15;177:59–64. doi: 10.1016/j.jad.2015.02.004. PubMed DOI
Jolliffe IT. Principal Component Analysis. New York, USA: Springer-Verlag; 2002. p. 488.
Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951 Sep;16(3):297–334. doi: 10.1007/bf02310555. DOI
Pinheiro J, Bates D. Mixed-Effects Models in S and S-PLUS. New York, USA: Springer; 2000. p. 528.
Craighead WE, Evans DD. Factor analysis of the montgomery-asberg depression rating scale. Depression. 1996;4(1):31–3. doi: 10.1002/(SICI)1522-7162(1996)4:1<31::AID-DEPR3>3.0.CO;2-I. PubMed DOI
McIntyre RS, Weiller E, Zhang P, Weiss C. Brexpiprazole as adjunctive treatment of major depressive disorder with anxious distress: results from a post-hoc analysis of two randomised controlled trials. J Affect Disord. 2016 Sep 1;201:116–23. doi: 10.1016/j.jad.2016.05.013. PubMed DOI
Cassano GB, Rucci P, Benvenuti A, Miniati M, Calugi S, Maggi L, Pini S, Kupfer DJ, Maj M, Fagiolini A, Frank E. The role of psychomotor activation in discriminating unipolar from bipolar disorders: a classification-tree analysis. J Clin Psychiatry. 2012 Jan;73(1):22–8. doi: 10.4088/JCP.11m06946. PubMed DOI
MacKinnon DF, Zandi PP, Gershon ES, Nurnberger JI, DePaulo JR. Association of rapid mood switching with panic disorder and familial panic risk in familial bipolar disorder. Am J Psychiatry. 2003 Sep;160(9):1696–8. doi: 10.1176/appi.ajp.160.9.1696. PubMed DOI
Perlis RH, Ostacher MJ, Patel JK, Marangell LB, Zhang H, Wisniewski SR, Ketter TA, Miklowitz DJ, Otto MW, Gyulai L, Reilly-Harrington NA, Nierenberg AA, Sachs GS, Thase ME. Predictors of recurrence in bipolar disorder: primary outcomes from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) Am J Psychiatry. 2006 Feb;163(2):217–24. doi: 10.1176/appi.ajp.163.2.217. PubMed DOI
Simon NM, Otto MW, Wisniewski SR, Fossey M, Sagduyu K, Frank E, Sachs GS, Nierenberg AA, Thase ME, Pollack MH. Anxiety disorder comorbidity in bipolar disorder patients: data from the first 500 participants in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) Am J Psychiatry. 2004 Dec;161(12):2222–9. doi: 10.1176/appi.ajp.161.12.2222. PubMed DOI
Ghaemi SN, Rosenquist KJ. Is insight in mania state-dependent?: a meta-analysis. J Nerv Ment Dis. 2004 Nov;192(11):771–5. doi: 10.1097/01.nmd.0000145036.76435.c3. PubMed DOI
Meyer TD, Crist N, La Rosa N, Ye B, Soares JC, Bauer IE. Are existing self-ratings of acute manic symptoms in adults reliable and valid?-a systematic review. Bipolar Disord. 2020 Sep;22(6):558–68. doi: 10.1111/bdi.12906. PubMed DOI
Eisner E, Drake R, Lobban F, Bucci S, Emsley R, Barrowclough C. Comparing early signs and basic symptoms as methods for predicting psychotic relapse in clinical practice. Schizophr Res. 2018 Feb;192:124–30. doi: 10.1016/j.schres.2017.04.050. PubMed DOI PMC
Španiel F, Vohlídka P, Kožený J, Novák T, Hrdlička J, Motlová L, Čermák J, Höschl C. The information technology aided relapse prevention programme in schizophrenia: an extension of a mirror-design follow-up. Int J Clin Pract. 2008 Dec;62(12):1943–6. doi: 10.1111/j.1742-1241.2008.01903.x. doi: 10.1111/j.1742-1241.2008.01903.x. PubMed DOI PMC
Španiel F, Hrdlička J, Novák T, Kožený J, Höschl C, Mohr P, Motlová LB. Effectiveness of the information technology-aided program of relapse prevention in schizophrenia (ITAREPS): a randomized, controlled, double-blind study. J Psychiatr Pract. 2012 Jul;18(4):269–80. doi: 10.1097/01.pra.0000416017.45591.c1. PubMed DOI
Barnett I, Torous J, Staples P, Sandoval L, Keshavan M, Onnela J. Relapse prediction in schizophrenia through digital phenotyping: a pilot study. Neuropsychopharmacology. 2018 Jul;43(8):1660–6. doi: 10.1038/s41386-018-0030-z. PubMed DOI PMC
Cochran AL, Schultz A, McInnis MG, Forger DB. A Comparison of Mathematical Models of Mood in Bipolar Disorder. Cham, UK: Springer; 2017. pp. 315–41.
Chang S, Chou T. A dynamical bifurcation model of bipolar disorder based on learned expectation and asymmetry in mood sensitivity. Comput Psychiatr. 2018 Dec;2:205–22. doi: 10.1162/cpsy_a_00021. PubMed DOI PMC
Faurholt-Jepsen M, Frost M, Ritz C, Christensen EM, Jacoby AS, Mikkelsen RL, Knorr U, Bardram JE, Vinberg M, Kessing LV. Daily electronic self-monitoring in bipolar disorder using smartphones - the MONARCA I trial: a randomized, placebo-controlled, single-blind, parallel group trial. Psychol Med. 2015 Oct;45(13):2691–704. doi: 10.1017/S0033291715000410. PubMed DOI
Faurholt-Jepsen M, Frost M, Christensen EM, Bardram JE, Vinberg M, Kessing LV. The effect of smartphone-based monitoring on illness activity in bipolar disorder: the MONARCA II randomized controlled single-blinded trial. Psychol Med. 2020 Apr 4;50(5):838–848. doi: 10.1017/S0033291719000710. PubMed DOI
Mühlbauer E, Bauer M, Ebner-Priemer U, Ritter P, Hill H, Beier F, Kleindienst N, Severus E. Effectiveness of smartphone-based ambulatory assessment (SBAA-BD) including a predicting system for upcoming episodes in the long-term treatment of patients with bipolar disorders: study protocol for a randomized controlled single-blind trial. BMC Psychiatry. 2018 Oct 26;18(1):349. doi: 10.1186/s12888-018-1929-y. PubMed DOI PMC
Tønning ML, Kessing LV, Bardram JE, Faurholt-Jepsen M. Methodological challenges in randomized controlled trials on smartphone-based treatment in psychiatry: systematic review. J Med Internet Res. 2019 Oct 27;21(10):e15362. doi: 10.2196/15362. PubMed DOI PMC
Galvin HK, DeMuro PR. Developments in privacy and data ownership in mobile health technologies, 2016-2019. Yearb Med Inform. 2020 Aug;29(1):32–43. doi: 10.1055/s-0040-1701987. PubMed DOI PMC
Bauer M, Glenn T, Geddes J, Gitlin M, Grof P, Kessing LV, Monteith S, Faurholt-Jepsen M, Severus E, Whybrow PC. Smartphones in mental health: a critical review of background issues, current status and future concerns. Int J Bipolar Disord. 2020 Jan 10;8(1):19. doi: 10.1186/s40345-019-0164-x. PubMed DOI PMC