Improvement of soil fertility and enzymatic activity by wastewater sludge compost and arbuscular mycorrhizal fungi in giant reed's rhizosphere

. 2025 Sep 25 ; () : . [epub] 20250925

Status Publisher Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40996662

Grantová podpora
SA-26/2021 Eötvös Loránd Research Network

Odkazy

PubMed 40996662
DOI 10.1007/s42977-025-00286-y
PII: 10.1007/s42977-025-00286-y
Knihovny.cz E-zdroje

The effect of low-dose, commercially available wastewater sludge compost (WSC; 15 t ha-1) treatment was examined with or without arbuscular mycorrhizal fungal (AMF) inoculation on the nutritional status, heavy metal (HM) concentration and the rhizosphere activity of giant reed (Arundo donax L. var. BL clone (Blossom)) plants. Funneliformis mosseae (BEG12; AMF1), F. geosporum (BEG11; AMF2) or their combination (AMFmix) were applied as AMF treatments in a short-term pot experiment. The physiological and growth parameters of the host plants, the AMF root colonization and the microbiological enzyme activity of the mycorrhizosphere were examined. We assumed that the combined treatment (WSC + AMF) enhances the fertility of low-fertility acidic sandy soil. Neither the WSC treatment nor the AMF inoculations changed the extent of root colonization. Based on the results of root electrical capacitance and the phosphorous uptake, plant nutritional status was improved by WSC addition, without any negative impacts among the measured parameters. AMF treatments increased the enzyme activity in the soil and decreased the concentrations of the potentially toxic HMs (Cu, Mn, Pb, Zn) in roots, but that mitigation of Cu and Zn was compensated in shoots. According to the results of MicroResp™ measurements, the catabolic activity profile of the soil microbial community was changed in case of the AMF2 treatment. The efficient regulatory mechanism of giant reed might be able to adjust optimal/maximal colonization rate, and to select the preferential AMF partners, this supposed mechanism might be responsible for its invasiveness and tolerance to a wide range of environmental conditions.

Zobrazit více v PubMed

Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem 33:943–951. https://doi.org/10.1016/S0038-0717(00)00244-3 DOI

Adamczyk-Sabela, D, Markiewicz, J, Wolf WM (2015) Heavy metal uptake by herbs. IV. influence of soil pH on the content of heavy metals in Valeriana officinalis L. Water Air Soil Pollut 226, 106. https://doi.org/10.1007/s11270-015-2360-3

Almási C, Orosz V, Tóth T, Mansour MM, Demeter I, Henzsel I, Bogdányi Z, Szegi TA, Makádi M (2025) Effects of sewage sludge compost on carbon, nitrogen, phosphorus, and sulfur ratios and soil enzyme activities in a long-term experiment. Agronomy 15:143. https://doi.org/10.3390/agronomy15010143 DOI

Baldantoni D, Picariello E, Pucci L, Carotenut M, Libralato G, Lofrano G (2020) Compost and sewage sludge for the improvement of soil chemical and biological quality of Mediterranean agroecosystems. Sustainability 13:26. https://doi.org/10.3390/su13010026 DOI

Begum N, Qi C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front Plant Sci 10:1068. https://doi.org/10.3389/fpls.2019.01068

Bhantana P, Rana MS, Sun X, Moussa GM, Shalem MH, Syaifudin M, Shah A, Poudel A, Pun AB, Bhat MA, Mandal DL, Shah S, Zhihao D, Tan Q, Hu CH (2021). Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 84. https://doi.org/10.1007/s13199-021-00756-6

Borrelli P, Robinson DA, Panagos P, Lugato E, Yang JE, Alewell C, Wuepper D, Montanarella L, Ballabio C (2020) Land use and climate change impacts on global soil erosion by water (2015–2070). Proc Natl Acad Sci 117:21994–22001. https://doi.org/10.1073/pnas.2001403117 PubMed DOI PMC

Bothe H, Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Tóth T, Biró B (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211. https://doi.org/10.1007/s00572-002-0172-y PubMed DOI

Cseresnyés I, Takács T, Füzy A, Rajkai K (2014) Simultaneous monitoring of electrical capacitance and water uptake activity of plant root system. Int Agrophys 28:537–541. https://doi.org/10.2478/intag-2014-0044 DOI

Czakó M, Márton L (2007) US patent No 7:303,916

Campbell CD, Chapman SJ, Cameron CM, Davidson M, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599. https://doi.org/10.1128/AEM.69.6.3593-3599.2003 PubMed DOI PMC

Ciešlik BM, Namiešnik J, Konieczka P (2015) Review of sewage sludge management: standards, regulations and analytical methods. J Clean Prod 90:1–15. https://doi.org/10.1016/j.jclepro.2014.11.031 DOI

Dhalaria R, Kumar D, Kumar H, Nepovimova E, Kuca K, Islam TM, Verma R (2020) Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agron J 10:815. https://doi.org/10.3390/agronomy10060815 DOI

Diagne N, Ngom M, Djighal P, Fall D, Hocher V, Svistoonoff S (2020) Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12:370. https://doi.org/10.3390/d12100370 DOI

Egnér H, Riehm H, Domingo WR (1960) Investigations on chemical soil analysis as the basis for estimating soil fertility. II. Chemical extraction methods for phosphorus and potassium determination. Kungl Landbrukshogsk Ann 26:199–215

Fall AF, Grace N, Joseph S, Hassna FM, Apori SO, Abibatou N, Arfang B, Khady N (2022) Roles of arbuscular mycorrhizal fungi on soil fertility: Contribution in the improvement of physical, chemical, and biological properties of the soil. Front Fungal Biol 3. https://doi.org/10.3389/ffunb.2022.723892

Farhad M, Noor M, Yasin MZ, Nizamani MH, Turan V, Iqbal M (2024) Interactive suitability of rice stubble biochar and arbuscular mycorrhizal fungi for improving wastewater- polluted soil health and reducing heavy metals in peas. Sustainability 16:634. https://doi.org/10.3390/su16020634 DOI

Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67:6253–6265. https://doi.org/10.1093/jxb/erw403 PubMed DOI

Gao F, Fan H, Chapman SJ (2022) Changes in soil microbial community activity and composition following substrate amendment within the MicroResp™ system. J Soils Sediments 22:1242–2125. https://doi.org/10.1007/s11368-022-03143-w DOI

Gubišová M, Gubiš J, Žofajová A (2016) Biomass production of gigantic grasses Arundo donax and Miscanthus x giganteus in the dependence on plant multiplication method. Agriculture (Pol’nohospodárstvo) 62:43–51. https://doi.org/10.1515/agri-2016-0005 DOI

Gubišová M, Horník M, Hrčková K, Gubiš J, Jakubcová A, Hudcovicová M, Ondreičková K (2020) Sewage sludge as a soil amendment for growing biomass plant Arundo donax L. Agron J 10:678. https://doi.org/10.3390/agronomy10050678 DOI

Hao L, Zhang Z, Hao B, Diao F, Zhang J, Bao Z, Guo W (2021) Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicol Environ Saf 212:111996. https://doi.org/10.1016/j.ecoenv.2021.111996 PubMed DOI

ISO 11261:1995. Soil quality - Determination of total nitrogen - Modified Kjeldahl method

Janous̆ková M, Krak K, Wagg C, Štorchová H, Caklová P, Vosátka M (2013) Effects of inoculum additions in the presence of a pre-established arbuscular mycorrhizal fungal community. Appl Environ Microbiol 79:6507–15. https://doi.org/10.1128/AEM.02135-13

Jabborova D, Annapurna K, Paul S, Kumar S, Saad HA, Desouky S, Ibrahim MFM, Elkelish A (2021) Beneficial features of biochar and arbuscular mycorrhiza for improving spinach plant growth, root morphological traits, physiological properties, and soil enzymatic activities. J Fungi (Basel) 7:571. https://doi.org/10.3390/jof7070571 PubMed DOI

Jäderlund L, Arthurson V, Granhall U, Jansson JK (2008) Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett 287:174–180. https://doi.org/10.1111/j.1574-6968.2008.01318.x PubMed DOI

Jeffries P, Gianinazzi S, Perotto S (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16. https://doi.org/10.1007/s00374-002-0546-5 DOI

Kawahara A, An GH, Miyakawa S, Sonoda J, Ezawa T (2016) Nestedness in arbuscular mycorrhizal fungal communities along soil pH gradients in early primary succession: Acid-tolerant fungi are pH generalists. PLoS ONE 11:e0165035. https://doi.org/10.1371/journal.pone.0165035 PubMed DOI PMC

Kjeldahl J (1883) A new method for the determination of nitrogen in organic matter. Z Anal Chem 22:366–382. https://doi.org/10.1007/BF01338151 DOI

Kominko H, Gorazda K, Wzorek Z (2017) The possibility of organo-mineral fertilizer production from sewage sludge. Waste Biomass Valor 8:1781–1791. https://doi.org/10.1007/s12649-016-9805-9 DOI

Kumar V, Chopra AK, Kumar A (2017) A review on sewage sludge (biosolids) a resource for sustainable agriculture. Arch Agric Environ Sci 2:340–347. https://doi.org/10.26832/24566632.2017.020417 DOI

Lakanen E, Erviö R (1971) A comparison of eight extractants for the determination of plant available micronutrients in soils. Acta Agric Fenn 123:223–232

Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25:335–361. https://doi.org/10.1016/S0961-9534(03)00030-8 DOI

Liang JF, An J, Gao JQ, Zhang XY, Yu FH (2018) Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying-rewetting cycles. PLoS ONE 13(1):e0191999. https://doi.org/10.1371/journal.pone.0191999 PubMed DOI PMC

Luna ZHS, Lopez W, Solis OM (2011) Effect of compost made with sludge from wastewater treatment plants on field of corn (Zea mays L.) and arbuscular mycorrhizal fungi density. Afr J Agric Res 61233–1240. https://doi.org/10.5897/AJAR10.823

Mayer Z, Duc NH, Sasvári Z, Posta K (2017) How arbuscular mycorrhizal fungi influence the defense system of sunflower during different abiotic stresses. Acta Biol Hung 68:376–387. https://doi.org/10.1556/018.68.2017.4.4 PubMed DOI

Meier S, Cornejo P, Cartes P, Borie F, Medina J, Azcón R (2015) Interactive effect between Cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils. J Plant Nutr Soil Sci 178:126–135. https://doi.org/10.1002/jpln.201400092 DOI

MSZ-08–0206/2 (1978) Evaluation of some chemical properties of the soil. Laboratory tests. (pH value, phenolphthalein). Budapest: Hungarian Standard Association. (in Hungarian)

MSZ-08–0452 (1980) Use of high-capacity analyser systems for soils analyses. Quantitative determination of the organic carbon content of the soil on Contiflo analyzer system. Budapest: Hungarian Standard Association. (in Hungarian)

MSZ-20135 (1999) Determination of the soluble nutrient element content of the soil. Budapest: Hungarian Standard Association. (in Hungarian)

MSZ-21470–50 (2006) Environmental testing of soils. Determination of total and soluble toxic element, heavy metal and chromium (VI) content. Budapest: Hungarian Standard Association. (in Hungarian)

Negrini A, Silva RF, Welter PD, Giovenardi AdR, Soriani HH, Da Ros O, Swine C (2022) wastewater compost and arbuscular mycorrhizal fungi in the growth and accumulation of copper in Eucalyptus grandis. Rhizosphere 24:2452–2198. https://doi.org/10.1016/j.rhisph.2022.100624 DOI

Ondreičková K, Gubišová M, Piliarová M, Horník M, Matušinsky P, Gubiš J, Klčová L, Hudcovicová M, Kraic J (2019) Responses of rhizosphere fungal communities to the sewage sludge application into the soil. Microorganisms 7:505. https://doi.org/10.3390/microorganisms7110505 PubMed DOI PMC

Oginni O, Singh K (2019) Pyrolysis characteristics of Arundo donax harvested from a reclaimed mine land. Ind Crops Prod 133:44–53. https://doi.org/10.1016/j.indcrop.2019.03.014 DOI

Öhlinger R (1996) Dehydrogenase activity with the substrate TTC. In: Schinner F, Ohlinger R, Kandeler EMR (eds) Methods in soil biology. Springer, Berlin, pp 241–243. https://doi.org/10.1007/978-3-642-60966-4 DOI

Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161. https://doi.org/10.1016/s0007-1536(70)80110-3 DOI

Pinior A, Wyss U, Piché Y, Vierheilig H (1999) Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot 77:891–897. https://doi.org/10.1139/b99-052 DOI

Pirsarandib Y, Hassanpouraghdam MB, Rasouli F, Aazami MA, Puglisi I, Baglieri A (2022) Phytoremediation of soil contaminated with heavy metals via arbuscular mycorrhiza (Funneliformis mosseae) inoculation ameliorates the growth responses and essential oil content in lavender (Lavandula angustifolia L.). Agron J 12:1221. https://doi.org/10.3390/agronomy12051221 DOI

Qin MQ, Zhang J, Pan S, Jiang Y, Liu A, Bahadur Z, Peng Y, Yang H, Feng H (2020) Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass. Eur J Soil Sci 71:84–92. https://doi.org/10.1111/ejss.12815 DOI

Qiu L, Bi Y, Jiang B, Bi Y, Wang Z, Zhang Y, Zhakypbek Y (2019) Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China. J Arid Land 11:135–147. https://doi.org/10.1007/s40333-018-0019-9 DOI

R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Austria. URL https://www.R-project.org/

Rajkai K, Végh KR, Nacsa T (2005) Electrical capacitance of roots in relation to plant electrodes, measuring frequency and root media. Acta Agron Hung 53:197–210. https://doi.org/10.1556/AAgr.53.2005.2.8 DOI

Reimer M, Kopp C, Hartmann T, Zimmermann H, Ruser R, Schulz R, Müller T, Möller K (2023) Assessing long term effects of compost fertilization on soil fertility and nitrogen mineralization rate. J Plant Nutr Soil Sci 186:217–233. https://doi.org/10.1002/jpln.202200270 DOI

Rékási M, Szili-Kovács T, Takács T, Bernhardt B, Puspán I, Kovács R, Kutasi J, Uzinger N (2019) Improving the fertility of sandy soils in the temperate region by combined biochar and microbial inoculant treatments. Arch Agron Soil Sci 65:44–57. https://doi.org/10.1080/03650340.2018.1482536 DOI

Rév A, Tóth B, Solti Á, Sipos G, Fodor F (2017) Responses of Szarvasi-1 energy grass to sewage sludge treatments in hydroponics. Plant Physiol Biochem 118:627–633. https://doi.org/10.1016/j.plaphy.2017.07.027 PubMed DOI

Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X (2021) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater 402:123919. https://doi.org/10.1016/j.jhazmat.2020.123919 PubMed DOI

Romero-Munar A, Baraza E, Gulias J, Cabot C (2019) Arbuscular mycorrhizal fungi confer salt tolerance in giant reed (Arundo donax L.) plants grown under low phosphorus by reducing leaf Na+ concentration and improving phosphorus use efficiency. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00843 PubMed DOI PMC

Samara E, Matsi T, Ipsilantis I, Barbayiannis N (2023) Sewage sludge stabilized with clay minerals: its impact on soil properties and ryegrass growth. J Soil Sci Plant Nutr 23:556–568. https://doi.org/10.1007/s42729-022-01065-7 DOI

Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261. https://doi.org/10.1128/aem.43.6.1256-1261.1982 PubMed DOI PMC

Shaw LJ, Burns RG (2006) Enzyme Activity Profiles and Soil Quality. In: Microbiological methods for assessing soil quality (Eds J. Bloem, D.W. Hopkins, A. Benedetti). CABI, Publishing, London, UK. https://doi.org/10.1079/9780851990989.0158

Simon L, Szabó B, Szabó M, Vincze G, Varga C, Uri ZS, Koncz J (2013) Effect of various soil amendments on the mineral nutrition of Salix viminalis and Arundo donax energy crops. Eur Chem Bull 2:18–21. ISSN: 2063–5346

Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Risk assessment of heavy metal toxicity through contaminated vegetables from wastewater irrigated area of Varanasi, India. Trop Ecol 51:375–387. ISSN 0564–3295

Solís-Ramos LY, Coto-López C, Andrade-Torres A (2021) Role of arbuscular mycorrhizal symbiosis in remediation of anthropogenic soil pollution. Symbiosis 84:321–336. https://doi.org/10.1007/s13199-021-00774-4 DOI

Takács T, Radimszky L, Németh T (2005) The arbuscular mycorrhizal status of Poplar clones selected for phytoremediation of soils contaminated with heavy metals. J Biosci 60:357–361. https://doi.org/10.1515/znc-2005-3-420 DOI

Takács T, Cseresnyés I, Kovács R, Parádi I, Kelemen B, Szili-Kovács T, Füzy, A (2018) Symbiotic effectivity of dual and tripartite associations on soybean (Glycine max L. Merr.) cultivars inoculated with Bradyrhizobium japonicum and AM fungi. Front Plant Sci 9:1631. https://doi.org/10.3389/fpls.2018.016311

Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol 103:751–765. https://doi.org/10.1111/j.1469-8137.1986.tb00850.x DOI

Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA dún systeme radiculaire. Recherche de méthodes déstimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. Proceeding of the 1

Ujvári G, Turrini A, Avio L, Agnolucci M (2021) Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza 31:1–18. https://doi.org/10.1007/s00572-021-01040-7 DOI

Uzinger N, Takács T, Szili-Kovács T, Radimszky L, Füzy A, Draskovits E, Szűcs-Vásárhelyi N, Molnár M, Farkas É, Kutasi J, Rékási M (2020) Fertility impact of separate and combined treatments with biochar, sewage sludge compost and bacterial inocula on acidic sandy soil. Agron J 10:1612. https://doi.org/10.3390/agronomy10101612 DOI

Wang C, Li W, Yang Z, Chen Y, Shao W, Ji J (2015) An invisible soil acidification: critical role of soil carbonate and its impact on heavy metal bioavailability. Sci Rep 5:12735. https://doi.org/10.1038/srep12735 PubMed DOI PMC

Yang G, Zhang G, Wang H (2015) Current state of sludge production, management, treatment and disposal in China. Water Res 78:60–67. https://doi.org/10.1016/j.watres.2015.04.002 PubMed DOI

Yang H, Chen X, Yuan Y, Zhang Q, Tang J, Liu Y (2011) Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. CATENA 87:70–77. https://doi.org/10.1016/j.catena.2011.05.009 DOI

Zhan F, Li B, Jiang M, Li T, He Y, Li Y, Wang Y (2019) Effects of arbuscular mycorrhizal fungi on the growth and heavy metal accumulation of bermudagrass [Cynodon dactylon (L.) Pers.] grown in a lead-zinc mine wasteland. Int J Phytoremediation 21:849–856. https://doi.org/10.1080/15226514.2019.1577353 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...