Responses of Rhizosphere Fungal Communities to the Sewage Sludge Application into the Soil

. 2019 Oct 29 ; 7 (11) : . [epub] 20191029

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31671795
Odkazy

PubMed 31671795
PubMed Central PMC6920848
DOI 10.3390/microorganisms7110505
PII: microorganisms7110505
Knihovny.cz E-zdroje

Due to the increasing sewage sludge production in the world and problems with its disposal, an application of sludge to the soil appears to be a suitable solution considering its fertilizer properties and ability to improve the soil physical conditions. On the other hand, the sludge may also contain undesirable and toxic substances. Since soil microorganisms are sensitive to environmental changes, they can be used as indicators of soil quality. In this study, we used sewage sludge (SS) from two municipal wastewater treatment plants (SS-A and SS-B) in the dose of 5 t/ha and 15 t/ha in order to determine possible changes in the fungal community diversity, especially arbuscular mycorrhizal fungi (AMF), in the rhizosphere of Arundo donax L. Rhizosphere samples were collected in summer and autumn for two consecutive years and the fungal diversity was examined using terminal restriction fragment length polymorphism and 18S rDNA sequencing. Fungal alpha diversity was more affected by SS-A than SS-B probably due to the higher heavy metal content. However, based on principal component analysis and ANOSIM, significant changes in overall fungal diversity were not observed. Simultaneously, 18S rDNA sequencing showed that more various fungal taxa were detected in the sample with sewage sludge than in the control. Glomus sp. as a representative of AMF was the most represented. Moreover, Funneliformis in both samples and Rhizophagus in control with Septoglomus in the sludge sample were other representatives of AMF. Our results indicate that the short-term sewage sludge application into the soil does not cause a shift in the fungal community composition.

Zobrazit více v PubMed

Eurostat, the Statistical Office of the European Union [(accessed on 26 August 2019)]; Available online: https://ec.europa.eu/eurostat.

Singh R.P., Agrawal M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008;28:347–358. doi: 10.1016/j.wasman.2006.12.010. PubMed DOI

Lloret E., Pascual J.A., Brodie E.L., Bouskill N.J., Insam H., Juárez M.F.D., Goberna M. Sewage sludge addition modifies soil microbial communities and plant performance depending on the sludge stabilization process. Appl. Soil Ecol. 2016;101:37–46. doi: 10.1016/j.apsoil.2016.01.002. DOI

Nielson G.H., Hogue E.J., Nielson D., Zebarth B.J. Evaluation of organic wastes as soil amendments for cultivation of carrot and chard on irrigated sandy soils. Can. J. Soil Sci. 1998;78:217–225.

Ojeda G., Alcaniz J.M., Ortiz O. Runoff and losses by erosion in soils amended with sewage sludge. Land Degrad. Dev. 2003;14:563–573. doi: 10.1002/ldr.580. DOI

Martínez F., Cuevas G., Calvo R., Walter I. Biowaste effects on soil and native plants in a semiarid ecosystem. J. Environ. Qual. 2003;32:472–479. doi: 10.2134/jeq2003.4720. PubMed DOI

Ramulu U.S.S. Reuse of Municipal Sewage and Sludge in Agriculture. Scientific Publishers; Jodhpur, India: 2001. p. 342.

Marschner P., Kandeler E., Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 2003;35:453–461. doi: 10.1016/S0038-0717(02)00297-3. DOI

Sadet-Bourgeteau S., Houot S., Karimi B., Mathieu O., Mercier V., Montenach D., Morvan T., Sappin-Didier V., Watteau F., Nowak V., et al. Microbial communities from different soil types respond differently to organic waste input. Appl. Soil Ecol. 2019;143:70–79. doi: 10.1016/j.apsoil.2019.05.026. DOI

Sastre I., Vicente M.A., Lobo M.C. Influence of the Application of Sewage Sludges on Soil Microbial Activity. Bioresour. Technol. 1996;57:19–23. doi: 10.1016/0960-8524(96)00035-1. DOI

Garbeva P., van Veen J.A., van Elsas J.D. Microbial diversity in soil: Selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 2004;42:243–270. doi: 10.1146/annurev.phyto.42.012604.135455. PubMed DOI

Hartmann M., Widmer F. Community structure analysis are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl. Environ. Microbiol. 2006;72:7804–7812. doi: 10.1128/AEM.01464-06. PubMed DOI PMC

Bachelot B., Uriarte M., Zimmerman J.K., Thompson J., Leff J.W., Asiaii A., Koshner J., McGuire K. Long-lasting effects of land use history on soil fungal communities in second-growth tropical rain forests. Ecol. Appl. 2016;26:1881–1895. doi: 10.1890/15-1397.1. PubMed DOI

Wardle D.A., Bardgett R.D., Klironomos J.N., Setälä H., van der Putten W.H., Wall D.H. Ecological linkages between aboveground and belowground biota. Science. 2004;304:1629–1633. doi: 10.1126/science.1094875. PubMed DOI

Urbanová M., Šnajdr J., Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 2015;84:53–64. doi: 10.1016/j.soilbio.2015.02.011. DOI

Garg N., Geetanjali, Kaur A. Arbuscular mycorrhizal: Nutritional aspects. Arch. Agron. Soil Sci. 2006;52:593–606. doi: 10.1080/03650340601037127. DOI

Wang B., Qiu Y.L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16:299–363. doi: 10.1007/s00572-005-0033-6. PubMed DOI

Garg N., Chandel S. Arbuscular mycorrhizal networks: Process and functions. A review. Agron. Sustain. Dev. 2010;30:581–599. doi: 10.1051/agro/2009054. DOI

Klironomos J. Host-Specificity and Functional Diversity among Arbuscular Mycorrhizal Fungi. In: Bell C.R., Brylinski M., Johnson-Green P., editors. Proceedings of the 8th International Symposium on Microbial Ecology; Halifax, NS, Canada. 9–14 August 2000; Halifax, NS, Canada: Atlantic Canada Society for Microbial Ecology; pp. 845–851.

Paszkowski U. A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol. 2006;172:35–46. doi: 10.1111/j.1469-8137.2006.01840.x. PubMed DOI

Khan A.G. Mycorrhizoremediation—An enhanced form of phytoremediation. J. Zhejiang Univ. Sci. B. 2006;7:503–514. doi: 10.1631/jzus.2006.B0503. PubMed DOI PMC

Gaur A., Adholeya A. Prospects of Arbuscular Mycorrhizal Fungi in Phytoremediation of Heavy Metal Contaminated Soils. Curr. Sci. 2004;86:528–534.

Vivas A., Barea J.M., Azcón R. Interactive effect of Brevibacillus brevis and Glomus mosseae both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soils. Environ. Pollut. 2005;134:257–266. doi: 10.1016/j.envpol.2004.07.029. PubMed DOI

Pilu R., Bucci A., Cerino Badone F., Landoni M. Giant Reed (Arundo donax L.): A weed plant or a promising energy crop? Afr. J. Biotechnol. 2012;11:9163–9174. doi: 10.5897/AJB11.4182. DOI

Gubišová M., Čičková M., Klčová L., Gubiš J. In vitro tillering—An effective way to multiply high-biomass plant Arundo donax. Ind. Crop Prod. 2016;81:123–128. doi: 10.1016/j.indcrop.2015.11.080. DOI

Lee J., Lee S., Young J.P. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microb. Ecol. 2008;65:339–349. doi: 10.1111/j.1574-6941.2008.00531.x. PubMed DOI

Mummey D.L., Rillig M.C., Holben W.E. Neighbouring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil. 2005;271:83–90. doi: 10.1007/s11104-004-2066-6. DOI

Clapp J.P., Young J.P.W., Merryweather J.W., Fitter A.H. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol. 1995;130:259–265. doi: 10.1111/j.1469-8137.1995.tb03047.x. DOI

Clapp J.P., Fitter A.H., Young J.P. Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp. Mol. Ecol. 1999;8:915–921. doi: 10.1046/j.1365-294x.1999.00642.x. PubMed DOI

Huber T., Faulkner G., Hugenholtz P. Bellerophon: A program to detect chimeric sequences in multiple sequence alignments. Bioinformatics. 2004;20:2317–2319. doi: 10.1093/bioinformatics/bth226. PubMed DOI

Jost L. Entropy and diversity. Oikos. 2006;113:363–375. doi: 10.1111/j.2006.0030-1299.14714.x. DOI

Shannon C.E., Weaver W. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI

Pielou E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966;13:131–144. doi: 10.1016/0022-5193(66)90013-0. DOI

Hammer Ø., Harper D. Paleontological Data Analysis. Blackwell Publishing; Oxford, UK: 2006. p. 351.

Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2017 doi: 10.1093/bib/bbx108. PubMed DOI PMC

Anderson I.C., Parkin P.I., Campbell C.D. DNA- and RNA-derived assessments of fungal community composition in soil amended with sewage sludge rich in cadmium, copper and zinc. Soil Biol. Biochem. 2008;40:2358–2365. doi: 10.1016/j.soilbio.2008.05.015. DOI

Kerfahi D., Ogwu M.C., Ariunzaya D., Balt A., Davaasuren D., Enkhmandal O., Purevsuren T., Batbaatar A., Tibbett M., Undrakhbold S., et al. Metal-Tolerant Fungal Communities Are Delineated by High Zinc, Lead, and Copper Concentrations in Metalliferous Gobi Desert Soils. Microb. Ecol. 2019:1–12. doi: 10.1007/s00248-019-01405-8. PubMed DOI

Gomes N.C.M., Landi L., Smalla K., Nannipieri P., Brookes P.C., Renella G. Effects of Cd- and Zn-enriched sewage sludge on soil bacterial and fungal communities. Ecotox. Environ. Saf. 2010;73:1255–1263. doi: 10.1016/j.ecoenv.2010.07.027. PubMed DOI

Cavani L., Manici L.M., Caputo F., Peruzzi E., Ciavatta C. Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities. J. Environ. Manag. 2016;182:37–47. doi: 10.1016/j.jenvman.2016.07.050. PubMed DOI

Bastida F., Jehmlich N., Martínez-Navarro J., Bayona V., García C., Moreno J.L. The effects of struvite and sewage sludge on plant yield and the microbial community of a semiarid Mediterranean soil. Geoderma. 2019;337:1051–1057. doi: 10.1016/j.geoderma.2018.10.046. DOI

Mossa A.-W., Dickinson M.J., West H.M., Young S.D., Crout N.M.J. The response of soil microbial diversity and abundance to long-term application of biosolids. Environ. Pollut. 2017;224:16–25. doi: 10.1016/j.envpol.2017.02.056. PubMed DOI

Lin Y., Ye Y., Hu Y., Shi H. The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Ecotox. Environ. Saf. 2019;180:557–564. doi: 10.1016/j.ecoenv.2019.05.057. PubMed DOI

Del Val C., Barea J.M., Azcón-Aguilar C. Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl. Environ. Microbiol. 1999;65:718–723. PubMed PMC

Kumar S., Saxena S. Arbuscular Mycorrhizal Fungi (AMF) from Heavy Metal-Contaminated Soils: Molecular Approach and Application in Phytoremediation. In: Giri B., Prasad R., Wu Q.S., Varma A., editors. Biofertilizers for Sustainable Agriculture and Environment. Springer Nature; Cham, Switzerland: 2019. pp. 489–500.

Cruz-Paredes C., López-García Á., Rubæk G.H., Hovmand M.F., Sørensen P., Kjøller R. Risk assessment of replacing conventional P fertilizers with biomass ash: Residual effects on plant yield, nutrition, cadmium accumulation and mycorrhizal status. Sci. Total Environ. 2017;575:1168–1176. doi: 10.1016/j.scitotenv.2016.09.194. PubMed DOI

Tang J., Zhang J., Ren L., Zhou Y., Gao J., Luo L., Yang Y., Peng Q., Huang H., Chen A. Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. J. Environ. Manag. 2019;242:121–130. doi: 10.1016/j.jenvman.2019.04.061. PubMed DOI

Helgason T., Merryweather J.W., Denison J., Wilson P., Young J.P.W., Fitter A.H. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J. Ecol. 2002;90:371–384. doi: 10.1046/j.1365-2745.2001.00674.x. DOI

Douhan G.W., Petersen C., Bledsoe C.S., Rizzo D.M. Contrasting root associated fungi of three common oak-woodland plant species based on molecular identification: Host specificity or non-specific amplification? Mycorrhiza. 2005;15:365–372. doi: 10.1007/s00572-004-0341-2. PubMed DOI

Santos J.C., Finlay R.D., Tehler A. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytol. 2006;172:159–168. doi: 10.1111/j.1469-8137.2006.01799.x. PubMed DOI

Santos-Gonzalez J.C., Finlay R.D., Tehler A. Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl. Environ. Microbiol. 2007;73:5613–5623. doi: 10.1128/AEM.00262-07. PubMed DOI PMC

Beauregard M.S., Hamel C., Atul-Nayyar, St-Arnaud M. Long-Term Phosphorus Fertilization Impacts Soil Fungal and Bacterial Diversity but not AM Fungal Community in Alfalfa. Microb. Ecol. 2010;59:379–389. doi: 10.1007/s00248-009-9583-z. PubMed DOI

Liu W., Zhang Y., Jiang S., Deng Y., Christie P., Murray P.J., Li X., Zhang J. Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci. Rep. 2016;6:24902. doi: 10.1038/srep24902. PubMed DOI PMC

Moreira M., Zucchi M.I., Gomes J.E., Tsai S.M., Alves-Pereira A., Cardoso E.J.B.N. Araucaria angustifolia Aboveground Roots Presented High Arbuscular Mycorrhizal Fungal Colonization and Diversity in the Brazilian Atlantic Forest. Pedosphere. 2016;26:561–566. doi: 10.1016/S1002-0160(15)60065-0. DOI

Liang Z.B., Lee D.J., Dweikat I.M., Wedin D.A., Yuen G.Y., Drijber R.A. Molecular Diversity of Arbuscular Mycorrhizae in Roots of Invasive to Grasslands. Soil Sci. Soc. Am. J. 2017;81:526–536. doi: 10.2136/sssaj2016.05.0133. DOI

Calheiros C.S.C., Pereira S.I.A., Franco A.R., Castro P.M.L. Diverse Arbuscular Mycorrhizal Fungi (AMF) Communities Colonize Plants Inhabiting a Constructed Wetland for Wastewater Treatment. Water. 2019;11:1535. doi: 10.3390/w11081535. DOI

Heberling J.M., Burke D.J. Utilizing herbarium specimens to quantify historical mycorrhizal communities. Appl. Plant Sci. 2019;7:1–11. doi: 10.1002/aps3.1223. PubMed DOI PMC

Glomeromycota PHYLOGENY, Phylogeny and Taxonomy of Glomeromycota. [(accessed on 2 September 2019)]; Available online: www.amf-phylogeny.com.

Sarathambal C., Khankhane P.J., Gharde Y., Kumar B., Varun M., Arun S. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Int. J. Phytoremediat. 2017;19:360–370. doi: 10.1080/15226514.2016.1225289. PubMed DOI

Romero-Munar A., Del-Saz N.F., Ribas-Carbó M., Flexas J., Baraza E., Florez-Sarasa I., Fernie A.R., Gulías J. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation. Plant Cell Environ. 2017;40:1115–1126. doi: 10.1111/pce.12902. PubMed DOI

Pollastri S., Savvides A., Pesando M., Lumini E., Volpe M.G., Ozudogru E.A., Faccio A., De Cunzo F., Michelozzi M., Lambardi M., et al. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta. 2018;247:573–585. doi: 10.1007/s00425-017-2808-3. PubMed DOI

Tauler M., Baraza E. Improving the acclimatization and establishment of Arundo donax L. plantlets, a promising energy crop, using a mycorrhiza-based biofertilizer. Ind. Crop Prod. 2015;66:299–304. doi: 10.1016/j.indcrop.2014.12.039. DOI

Baraza E., Tauler M., Romero-Munar A., Cifre J., Gulias J. Mycorrhiza-Based Biofertilizer Application to Improve the Quality of Arundo donax L., Plantlets. In: Barth S., Murphy-Bokern D., Kalinina O., Taylor G., Jones M., editors. Perennial Biomass Crops for a Resource-Constrained World. Springer Nature; Cham, Switzerland: 2016. pp. 225–232.

Moffett B.F., Nicholson F.A., Uwakwe N.C., Chambers B.J., Harris J.A., Hill T.C.J. Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol. Ecol. 2003;43:13–19. doi: 10.1111/j.1574-6941.2003.tb01041.x. PubMed DOI

Golui D., Datta S.P., Rattan R.K., Dwivedi B.S., Meena M.C. Predicting bioavailability of metals from sludge-amended soils. Environ. Monit. Assess. 2014;186:8541–8553. doi: 10.1007/s10661-014-4023-z. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...