Responses of Rhizosphere Fungal Communities to the Sewage Sludge Application into the Soil
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31671795
PubMed Central
PMC6920848
DOI
10.3390/microorganisms7110505
PII: microorganisms7110505
Knihovny.cz E-zdroje
- Klíčová slova
- 18S rDNA sequencing, T-RFLP, arbuscular mycorrhizal fungi, fungal community, genetic diversity, sewage sludge,
- Publikační typ
- časopisecké články MeSH
Due to the increasing sewage sludge production in the world and problems with its disposal, an application of sludge to the soil appears to be a suitable solution considering its fertilizer properties and ability to improve the soil physical conditions. On the other hand, the sludge may also contain undesirable and toxic substances. Since soil microorganisms are sensitive to environmental changes, they can be used as indicators of soil quality. In this study, we used sewage sludge (SS) from two municipal wastewater treatment plants (SS-A and SS-B) in the dose of 5 t/ha and 15 t/ha in order to determine possible changes in the fungal community diversity, especially arbuscular mycorrhizal fungi (AMF), in the rhizosphere of Arundo donax L. Rhizosphere samples were collected in summer and autumn for two consecutive years and the fungal diversity was examined using terminal restriction fragment length polymorphism and 18S rDNA sequencing. Fungal alpha diversity was more affected by SS-A than SS-B probably due to the higher heavy metal content. However, based on principal component analysis and ANOSIM, significant changes in overall fungal diversity were not observed. Simultaneously, 18S rDNA sequencing showed that more various fungal taxa were detected in the sample with sewage sludge than in the control. Glomus sp. as a representative of AMF was the most represented. Moreover, Funneliformis in both samples and Rhizophagus in control with Septoglomus in the sludge sample were other representatives of AMF. Our results indicate that the short-term sewage sludge application into the soil does not cause a shift in the fungal community composition.
Zobrazit více v PubMed
Eurostat, the Statistical Office of the European Union [(accessed on 26 August 2019)]; Available online: https://ec.europa.eu/eurostat.
Singh R.P., Agrawal M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008;28:347–358. doi: 10.1016/j.wasman.2006.12.010. PubMed DOI
Lloret E., Pascual J.A., Brodie E.L., Bouskill N.J., Insam H., Juárez M.F.D., Goberna M. Sewage sludge addition modifies soil microbial communities and plant performance depending on the sludge stabilization process. Appl. Soil Ecol. 2016;101:37–46. doi: 10.1016/j.apsoil.2016.01.002. DOI
Nielson G.H., Hogue E.J., Nielson D., Zebarth B.J. Evaluation of organic wastes as soil amendments for cultivation of carrot and chard on irrigated sandy soils. Can. J. Soil Sci. 1998;78:217–225.
Ojeda G., Alcaniz J.M., Ortiz O. Runoff and losses by erosion in soils amended with sewage sludge. Land Degrad. Dev. 2003;14:563–573. doi: 10.1002/ldr.580. DOI
Martínez F., Cuevas G., Calvo R., Walter I. Biowaste effects on soil and native plants in a semiarid ecosystem. J. Environ. Qual. 2003;32:472–479. doi: 10.2134/jeq2003.4720. PubMed DOI
Ramulu U.S.S. Reuse of Municipal Sewage and Sludge in Agriculture. Scientific Publishers; Jodhpur, India: 2001. p. 342.
Marschner P., Kandeler E., Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 2003;35:453–461. doi: 10.1016/S0038-0717(02)00297-3. DOI
Sadet-Bourgeteau S., Houot S., Karimi B., Mathieu O., Mercier V., Montenach D., Morvan T., Sappin-Didier V., Watteau F., Nowak V., et al. Microbial communities from different soil types respond differently to organic waste input. Appl. Soil Ecol. 2019;143:70–79. doi: 10.1016/j.apsoil.2019.05.026. DOI
Sastre I., Vicente M.A., Lobo M.C. Influence of the Application of Sewage Sludges on Soil Microbial Activity. Bioresour. Technol. 1996;57:19–23. doi: 10.1016/0960-8524(96)00035-1. DOI
Garbeva P., van Veen J.A., van Elsas J.D. Microbial diversity in soil: Selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 2004;42:243–270. doi: 10.1146/annurev.phyto.42.012604.135455. PubMed DOI
Hartmann M., Widmer F. Community structure analysis are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl. Environ. Microbiol. 2006;72:7804–7812. doi: 10.1128/AEM.01464-06. PubMed DOI PMC
Bachelot B., Uriarte M., Zimmerman J.K., Thompson J., Leff J.W., Asiaii A., Koshner J., McGuire K. Long-lasting effects of land use history on soil fungal communities in second-growth tropical rain forests. Ecol. Appl. 2016;26:1881–1895. doi: 10.1890/15-1397.1. PubMed DOI
Wardle D.A., Bardgett R.D., Klironomos J.N., Setälä H., van der Putten W.H., Wall D.H. Ecological linkages between aboveground and belowground biota. Science. 2004;304:1629–1633. doi: 10.1126/science.1094875. PubMed DOI
Urbanová M., Šnajdr J., Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 2015;84:53–64. doi: 10.1016/j.soilbio.2015.02.011. DOI
Garg N., Geetanjali, Kaur A. Arbuscular mycorrhizal: Nutritional aspects. Arch. Agron. Soil Sci. 2006;52:593–606. doi: 10.1080/03650340601037127. DOI
Wang B., Qiu Y.L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16:299–363. doi: 10.1007/s00572-005-0033-6. PubMed DOI
Garg N., Chandel S. Arbuscular mycorrhizal networks: Process and functions. A review. Agron. Sustain. Dev. 2010;30:581–599. doi: 10.1051/agro/2009054. DOI
Klironomos J. Host-Specificity and Functional Diversity among Arbuscular Mycorrhizal Fungi. In: Bell C.R., Brylinski M., Johnson-Green P., editors. Proceedings of the 8th International Symposium on Microbial Ecology; Halifax, NS, Canada. 9–14 August 2000; Halifax, NS, Canada: Atlantic Canada Society for Microbial Ecology; pp. 845–851.
Paszkowski U. A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol. 2006;172:35–46. doi: 10.1111/j.1469-8137.2006.01840.x. PubMed DOI
Khan A.G. Mycorrhizoremediation—An enhanced form of phytoremediation. J. Zhejiang Univ. Sci. B. 2006;7:503–514. doi: 10.1631/jzus.2006.B0503. PubMed DOI PMC
Gaur A., Adholeya A. Prospects of Arbuscular Mycorrhizal Fungi in Phytoremediation of Heavy Metal Contaminated Soils. Curr. Sci. 2004;86:528–534.
Vivas A., Barea J.M., Azcón R. Interactive effect of Brevibacillus brevis and Glomus mosseae both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soils. Environ. Pollut. 2005;134:257–266. doi: 10.1016/j.envpol.2004.07.029. PubMed DOI
Pilu R., Bucci A., Cerino Badone F., Landoni M. Giant Reed (Arundo donax L.): A weed plant or a promising energy crop? Afr. J. Biotechnol. 2012;11:9163–9174. doi: 10.5897/AJB11.4182. DOI
Gubišová M., Čičková M., Klčová L., Gubiš J. In vitro tillering—An effective way to multiply high-biomass plant Arundo donax. Ind. Crop Prod. 2016;81:123–128. doi: 10.1016/j.indcrop.2015.11.080. DOI
Lee J., Lee S., Young J.P. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microb. Ecol. 2008;65:339–349. doi: 10.1111/j.1574-6941.2008.00531.x. PubMed DOI
Mummey D.L., Rillig M.C., Holben W.E. Neighbouring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil. 2005;271:83–90. doi: 10.1007/s11104-004-2066-6. DOI
Clapp J.P., Young J.P.W., Merryweather J.W., Fitter A.H. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol. 1995;130:259–265. doi: 10.1111/j.1469-8137.1995.tb03047.x. DOI
Clapp J.P., Fitter A.H., Young J.P. Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp. Mol. Ecol. 1999;8:915–921. doi: 10.1046/j.1365-294x.1999.00642.x. PubMed DOI
Huber T., Faulkner G., Hugenholtz P. Bellerophon: A program to detect chimeric sequences in multiple sequence alignments. Bioinformatics. 2004;20:2317–2319. doi: 10.1093/bioinformatics/bth226. PubMed DOI
Jost L. Entropy and diversity. Oikos. 2006;113:363–375. doi: 10.1111/j.2006.0030-1299.14714.x. DOI
Shannon C.E., Weaver W. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI
Pielou E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966;13:131–144. doi: 10.1016/0022-5193(66)90013-0. DOI
Hammer Ø., Harper D. Paleontological Data Analysis. Blackwell Publishing; Oxford, UK: 2006. p. 351.
Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2017 doi: 10.1093/bib/bbx108. PubMed DOI PMC
Anderson I.C., Parkin P.I., Campbell C.D. DNA- and RNA-derived assessments of fungal community composition in soil amended with sewage sludge rich in cadmium, copper and zinc. Soil Biol. Biochem. 2008;40:2358–2365. doi: 10.1016/j.soilbio.2008.05.015. DOI
Kerfahi D., Ogwu M.C., Ariunzaya D., Balt A., Davaasuren D., Enkhmandal O., Purevsuren T., Batbaatar A., Tibbett M., Undrakhbold S., et al. Metal-Tolerant Fungal Communities Are Delineated by High Zinc, Lead, and Copper Concentrations in Metalliferous Gobi Desert Soils. Microb. Ecol. 2019:1–12. doi: 10.1007/s00248-019-01405-8. PubMed DOI
Gomes N.C.M., Landi L., Smalla K., Nannipieri P., Brookes P.C., Renella G. Effects of Cd- and Zn-enriched sewage sludge on soil bacterial and fungal communities. Ecotox. Environ. Saf. 2010;73:1255–1263. doi: 10.1016/j.ecoenv.2010.07.027. PubMed DOI
Cavani L., Manici L.M., Caputo F., Peruzzi E., Ciavatta C. Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities. J. Environ. Manag. 2016;182:37–47. doi: 10.1016/j.jenvman.2016.07.050. PubMed DOI
Bastida F., Jehmlich N., Martínez-Navarro J., Bayona V., García C., Moreno J.L. The effects of struvite and sewage sludge on plant yield and the microbial community of a semiarid Mediterranean soil. Geoderma. 2019;337:1051–1057. doi: 10.1016/j.geoderma.2018.10.046. DOI
Mossa A.-W., Dickinson M.J., West H.M., Young S.D., Crout N.M.J. The response of soil microbial diversity and abundance to long-term application of biosolids. Environ. Pollut. 2017;224:16–25. doi: 10.1016/j.envpol.2017.02.056. PubMed DOI
Lin Y., Ye Y., Hu Y., Shi H. The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Ecotox. Environ. Saf. 2019;180:557–564. doi: 10.1016/j.ecoenv.2019.05.057. PubMed DOI
Del Val C., Barea J.M., Azcón-Aguilar C. Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl. Environ. Microbiol. 1999;65:718–723. PubMed PMC
Kumar S., Saxena S. Arbuscular Mycorrhizal Fungi (AMF) from Heavy Metal-Contaminated Soils: Molecular Approach and Application in Phytoremediation. In: Giri B., Prasad R., Wu Q.S., Varma A., editors. Biofertilizers for Sustainable Agriculture and Environment. Springer Nature; Cham, Switzerland: 2019. pp. 489–500.
Cruz-Paredes C., López-García Á., Rubæk G.H., Hovmand M.F., Sørensen P., Kjøller R. Risk assessment of replacing conventional P fertilizers with biomass ash: Residual effects on plant yield, nutrition, cadmium accumulation and mycorrhizal status. Sci. Total Environ. 2017;575:1168–1176. doi: 10.1016/j.scitotenv.2016.09.194. PubMed DOI
Tang J., Zhang J., Ren L., Zhou Y., Gao J., Luo L., Yang Y., Peng Q., Huang H., Chen A. Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. J. Environ. Manag. 2019;242:121–130. doi: 10.1016/j.jenvman.2019.04.061. PubMed DOI
Helgason T., Merryweather J.W., Denison J., Wilson P., Young J.P.W., Fitter A.H. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J. Ecol. 2002;90:371–384. doi: 10.1046/j.1365-2745.2001.00674.x. DOI
Douhan G.W., Petersen C., Bledsoe C.S., Rizzo D.M. Contrasting root associated fungi of three common oak-woodland plant species based on molecular identification: Host specificity or non-specific amplification? Mycorrhiza. 2005;15:365–372. doi: 10.1007/s00572-004-0341-2. PubMed DOI
Santos J.C., Finlay R.D., Tehler A. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytol. 2006;172:159–168. doi: 10.1111/j.1469-8137.2006.01799.x. PubMed DOI
Santos-Gonzalez J.C., Finlay R.D., Tehler A. Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl. Environ. Microbiol. 2007;73:5613–5623. doi: 10.1128/AEM.00262-07. PubMed DOI PMC
Beauregard M.S., Hamel C., Atul-Nayyar, St-Arnaud M. Long-Term Phosphorus Fertilization Impacts Soil Fungal and Bacterial Diversity but not AM Fungal Community in Alfalfa. Microb. Ecol. 2010;59:379–389. doi: 10.1007/s00248-009-9583-z. PubMed DOI
Liu W., Zhang Y., Jiang S., Deng Y., Christie P., Murray P.J., Li X., Zhang J. Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci. Rep. 2016;6:24902. doi: 10.1038/srep24902. PubMed DOI PMC
Moreira M., Zucchi M.I., Gomes J.E., Tsai S.M., Alves-Pereira A., Cardoso E.J.B.N. Araucaria angustifolia Aboveground Roots Presented High Arbuscular Mycorrhizal Fungal Colonization and Diversity in the Brazilian Atlantic Forest. Pedosphere. 2016;26:561–566. doi: 10.1016/S1002-0160(15)60065-0. DOI
Liang Z.B., Lee D.J., Dweikat I.M., Wedin D.A., Yuen G.Y., Drijber R.A. Molecular Diversity of Arbuscular Mycorrhizae in Roots of Invasive to Grasslands. Soil Sci. Soc. Am. J. 2017;81:526–536. doi: 10.2136/sssaj2016.05.0133. DOI
Calheiros C.S.C., Pereira S.I.A., Franco A.R., Castro P.M.L. Diverse Arbuscular Mycorrhizal Fungi (AMF) Communities Colonize Plants Inhabiting a Constructed Wetland for Wastewater Treatment. Water. 2019;11:1535. doi: 10.3390/w11081535. DOI
Heberling J.M., Burke D.J. Utilizing herbarium specimens to quantify historical mycorrhizal communities. Appl. Plant Sci. 2019;7:1–11. doi: 10.1002/aps3.1223. PubMed DOI PMC
Glomeromycota PHYLOGENY, Phylogeny and Taxonomy of Glomeromycota. [(accessed on 2 September 2019)]; Available online: www.amf-phylogeny.com.
Sarathambal C., Khankhane P.J., Gharde Y., Kumar B., Varun M., Arun S. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Int. J. Phytoremediat. 2017;19:360–370. doi: 10.1080/15226514.2016.1225289. PubMed DOI
Romero-Munar A., Del-Saz N.F., Ribas-Carbó M., Flexas J., Baraza E., Florez-Sarasa I., Fernie A.R., Gulías J. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation. Plant Cell Environ. 2017;40:1115–1126. doi: 10.1111/pce.12902. PubMed DOI
Pollastri S., Savvides A., Pesando M., Lumini E., Volpe M.G., Ozudogru E.A., Faccio A., De Cunzo F., Michelozzi M., Lambardi M., et al. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta. 2018;247:573–585. doi: 10.1007/s00425-017-2808-3. PubMed DOI
Tauler M., Baraza E. Improving the acclimatization and establishment of Arundo donax L. plantlets, a promising energy crop, using a mycorrhiza-based biofertilizer. Ind. Crop Prod. 2015;66:299–304. doi: 10.1016/j.indcrop.2014.12.039. DOI
Baraza E., Tauler M., Romero-Munar A., Cifre J., Gulias J. Mycorrhiza-Based Biofertilizer Application to Improve the Quality of Arundo donax L., Plantlets. In: Barth S., Murphy-Bokern D., Kalinina O., Taylor G., Jones M., editors. Perennial Biomass Crops for a Resource-Constrained World. Springer Nature; Cham, Switzerland: 2016. pp. 225–232.
Moffett B.F., Nicholson F.A., Uwakwe N.C., Chambers B.J., Harris J.A., Hill T.C.J. Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol. Ecol. 2003;43:13–19. doi: 10.1111/j.1574-6941.2003.tb01041.x. PubMed DOI
Golui D., Datta S.P., Rattan R.K., Dwivedi B.S., Meena M.C. Predicting bioavailability of metals from sludge-amended soils. Environ. Monit. Assess. 2014;186:8541–8553. doi: 10.1007/s10661-014-4023-z. PubMed DOI