Photosulfoxidation Catalysis as the Driving Principle for Deazaoxaflavin Photoredox Catalyst Formation

. 2025 Oct 10 ; 90 (40) : 14039-14044. [epub] 20250925

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40997895

Catalysts are essential for sustainability because they decrease energy and resource consumption in the production of high value-added products. The design of a novel catalyst is a challenging and expensive target, and a simplified methodology for catalyst development can trigger burgeoning progress in both academic and applied research. Here, we demonstrate a reaction network that autonomously yields the photoredox catalyst for the transformation of the provided substrate under applied catalytic conditions. The system stems from the reversible condensation pathway leading to deazaoxaflavins, 2H-chromeno[2,3-d]pyrimidine synthetic analogs of flavins, with which they share photoorganocatalytic activity. We report on the photocatalytic activity of deazaoxaflavins and their covalent dynamic behavior. The reversibility principle allows for the exchange of one of the deazaoxaflavin constituents for a different moiety, thus leading to adaptability of the catalyst. We argue that the observed phenomenon is of thermodynamic origin and thus can be applied to other photo/organocatalytic reactions in which the combination of a suitable substrate and conditions is the governing principle for catalyst formation.

Zobrazit více v PubMed

König B., Kümmel S., Svobodová E., Cibulka R.. Flavin Photocatalysis. Phys. Sci. Rev. 2018;3(8):20170168. doi: 10.1515/psr-2017-0168. DOI

Flavin-Based Catalysis: Principles and Applications; Cibulka, R. , Fraaije, M. W. , Eds.; Wiley VCH: Weinheim, 2021.

Bruice T. C.. Mechanisms of Flavin Catalysis. Acc. Chem. Res. 1980;13(8):256–262. doi: 10.1021/ar50152a002. DOI

Neveselý T., Svobodová E., Chudoba J., Sikorski M., Cibulka R.. Efficient Metal-Free Aerobic Photooxidation of Sulfides to Sulfoxides Mediated by a Vitamin B2 Derivative and Visible Light. Adv. Synth. Catal. 2016;358(10):1654–1663. doi: 10.1002/adsc.201501123. DOI

König, B. ; Kümmel, S. ; Svobodová, E. ; Cibulka, R. . 3. Flavin Photocatalysis; De Gruyter, 2020; pp 45–72.

Morack T., Metternich J. B., Gilmour R.. Vitamin Catalysis: Direct, Photocatalytic Synthesis of Benzocoumarins via (−)-Riboflavin-Mediated Electron Transfer. Org. Lett. 2018;20(5):1316–1319. doi: 10.1021/acs.orglett.8b00052. PubMed DOI

de Gonzalo G., Fraaije M. W.. Recent Developments in Flavin-Based Catalysis. ChemCatChem. 2013;5(2):403–415. doi: 10.1002/cctc.201200466. DOI

Figueroa-Villar J. D., Cruz E. R.. A Simple Approach towards the Synthesis of Oxadeazaflavines. Tetrahedron. 1993;49(14):2855–2862. doi: 10.1016/S0040-4020(01)80384-7. DOI

Conrad M., Reinbach H.. Condensationen von Barbitursäure Und Aldehyden. Ber. Dtsch. Chem. Ges. 1901;34(1):1339–1344. doi: 10.1002/cber.190103401214. DOI

Ménová P., Dvořáková H., Eigner V., Ludvík J., Cibulka R.. Electron-Deficient Alloxazinium Salts: Efficient Organocatalysts of Mild and Chemoselective Sulfoxidations with Hydrogen Peroxide. Adv. Synth. Catal. 2013;355(17):3451–3462. doi: 10.1002/adsc.201300617. DOI

Lindén A. A., Krüger L., Bäckvall J.-E.. Highly Selective Sulfoxidation of Allylic and Vinylic Sulfides by Hydrogen Peroxide Using a Flavin as Catalyst. J. Org. Chem. 2003;68(15):5890–5896. doi: 10.1021/jo034273z. PubMed DOI

Imada Y., Iida H., Ono S., Murahashi S.-I.. Flavin Catalyzed Oxidations of Sulfides and Amines with Molecular Oxygen. J. Am. Chem. Soc. 2003;125(10):2868–2869. doi: 10.1021/ja028276p. PubMed DOI

Marsh B. J., Carbery D. R.. Chemoselective Sulfide Oxidation Mediated by Bridged Flavinium Organocatalysts. Tetrahedron Lett. 2010;51(17):2362–2365. doi: 10.1016/j.tetlet.2010.02.164. DOI

Graml A., Neveselý T., Jan Kutta R., Cibulka R., König B.. Deazaflavin Reductive Photocatalysis Involves Excited Semiquinone Radicals. Nat. Commun. 2020;11(1):3174. doi: 10.1038/s41467-020-16909-y. PubMed DOI PMC

Wilhelms N., Kulchat S., Lehn J.-M.. Organocatalysis of C = N/C = N and C = C/C = N Exchange in Dynamic Covalent Chemistry. Helv. Chim. Acta. 2012;95(12):2635–2651. doi: 10.1002/hlca.201200515. DOI

Kovaříček P., Meister A. C., Flídrová K., Cabot R., Kovaříčková K., Lehn J.-M.. Competition-Driven Selection in Covalent Dynamic Networks and Implementation in Organic Reactional Selectivity. Chem. Sci. 2016;7(5):3215–3226. doi: 10.1039/C5SC04924E. PubMed DOI PMC

Fanlo-Virgós H., Alba A.-N. R., Hamieh S., Colomb-Delsuc M., Otto S.. Transient Substrate-Induced Catalyst Formation in a Dynamic Molecular Network. Angew. Chem., Int. Ed. 2014;53(42):11346–11350. doi: 10.1002/anie.201403480. PubMed DOI

Křížová K., Ismail R., Nguyen T. A., Bříza M., Geleverya A., Guerra V., Kovaříček P.. Photosulfoxidation catalysis as the driving principle for the deazaoxaflavin photoredox catalyst formation. ChemRxiv. 2025:chemrxiv-2024-0h9t2-v3. doi: 10.26434/chemrxiv-2024-0h9t2-v3. PubMed DOI PMC

Romero N. A., Nicewicz D. A.. Organic Photoredox Catalysis. Chem. Rev. 2016;116(17):10075–10166. doi: 10.1021/acs.chemrev.6b00057. PubMed DOI

Lehn J.-M.. Perspectives in ChemistryAspects of Adaptive Chemistry and Materials. Angew. Chem., Int. Ed. 2015;54(11):3276–3289. doi: 10.1002/anie.201409399. PubMed DOI

Hamieh S., Saggiomo V., Nowak P., Mattia E., Ludlow R. F., Otto S.. A “Dial-A-Receptor” Dynamic Combinatorial Library. Angew. Chem., Int. Ed. 2013;52(47):12368–12372. doi: 10.1002/anie.201305744. PubMed DOI

Materese C. K., Cruikshank D. P., Sandford S. A., Imanaka H., Nuevo M., White D. W.. ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: CARBOXYLIC ACIDS, NITRILES, AND UREA DETECTED IN REFRACTORY RESIDUES PRODUCED FROM THE UV PHOTOLYSIS OF N2:CH4:CO-CONTAINING ICES. Astrophys. J. 2014;788(2):111. doi: 10.1088/0004-637X/788/2/111. DOI

Sandford S. A., Nuevo M., Bera P. P., Lee T. J.. Prebiotic Astrochemistry and the Formation of Molecules of Astrobiological Interest in Interstellar Clouds and Protostellar Disks. Chem. Rev. 2020;120(11):4616–4659. doi: 10.1021/acs.chemrev.9b00560. PubMed DOI

Fiore M., Strazewski P.. Bringing Prebiotic Nucleosides and Nucleotides Down to Earth. Angew. Chem., Int. Ed. 2016;55(45):13930–13933. doi: 10.1002/anie.201606232. PubMed DOI

Cafferty B. J., Fialho D. M., Khanam J., Krishnamurthy R., Hud N. V.. Spontaneous Formation and Base Pairing of Plausible Prebiotic Nucleotides in Water. Nat. Commun. 2016;7(1):11328. doi: 10.1038/ncomms11328. PubMed DOI PMC

Gottlieb H. E., Kotlyar V., Nudelman A.. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997;62(21):7512–7515. doi: 10.1021/jo971176v. PubMed DOI

Figueroa-Villar J. D., Vieira A. A.. Nuclear Magnetic Resonance and Molecular Modeling Study of Exocyclic Carbon–Carbon Double Bond Polarization in Benzylidene Barbiturates. J. Mol. Struct. 2013;1034:310–317. doi: 10.1016/j.molstruc.2012.09.021. DOI

Figueroa-Villar J. D., Oliveira S. C. G. de.. Synthesis and Mechanism of Formation of Oxadeazaflavines by Microwave Thermal Cyclization of Ortho-Halobenzylidene Barbiturates. J. Braz. Chem. Soc. 2011;22:2101–2107. doi: 10.1590/S0103-50532011001100012. DOI

Belz T. F., Olson M. E., Giang E., Law M., Janda K. D.. Evaluation of a Series of Lipidated Tucaresol Adjuvants in a Hepatitis C Virus Vaccine Model. ACS Med. Chem. Lett. 2020;11(12):2428–2432. doi: 10.1021/acsmedchemlett.0c00413. PubMed DOI PMC

Pramanik H. A. R., Chanda C., Paul P. C., Bhattacharjee C. R., Prasad S. K., Rao D. S. S.. Novel Tris-Buffer Based Schiff Base Bearing Long Flexible Alkoxy Arm and Its Lanthanide Complexes: Mesomorphism and Photoluminescence. J. Mol. Struct. 2019;1180:472–479. doi: 10.1016/j.molstruc.2018.12.014. DOI

Bard, A. J. ; Faulkner, L. R. . Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 1980.

Inzelt, G. Pseudo-Reference Electrodes. In Handbook of Reference Electrodes; Inzelt, G. , Lewenstam, A. , Scholz, F. , Eds.; Springer: Berlin, Heidelberg, 2013; pp 331–332.

Cardona C. M., Li W., Kaifer A. E., Stockdale D., Bazan G. C.. Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Adv. Mater. 2011;23(20):2367–2371. doi: 10.1002/adma.201004554. PubMed DOI

Willems R. E. M., Weijtens C. H. L., de Vries X., Coehoorn R., Janssen R. A. J.. Relating Frontier Orbital Energies from Voltammetry and Photoelectron Spectroscopy to the Open-Circuit Voltage of Organic Solar Cells. Adv. Energy Mater. 2019;9(10):1803677. doi: 10.1002/aenm.201803677. DOI

Richtar J., Heinrichova P., Apaydin D. H., Schmiedova V., Yumusak C., Kovalenko A., Weiter M., Sariciftci N. S., Krajcovic J.. Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules. 2018;23(9):2271. doi: 10.3390/molecules23092271. PubMed DOI PMC

Wolf M. M. N., Schumann C., Gross R., Domratcheva T., Diller R.. Ultrafast Infrared Spectroscopy of Riboflavin: Dynamics, Electronic Structure, and Vibrational Mode Analysis. J. Phys. Chem. B. 2008;112(42):13424–13432. doi: 10.1021/jp804231c. PubMed DOI

Climent T., González-Luque R., Merchán M., Serrano-Andrés L.. Theoretical Insight into the Spectroscopy and Photochemistry of Isoalloxazine, the Flavin Core Ring. J. Phys. Chem. A. 2006;110(50):13584–13590. doi: 10.1021/jp065772h. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...