Photosulfoxidation Catalysis as the Driving Principle for Deazaoxaflavin Photoredox Catalyst Formation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40997895
PubMed Central
PMC12519482
DOI
10.1021/acs.joc.5c00185
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Catalysts are essential for sustainability because they decrease energy and resource consumption in the production of high value-added products. The design of a novel catalyst is a challenging and expensive target, and a simplified methodology for catalyst development can trigger burgeoning progress in both academic and applied research. Here, we demonstrate a reaction network that autonomously yields the photoredox catalyst for the transformation of the provided substrate under applied catalytic conditions. The system stems from the reversible condensation pathway leading to deazaoxaflavins, 2H-chromeno[2,3-d]pyrimidine synthetic analogs of flavins, with which they share photoorganocatalytic activity. We report on the photocatalytic activity of deazaoxaflavins and their covalent dynamic behavior. The reversibility principle allows for the exchange of one of the deazaoxaflavin constituents for a different moiety, thus leading to adaptability of the catalyst. We argue that the observed phenomenon is of thermodynamic origin and thus can be applied to other photo/organocatalytic reactions in which the combination of a suitable substrate and conditions is the governing principle for catalyst formation.
Zobrazit více v PubMed
König B., Kümmel S., Svobodová E., Cibulka R.. Flavin Photocatalysis. Phys. Sci. Rev. 2018;3(8):20170168. doi: 10.1515/psr-2017-0168. DOI
Flavin-Based Catalysis: Principles and Applications; Cibulka, R. , Fraaije, M. W. , Eds.; Wiley VCH: Weinheim, 2021.
Bruice T. C.. Mechanisms of Flavin Catalysis. Acc. Chem. Res. 1980;13(8):256–262. doi: 10.1021/ar50152a002. DOI
Neveselý T., Svobodová E., Chudoba J., Sikorski M., Cibulka R.. Efficient Metal-Free Aerobic Photooxidation of Sulfides to Sulfoxides Mediated by a Vitamin B2 Derivative and Visible Light. Adv. Synth. Catal. 2016;358(10):1654–1663. doi: 10.1002/adsc.201501123. DOI
König, B. ; Kümmel, S. ; Svobodová, E. ; Cibulka, R. . 3. Flavin Photocatalysis; De Gruyter, 2020; pp 45–72.
Morack T., Metternich J. B., Gilmour R.. Vitamin Catalysis: Direct, Photocatalytic Synthesis of Benzocoumarins via (−)-Riboflavin-Mediated Electron Transfer. Org. Lett. 2018;20(5):1316–1319. doi: 10.1021/acs.orglett.8b00052. PubMed DOI
de Gonzalo G., Fraaije M. W.. Recent Developments in Flavin-Based Catalysis. ChemCatChem. 2013;5(2):403–415. doi: 10.1002/cctc.201200466. DOI
Figueroa-Villar J. D., Cruz E. R.. A Simple Approach towards the Synthesis of Oxadeazaflavines. Tetrahedron. 1993;49(14):2855–2862. doi: 10.1016/S0040-4020(01)80384-7. DOI
Conrad M., Reinbach H.. Condensationen von Barbitursäure Und Aldehyden. Ber. Dtsch. Chem. Ges. 1901;34(1):1339–1344. doi: 10.1002/cber.190103401214. DOI
Ménová P., Dvořáková H., Eigner V., Ludvík J., Cibulka R.. Electron-Deficient Alloxazinium Salts: Efficient Organocatalysts of Mild and Chemoselective Sulfoxidations with Hydrogen Peroxide. Adv. Synth. Catal. 2013;355(17):3451–3462. doi: 10.1002/adsc.201300617. DOI
Lindén A. A., Krüger L., Bäckvall J.-E.. Highly Selective Sulfoxidation of Allylic and Vinylic Sulfides by Hydrogen Peroxide Using a Flavin as Catalyst. J. Org. Chem. 2003;68(15):5890–5896. doi: 10.1021/jo034273z. PubMed DOI
Imada Y., Iida H., Ono S., Murahashi S.-I.. Flavin Catalyzed Oxidations of Sulfides and Amines with Molecular Oxygen. J. Am. Chem. Soc. 2003;125(10):2868–2869. doi: 10.1021/ja028276p. PubMed DOI
Marsh B. J., Carbery D. R.. Chemoselective Sulfide Oxidation Mediated by Bridged Flavinium Organocatalysts. Tetrahedron Lett. 2010;51(17):2362–2365. doi: 10.1016/j.tetlet.2010.02.164. DOI
Graml A., Neveselý T., Jan Kutta R., Cibulka R., König B.. Deazaflavin Reductive Photocatalysis Involves Excited Semiquinone Radicals. Nat. Commun. 2020;11(1):3174. doi: 10.1038/s41467-020-16909-y. PubMed DOI PMC
Wilhelms N., Kulchat S., Lehn J.-M.. Organocatalysis of C = N/C = N and C = C/C = N Exchange in Dynamic Covalent Chemistry. Helv. Chim. Acta. 2012;95(12):2635–2651. doi: 10.1002/hlca.201200515. DOI
Kovaříček P., Meister A. C., Flídrová K., Cabot R., Kovaříčková K., Lehn J.-M.. Competition-Driven Selection in Covalent Dynamic Networks and Implementation in Organic Reactional Selectivity. Chem. Sci. 2016;7(5):3215–3226. doi: 10.1039/C5SC04924E. PubMed DOI PMC
Fanlo-Virgós H., Alba A.-N. R., Hamieh S., Colomb-Delsuc M., Otto S.. Transient Substrate-Induced Catalyst Formation in a Dynamic Molecular Network. Angew. Chem., Int. Ed. 2014;53(42):11346–11350. doi: 10.1002/anie.201403480. PubMed DOI
Křížová K., Ismail R., Nguyen T. A., Bříza M., Geleverya A., Guerra V., Kovaříček P.. Photosulfoxidation catalysis as the driving principle for the deazaoxaflavin photoredox catalyst formation. ChemRxiv. 2025:chemrxiv-2024-0h9t2-v3. doi: 10.26434/chemrxiv-2024-0h9t2-v3. PubMed DOI PMC
Romero N. A., Nicewicz D. A.. Organic Photoredox Catalysis. Chem. Rev. 2016;116(17):10075–10166. doi: 10.1021/acs.chemrev.6b00057. PubMed DOI
Lehn J.-M.. Perspectives in ChemistryAspects of Adaptive Chemistry and Materials. Angew. Chem., Int. Ed. 2015;54(11):3276–3289. doi: 10.1002/anie.201409399. PubMed DOI
Hamieh S., Saggiomo V., Nowak P., Mattia E., Ludlow R. F., Otto S.. A “Dial-A-Receptor” Dynamic Combinatorial Library. Angew. Chem., Int. Ed. 2013;52(47):12368–12372. doi: 10.1002/anie.201305744. PubMed DOI
Materese C. K., Cruikshank D. P., Sandford S. A., Imanaka H., Nuevo M., White D. W.. ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: CARBOXYLIC ACIDS, NITRILES, AND UREA DETECTED IN REFRACTORY RESIDUES PRODUCED FROM THE UV PHOTOLYSIS OF N2:CH4:CO-CONTAINING ICES. Astrophys. J. 2014;788(2):111. doi: 10.1088/0004-637X/788/2/111. DOI
Sandford S. A., Nuevo M., Bera P. P., Lee T. J.. Prebiotic Astrochemistry and the Formation of Molecules of Astrobiological Interest in Interstellar Clouds and Protostellar Disks. Chem. Rev. 2020;120(11):4616–4659. doi: 10.1021/acs.chemrev.9b00560. PubMed DOI
Fiore M., Strazewski P.. Bringing Prebiotic Nucleosides and Nucleotides Down to Earth. Angew. Chem., Int. Ed. 2016;55(45):13930–13933. doi: 10.1002/anie.201606232. PubMed DOI
Cafferty B. J., Fialho D. M., Khanam J., Krishnamurthy R., Hud N. V.. Spontaneous Formation and Base Pairing of Plausible Prebiotic Nucleotides in Water. Nat. Commun. 2016;7(1):11328. doi: 10.1038/ncomms11328. PubMed DOI PMC
Gottlieb H. E., Kotlyar V., Nudelman A.. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997;62(21):7512–7515. doi: 10.1021/jo971176v. PubMed DOI
Figueroa-Villar J. D., Vieira A. A.. Nuclear Magnetic Resonance and Molecular Modeling Study of Exocyclic Carbon–Carbon Double Bond Polarization in Benzylidene Barbiturates. J. Mol. Struct. 2013;1034:310–317. doi: 10.1016/j.molstruc.2012.09.021. DOI
Figueroa-Villar J. D., Oliveira S. C. G. de.. Synthesis and Mechanism of Formation of Oxadeazaflavines by Microwave Thermal Cyclization of Ortho-Halobenzylidene Barbiturates. J. Braz. Chem. Soc. 2011;22:2101–2107. doi: 10.1590/S0103-50532011001100012. DOI
Belz T. F., Olson M. E., Giang E., Law M., Janda K. D.. Evaluation of a Series of Lipidated Tucaresol Adjuvants in a Hepatitis C Virus Vaccine Model. ACS Med. Chem. Lett. 2020;11(12):2428–2432. doi: 10.1021/acsmedchemlett.0c00413. PubMed DOI PMC
Pramanik H. A. R., Chanda C., Paul P. C., Bhattacharjee C. R., Prasad S. K., Rao D. S. S.. Novel Tris-Buffer Based Schiff Base Bearing Long Flexible Alkoxy Arm and Its Lanthanide Complexes: Mesomorphism and Photoluminescence. J. Mol. Struct. 2019;1180:472–479. doi: 10.1016/j.molstruc.2018.12.014. DOI
Bard, A. J. ; Faulkner, L. R. . Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 1980.
Inzelt, G. Pseudo-Reference Electrodes. In Handbook of Reference Electrodes; Inzelt, G. , Lewenstam, A. , Scholz, F. , Eds.; Springer: Berlin, Heidelberg, 2013; pp 331–332.
Cardona C. M., Li W., Kaifer A. E., Stockdale D., Bazan G. C.. Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Adv. Mater. 2011;23(20):2367–2371. doi: 10.1002/adma.201004554. PubMed DOI
Willems R. E. M., Weijtens C. H. L., de Vries X., Coehoorn R., Janssen R. A. J.. Relating Frontier Orbital Energies from Voltammetry and Photoelectron Spectroscopy to the Open-Circuit Voltage of Organic Solar Cells. Adv. Energy Mater. 2019;9(10):1803677. doi: 10.1002/aenm.201803677. DOI
Richtar J., Heinrichova P., Apaydin D. H., Schmiedova V., Yumusak C., Kovalenko A., Weiter M., Sariciftci N. S., Krajcovic J.. Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules. 2018;23(9):2271. doi: 10.3390/molecules23092271. PubMed DOI PMC
Wolf M. M. N., Schumann C., Gross R., Domratcheva T., Diller R.. Ultrafast Infrared Spectroscopy of Riboflavin: Dynamics, Electronic Structure, and Vibrational Mode Analysis. J. Phys. Chem. B. 2008;112(42):13424–13432. doi: 10.1021/jp804231c. PubMed DOI
Climent T., González-Luque R., Merchán M., Serrano-Andrés L.. Theoretical Insight into the Spectroscopy and Photochemistry of Isoalloxazine, the Flavin Core Ring. J. Phys. Chem. A. 2006;110(50):13584–13590. doi: 10.1021/jp065772h. PubMed DOI