EBV Infection Alters NK Cell Phenotype Distinctly From hCMV

. 2025 Oct ; 97 (10) : e70620.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41002189

Grantová podpora
The study was supported by the Russian Science Foundation grant No. 24-75-10136.

Natural killer (NK) cells are vital in the antiviral response regulated by inhibitory and activating receptors, including NKG2 and KIR families, which bind HLA-I. While the adaptive features of NK cells in response to human cytomegalovirus (hCMV) have been well described, their behavior during Epstein-Barr virus (EBV) infection and the influence of KIR-HLA combinations in healthy carriers of these viruses remains unclear. We performed high-resolution HLA genotyping, phenotypic profiling of NK cell subsets, and serological testing for hCMV and EBV-specific IgG in 85 healthy adult donors. hCMV-seropositive individuals exhibited significant expansions of NKG2C+ and HLA-DR+ NK cell subsets, with the proportion of NKG2C+ cells strongly correlating with hCMV-IgG titers. In contrast, EBV infection was associated with increased frequencies of terminally differentiated CD56dim, NKG2A-, CD57+ NK cells and elevated expression of inhibitory KIRs, but not NKG2C or HLA-DR. EBV-IgG titers correlated with CD57 and KIR2DS4 levels. Among KIR2DS4-expressing donors, carriage of at least one HLA-C2 allele was associated with elevated EBV-IgGs. The precise analysis of KIR2DL2/DL3, KIR2DS4, and KIR2DL1 revealed dependencies on EBV-IgG titers, with no associations with hCMV. These findings highlight the differential impacts of hCMV and EBV on NK cells and underscore the relevance of HLA-KIR landscapes in shaping antiviral immunity.

Zobrazit více v PubMed

S. Sivori, P. Vacca, G. Del Zotto, E. Munari, M. C. Mingari, and L. Moretta, “Human NK Cells: Surface Receptors, Inhibitory Checkpoints, and Translational Applications,” Cellular and Molecular Immunology 16, no. 5 (2019): 430–441, https://doi.org/10.1038/s41423-019-0206-4.

F. Borrego, M. Masilamani, A. I. Marusina, X. Tang, and J. E. Coligan, “The CD94/NKG2 Family of Receptors: From Molecules and Cells to Clinical Relevance,” Immunologic Research 35, no. 3 (2006): 263–277, https://doi.org/10.1385/IR:35:3:263.

V. Béziat, B. Descours, C. Parizot, P. Debré, and V. Vieillard, “NK Cell Terminal Differentiation: Correlated Stepwise Decrease of NKG2A and Acquisition of KIRs,” PLoS One 5, no. 8 (2010): e11966, https://doi.org/10.1371/journal.pone.0011966.

V. M. Braud, D. S. J. Allan, C. A. O'Callaghan, et al., “HLA‐E Binds to Natural Killer Cell Receptors CD94/NKG2A, B and C,” Nature 391, no. 6669 (1998): 795–799, https://doi.org/10.1038/35869.

G. G. T. Hò, A. A. Celik, T. Huyton, et al., “NKG2A/CD94 Is a New Immune Receptor for HLA‐G and Distinguishes Amino Acid Differences in the HLA‐G Heavy Chain,” International Journal of Molecular Sciences 21, no. 12 (2020): 4362, https://doi.org/10.3390/ijms21124362.

J. Siemaszko, A. Marzec‐Przyszlak, and K. Bogunia‐Kubik, “Activating NKG2C Receptor: Functional Characteristics and Current Strategies in Clinical Applications,” Archivum Immunologiae et Therapiae Experimentalis (Warszawa) 71, no. 1 (2023): 3, https://doi.org/10.1007/S00005-023-00674-Z.

J. Bruijnesteijn, N. G. de Groot, and R. E. Bontrop, “The Genetic Mechanisms Driving Diversification of the KIR Gene Cluster in Primates,” Frontiers in Immunology 11 (2020): 582804, https://doi.org/10.3389/fimmu.2020.582804.

IPD‐KIR Database, 2023, https://www.ebi.ac.uk/ipd/kir/about/statistics/.

A. M. Martin, J. K. Kulski, S. Gaudieri, et al., “Comparative Genomic Analysis, Diversity and Evolution of Two KIR Haplotypes A and B,” Gene 335, no. 1–2 (2004): 121–131, https://doi.org/10.1016/J.GENE.2004.03.018.

M. P. Martin, A. Bashirova, J. Traherne, J. Trowsdale, and M. Carrington, “Cutting Edge: Expansion of the KIR Locus by Unequal Crossing Over,” Journal of Immunology 171, no. 5 (2003): 2192–2195, https://doi.org/10.4049/JIMMUNOL.171.5.2192.

Z. Djaoud and P. Parham, “HLAs, TCRs, and KIRs, a Triumvirate of Human Cell‐Mediated Immunity,” Annual Review of Biochemistry 89 (2020): 717–739, https://doi.org/10.1146/ANNUREV-BIOCHEM-011520-102754.

R. M. Single, M. P. Martin, X. Gao, et al., “Global Diversity and Evidence for Coevolution of KIR and HLA,” Nature Genetics 39, no. 9 (2007): 1114–1119, https://doi.org/10.1038/NG2077.

J. C. Boylngton, S. A. Motykat, P. Schuckt, A. G. Brooks, and P. D. Sun, “Crystal Structure of an NK Cell Immunoglobulin‐Like Receptor in Complex With Its Class I MHC Ligand,” Nature 405, no. 6786 (2000): 537–543, https://doi.org/10.1038/35014520.

S. Moradi, S. Stankovic, G. M. O'Connor, et al., “Structural Plasticity of KIR2DL2 and KIR2DL3 Enables Altered Docking Geometries Atop HLA‐C,” Nature Communications 12, no. 1 (2021): 1–11, https://doi.org/10.1038/s41467-021-22359-x.

J. Liua, Z. Xiaoa, H. L. Koa, M. Shena, and E. C. Ren, “Activating Killer Cell Immunoglobulin‐Like Receptor 2DS2 Binds to HLA‐A 11,” Proceedings of the National Academy of Sciences of the United States of America 111, no. 7 (2014): 2662–2667, https://doi.org/10.1073/PNAS.1322052111/-/DCSUPPLEMENTAL.

M. J. W. Sim, P. Brennan, K. L. Wahl, et al., “Innate Receptors With High Specificity for HLA Class I‐Peptide Complexes,” Science Immunology 8, no. 87 (2023): eadh1781, https://doi.org/10.1126/SCIIMMUNOL.ADH1781.

K. Maenaka, T. Juji, T. Nakayama, et al., “Killer Cell Immunoglobulin Receptors and T Cell Receptors Bind Peptide‐Major Histocompatibility Complex Class I With Distinct Thermodynamic and Kinetic Properties,” Journal of Biological Chemistry 274, no. 40 (1999): 28329–28334, https://doi.org/10.1074/JBC.274.40.28329.

S. Vollmers, A. Lobermeyer, and C. Körner, “The New Kid on the Block: HLA‐C, a Key Regulator of Natural Killer Cells in Viral Immunity,” Cells 10, no. 11 (2021): 3108, https://doi.org/10.3390/CELLS10113108.

Y. Yang, H. Bai, Y. Wu, et al., “Activating Receptor KIR2DS2 Bound to HLA‐C1 Reveals the Novel Recognition Features of Activating Receptor,” Immunology 165, no. 3 (2022): 341–354, https://doi.org/10.1111/IMM.13439.

M. J. W. Sim, S. Rajagopalan, D. M. Altmann, R. J. Boyton, P. D. Sun, and E. O. Long, “Human Nk Cell Receptor KIR2DS4 Detects a Conserved Bacterial Epitope Presented by HLA‐C,” Proceedings of the National Academy of Sciences of the United States of America 116, no. 26 (2019): 12964–12973, https://doi.org/10.1073/PNAS.1903781116.

T. Graef, A. K. Moesta, P. J. Norman, et al., “KIR2DS4 is a Product of Gene Conversion With KIR3DL2 That Introduced Specificity for HLA‐A*11 While Diminishing Avidity for HLA‐C,” Journal of Experimetnal Medicine 206, no. 11 (2009): 2557, https://doi.org/10.1084/JEM.20091010.

R. Rajalingam, “Diversity of Killer Cell Immunoglobulin‐Like Receptors and Disease,” Clinics in Laboratory Medicine 38, no. 4 (2018): 637–653, https://doi.org/10.1016/J.CLL.2018.08.001.

D. Pende, M. Falco, M. Vitale, et al., “Killer Ig‐Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation,” Frontiers in Immunology 10, no. MAY (2019): 1179, https://doi.org/10.3389/FIMMU.2019.01179.

W. F. Garcia‐Beltran, A. Hölzemer, G. Martrus, et al., “Open Conformers of HLA‐F are High‐Affinity Ligands of the Activating NK‐Cell Receptor Kir3ds1,” Nature Immunology 17, no. 9 (2016): 1067–1074, https://doi.org/10.1038/ni.3513.

A. K. Moesta, P. J. Norman, M. Yawata, N. Yawata, M. Gleimer, and P. Parham, “Synergistic Polymorphism At Two Positions Distal to the Ligand‐Binding Site Makes KIR2DL2 a Stronger Receptor for HLA‐C Than KIR2DL3,” Journal of Immunology 180, no. 6 (2008): 3969–3979, https://doi.org/10.4049/JIMMUNOL.180.6.3969.

G. David, Z. Djaoud, C. Willem, et al., “Large Spectrum of HLA‐C Recognition by Killer Ig–Like Receptor (KIR)2DL2 and KIR2DL3 and Restricted C1 Specificity of KIR2DS2: Dominant Impact of KIR2DL2/KIR2DS2 on KIR2D NK Cell Repertoire Formation,” Journal of Immunology 191, no. 9 (2013): 4778–4788, https://doi.org/10.4049/JIMMUNOL.1301580.

K. Schönberg, M. Sribar, J. Enczmann, J. C. Fischer, and M. Uhrberg, “Analyses of HLA‐C–Specific KIR Repertoires In Donors With Group A and B Haplotypes Suggest a Ligand‐Instructed Model of NK Cell Receptor Acquisition,” Blood 117, no. 1 (2011): 98–107, https://doi.org/10.1182/BLOOD-2010-03-273656.

M. Hematian Larki, E. Ashouri, S. Barani, S. M. A. Ghayumi, A. Ghaderi, and R. Rajalingam, “KIR‐HLA Gene Diversities and Susceptibility to Lung Cancer,” Scientific Reports 12, no. 1 (2022): 1–12, https://doi.org/10.1038/S41598-022-21062-1.

M. P. Martin, Y. Qi, X. Gao, et al., “Innate Partnership of HLA‐B and KIR3DL1 Subtypes Against HIV‐1,” Nature Genetics 39, no. 6 (2007): 733–740, https://doi.org/10.1038/NG2035.

M. Omraninava, S. Mehranfar, A. Khosrojerdi, et al., “Systematic Review and Meta‐Analytic Findings on the Association Between Killer‐Cell Immunoglobulin‐Like Receptor Genes and Susceptibility to Pulmonary Tuberculosis,” Pathogens and Global Health 115, no. 1 (2021): 61–69, https://doi.org/10.1080/20477724.2020.1848271.

P. Ruibal, K. L. M. C. Franken, K. E. van Meijgaarden, et al., “Identification of HLA‐E Binding Mycobacterium Tuberculosis–Derived Epitopes Through Improved Prediction Models,” Journal of Immunology 209, no. 8 (2022): 1555–1565, https://doi.org/10.4049/JIMMUNOL.2200122.

M. Zuhair, G. S. A. Smit, G. Wallis, et al., “Estimation of the Worldwide Seroprevalence of Cytomegalovirus: A Systematic Review and Meta‐Analysis,” Reviews in Medical Virology 29, no. 3 (2019): e2034, https://doi.org/10.1002/RMV.2034.

A. Kenneson and M. J. Cannon, “Review and Meta‐Analysis of the Epidemiology of Congenital Cytomegalovirus (CMV) Infection,” Reviews in Medical Virology 17, no. 4 (2007): 253–276, https://doi.org/10.1002/RMV.535.

M. Gumá, A. Angulo, C. Vilches, N. Gómez‐Lozano, N. Malats, and M. López‐Botet, “Imprint of Human Cytomegalovirus Infection on the NK Cell Receptor Repertoire,” Blood 104, no. 12 (2004): 3664–3671, https://doi.org/10.1182/BLOOD-2004-05-2058.

A. Rölle, J. Pollmann, E. M. Ewen, et al., “IL‐12–producing Monocytes and HLA‐E Control Hcmv‐Driven NKG2C+ NK Cell Expansion,” Journal of Clinical Investigation 124, no. 12 (2014): 5305, https://doi.org/10.1172/JCI77440.

Q. Hammer, T. Rückert, E. M. Borst, et al., “Peptide‐Specific Recognition of Human Cytomegalovirus Strains Controls Adaptive Natural Killer Cells Article,” Nature Immunology 19, no. 5 (2018): 453–463, https://doi.org/10.1038/S41590-018-0082-6.

V. Béziat, L. L. Liu, J. A. Malmberg, et al., “NK Cell Responses to Cytomegalovirus Infection Lead to Stable Imprints in the Human KIR Repertoire and Involve Activating KIRs,” Blood 121, no. 14 (2013): 2678, https://doi.org/10.1182/BLOOD-2012-10-459545.

K. van der Ploeg, C. Chang, M. A. Ivarsson, A. Moffett, M. R. Wills, and J. Trowsdale, “Modulation of Human Leukocyte Antigen‐C by Human Cytomegalovirus Stimulates KIR2DS1 Recognition by Natural Killer Cells,” Frontiers in immunology 8, no. MAR (2017): 29, https://doi.org/10.3389/FIMMU.2017.00298/FULL.

Z. Djaoud, G. David, C. Bressollette, et al., “Amplified NKG2C+ NK Cells in Cytomegalovirus (CMV) Infection Preferentially Express Killer Cell Ig‐Like Receptor 2DL: Functional Impact in Controlling CMV‐Infected Dendritic Cells,” Journal of Immunology 191, no. 5 (2013): 2708–2716, https://doi.org/10.4049/JIMMUNOL.1301138.

D. Di Bona, V. Scafidi, A. Plaia, et al., “HLA and Killer Cell Immunoglobulin‐Like Receptors Influence the Natural Course of CMV Infection,” Journal of Infectious Diseases 210, no. 7 (2014): 1083–1089, https://doi.org/10.1093/INFDIS/JIU226.

D. Di Bona, G. Accardi, A. Aiello, et al., “Association Between γ Marker, Human Leucocyte Antigens and Killer Immunoglobulin‐Like Receptors and the Natural Course of Human Cytomegalovirus Infection: A Pilot Study Performed in a Sicilian Population,” Immunology 153, no. 4 (2018): 523–531, https://doi.org/10.1111/IMM.12855.

S. K. Dunmire, P. S. Verghese, and H. H. Balfour, “Primary Epstein‐Barr Virus Infection,” Journal of Clinical Virology 102 (2018): 84–92, https://doi.org/10.1016/J.JCV.2018.03.001.

S. Ohga, M. Ishimura, G. Toshimoto, et al., “Clonal Origin of Epstein‐Barr Virus‐Infected T/NK‐Cell Subpopulations In Chronic Active Epstein‐Barr Virus Infection,” Nature Precedings (2010): 1, https://doi.org/10.1038/NPRE.2010.4238.1.

B. Damania, S. C. Kenney, and N. Raab‐Traub, “Epstein‐Barr Virus: Biology and Clinical Disease,” Cell 185, no. 20 (2022): 3652–3670, https://doi.org/10.1016/J.CELL.2022.08.026.

L. S. Young, L. F. Yap, and P. G. Murray, “Epstein–Barr Virus: More Than 50 Years Old and Still Providing Surprises,” Nature Reviews Cancer 2016 16:12 16, no. 12 (2016): 789–802, https://doi.org/10.1038/nrc.2016.92.

P. Hansasuta, T. Dong, H. Thananchai, et al., “Recognition of HLA‐A3 and HLA‐A11 by KIR3DL2 is Peptide‐Specific,” European Journal of Immunology 34, no. 6 (2004): 1673–1679, https://doi.org/10.1002/EJI.200425089.

L. Huo, M. Y. Jiang, Q. Li, and Y. P. Zhu, “Novel Association of Killer Cell Immunoglobulin‐Like Receptor Genes With EBV‐Infectious Diseases in Children,” Biomedical and Environmental Sciences 28, no. 4 (2015): 303–307, https://doi.org/10.3967/BES2015.042.

P. Jiang, I. M. Nolte, B. G. Hepkema, M. Stulp, A. van den Berg, and A. Diepstra, “Killer Cell Immunoglobulin‐Like Receptor Haplotype B Modulates Susceptibility to EBV‐Associated Classic Hodgkin Lymphoma,” Frontiers in immunology 13 (2022): 829943, https://doi.org/10.3389/FIMMU.2022.829943.

M. B. Kovacic, M. Martin, X. Gao, et al., “Variation of the Killer Cell Immunoglobulin‐Like Receptors and Hla‐C Genes in Nasopharyngeal Carcinoma,” Cancer Epidemiology, Biomarkers and Prevention 14, no. 11 I (2005): 2673–2677, https://doi.org/10.1158/1055-9965.EPI-05-0229.

B. M. Muriuki, C. S. Forconi, P. O. Oluoch, et al., “Association of Killer Cell Immunoglobulin‐Like Receptors With Endemic Burkitt Lymphoma in Kenyan Children,” Scientific Reports 11, no. 1 (2021): 1–9, https://doi.org/10.1038/S41598-021-90596-7.

C. Vilches, J. Castaño, N. Gómez‐Lozano, and E. Estefanía, “Facilitation of KIR Genotyping by a PCR‐SSP Method That Amplifies Short DNA Fragments,” Tissue Antigens 70, no. 5 (2007): 415–422, https://doi.org/10.1111/J.1399-0039.2007.00923.X.

J. B. Le Luduec, J. E. Boudreau, J. C. Freiberg, and K. C. Hsu, “Novel Approach to Cell Surface Discrimination Between KIR2DL1 Subtypes and KIR2DS1 Identifies Hierarchies in NK Repertoire, Education, and Tolerance,” Frontiers in Immunology 10, no. APR (2019): 448609, https://doi.org/10.3389/FIMMU.2019.00734/BIBTEX.

A. Rölle and P. Brodin, “Immune Adaptation to Environmental Influence: The Case of NK Cells and HCMV,” Trends in Immunology 37, no. 3 (2016): 233–243, https://doi.org/10.1016/J.IT.2016.01.005.

M. Y. He, M. Liu, J. Yuan, et al., “Spatial Transcriptomics Reveals Tumor Microenvironment Heterogeneity in EBV Positive Diffuse Large B Cell Lymphoma,” Scientific Reports 15, no. 1 (2025): 1–12, https://doi.org/10.1038/S41598-025-00410-X.

S. E. Dunphy, K. J. Guinan, C. N. Chorcora, et al., “2DL1, 2DL2 and 2DL3 All Contribute to KIR Phenotype Variability on Human NK Cells,” Genes and Immunity 16, no. 5 (2015): 301–310, https://doi.org/10.1038/GENE.2015.15.

K. C. Hsu, X. R. Liu, A. Selvakumar, E. Mickelson, R. J. O'Reilly, and B. Dupont, “Killer Ig‐Like Receptor Haplotype Analysis by Gene Content: Evidence for Genomic Diversity With a Minimum of Six Basic Framework Haplotypes, Each With Multiple Subsets,” Journal of Immunology 169, no. 9 (2002): 5118–5129, https://doi.org/10.4049/JIMMUNOL.169.9.5118.

M. O. Ustiuzhanina, M. A. Streltsova, N. D. Timofeev, M. A. Kryukov, D. M. Chudakov, and E. I. Kovalenko, “Autologous T‐Cell‐Free Antigen Presentation System Unveils hCMV‐Specific NK Cell Response,” Cells 13, no. 6 (2024): 530, https://doi.org/10.3390/CELLS13060530.

M. Luetke‐Eversloh, Q. Hammer, P. Durek, et al., “Human Cytomegalovirus Drives Epigenetic Imprinting of the IFNG Locus in NKG2Chi Natural Killer Cells,” PLoS Pathogens 10, no. 10 (2014): 1004441, https://doi.org/10.1371/JOURNAL.PPAT.1004441.

P. A. Kobyzeva, M. A. Streltsova, S. A. Erokhina, et al., “CD56dim CD57‐ NKG2C+ NK Cells Retaining Proliferative Potential are Possible Precursors of CD57+ NKG2C+ Memory‐Like NK Cells,” Journal of Leukocyte Biology 108, no. 4 (2020): 1379–1395, https://doi.org/10.1002/JLB.1MA0720-654RR.

Z. Wu, C. Sinzger, G. Frascaroli, et al., “Human Cytomegalovirus‐Induced NKG2Chi CD57hi Natural Killer Cells are Effectors Dependent on Humoral Antiviral Immunity,” Journal of Virology 87, no. 13 (2013): 7717, https://doi.org/10.1128/JVI.01096-13.

M. Della Chiesa, M. Falco, A. Bertaina, et al., “Human Cytomegalovirus Infection Promotes Rapid Maturation of NK Cells Expressing Activating Killer Ig–Like Receptor in Patients Transplanted With NKG2C−/− Umbilical Cord Blood,” Journal of Immunology 192, no. 4 (2014): 1471–1479, https://doi.org/10.4049/JIMMUNOL.1302053.

S. A. Kust, M. O. Ustiuzhanina, M. A. Streltsova, et al., “HLA‐DR Expression in Natural Killer Cells Marks Distinct Functional States, Depending on Cell Differentiation Stage,” International Journal of Molecular Sciences 25, no. 9 (2024): 4609, https://doi.org/10.3390/IJMS25094609/S1.

S. A. Erokhina, M. A. Streltsova, L. M. Kanevskiy, M. V. Grechikhina, A. M. Sapozhnikov, and E. I. Kovalenko, “HLA‐DR‐Expressing NK Cells: Effective Killers Suspected for Antigen Presentation,” Journal of Leukocyte Biology 109, no. 2 (2021): 327–337, https://doi.org/10.1002/JLB.3RU0420-668RR.

T. Azzi, A. Lünemann, A. Murer, et al., “Role for Early‐Differentiated Natural Killer Cells in Infectious Mononucleosis,” Blood 124, no. 16 (2014): 2533, https://doi.org/10.1182/BLOOD-2014-01-553024.

O. Hatton, D. M. Strauss‐Albee, N. Q. Zhao, et al., “NKG2A‐expressing Natural Killer Cells Dominate the Response to Autologous Lymphoblastoid Cells Infected With Epstein‐Barr Virus,” Frontiers in Immunology 7, no. DEC (2016): 15, https://doi.org/10.3389/FIMMU.2016.00607/FULL.

B. Mbiribindi, J. K. Pena, M. P. Arvedson, et al., “Epstein–Barr Virus Peptides Derived From Latent Cycle Proteins Alter Nkg2a + NK Cell Effector Function,” Scientific Reports 2020 10:1 10, no. 1 (2020): 1–13, https://doi.org/10.1038/s41598-020-76344-3.

M. P. Martin, X. Gao, J. H. Lee, et al., “Epistatic Interaction Between KIR3DS1 and HLA‐B Delays the Progression to AIDS,” Nature Genetics 31, no. 4 (2002): 429–434, https://doi.org/10.1038/NG934.

A. Rivero‐Juarez, R. Gonzalez, A. Camacho, et al., “Natural Killer KIR3DS1 is Closely Associated With HCV Viral Clearance and Sustained Virological Response in HIV/HCV Patients,” PLoS One 8, no. 4 (2013): e61992, https://doi.org/10.1371/JOURNAL.PONE.0061992.

M. O. Ustiuzhanina, A. A. Boyko, J. D. Vavilova, et al., “The Antigen‐Specific Response of NK Cells to SARS‐CoV‐2 Correlates With KIR2DS4 Expression,” Journal of Medical Virology 96, no. 11 (2024): e70057, https://doi.org/10.1002/JMV.70057.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...